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Gedanken zum Integralbegriff
im propädeutischen Unterricht
Teil 2: Der Integralbegriff

Im ersten Teil dieser Arbeit haben wir den Begriff des Elementarintegrals behandelt
Dabei ging es uns insbesondere darum, diesen Begriff in ein allgemeines Umfeld
einzubetten, welches auch in anderen Bereichen der Analysis von Bedeutung ist Der
auch heute noch oft beschnttene klassische Weg uber das Riemann-Integral wird
dieser Forderung sicher nicht gerecht In der vorliegenden zweiten Arbeit geht es nun
darum, einen Integralbegriff zu entwickeln, der den, im ersten Teil formulierten,
allgemeinen Forderungen weitgehend gerecht wird
Die hier diskutierte Methode lehnt sich eng an die von Daniell entwickelte allgemeine
Integralkonstruktion an [1] Auf die berechtigte Frage, warum wir nicht gleich diese
Konstruktion in ihrer vollen Allgemeinheit im Propädeutiken behandeln wollen,
werden wir spater eingehen
Wir diskutieren die Methode gleich fur ein beliebiges positives lineares nullstetiges
Funktional / auf einem Vektorverband &~ von Funktionen auf einer Menge X In der
Tat hangt sie in keiner Weise von zusatzlichen strukturellen Voraussetzungen ab Sie
ist damit unmittelbar auf alle im ersten Teil behandelten Beispiele von Elementarintegralen

anwendbar
Wir zerlegen die Konstruktion in mehrere einfache Schritte

Schritt 1 Es bezeichne Jrt die Menge aller Funktionen / e Rx, zu denen eine wachsende

Folge (/„)„gn von Funktionen aus &" existiert, so dass /= V fn und

sup / (fn) < oo Dann besitzt yT folgende Eigenschaften
n G N

(a) Fur alle /, g e 9 r ist f+g e jr\ fvge^ und fAge J*~T

(b) Fur alle f e 9^ und alle <x e R+ ist a / e ^
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Zu / e J^ existiert laut Voraussetzung eine wachsende Folge (/„)„ e N aus 3~, so dass

/= V /„ und sup /(/„) < oo. Analog sei (g„)neu gewählt für g. Mit Hilfe von 1, (d)
neN wgm

erhält man

/+0= V (fn + gn), fvg= V (fnvg„), fAg= V (fnAgn).
n.N « e N « e N

Weiter hat man

sup / (fn + g„) sup / (/„) + sup / (gn) < oo
neN «eN «eN

Schliesslich gilt für alle «eN /„ vgn+f„ Agn fn + 9n und dies impliziert

sup /(/„ V g„) + sup /(/„ A g„) sup l(f„) + sup l(gn) < oc
«eN «eN «eN «eN

woraus sich die Endlichkeit der beiden links stehenden Summanden ergibt. Damit ist

(a) bewiesen, (b) erhält man ähnlich.

Schritt 2: Sei / e J^. (fn)„ e n und (gn)n e n seien zwei wachsende Folgen aus F mit
der Eigenschaft, dass

/= V/„= V gn.
« e N « e N

Dann ist

sup /(/„) sup l(g„).
«eN «eN

Dies ergibt sich leicht aus der Nullstetigkeit. Für alle «e N ist nämlich
fn V (fn A gm) und 2,(c) impliziert

weN

/(/„) sup /(/„ A gm) < sup l(gm).
m.N w e N

Damit ist aber

sup/(/„)<_ sup/(^„)
neN neN

und analog ergibt sich die andere Richtung.
Unter Berücksichtigung von Schritt 2 definieren wir für alle/ e Jrt

/'(/):= sup/(/„)
«eN

wobei (/„)„ 6 n eine beliebige wachsende Folge aus & bezeichnet mit / V /„.
« e N
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Schritt 3: Es gelten folgende Aussagen:

(a) Für alle fg e T* gilt f(f+g) f (f) + /T(#).
(b) Für alle f e 9^ und alle aeE+ gilt /T (<x /) <x /T (/).
(c) Für alle fge sr\ f<g gilt P (f) <_ P (g).
(d) Für jede fallende Folge (f„)„ e N aus^ mit A /„ 0 gilt inf /T (/„) 0.

« e N « e N

(e) Ist (/„)«eN eine wachsende Folge aus T1, so dass V /„ existiert und
sup /T (/„) < oo, so ist V/„e sr\ n € N

«eN w - N

(a) Sind (/„)B6N und yflGN wachsende Folgen aus F9 so dass /= V f„ und

g= V #„, so findet man laut Schritt 1 " e N

« e N

« e N

und damit

f (f + g) sup l(fn + g„) sup /(/„) + sup l(gn) /T (/) + /T fo).
«eN «eN «eN

(b) folgt analog.
(c) ergibt sich aus den Ueberlegungen in Schritt 2.

(d) Sei (/„)„<= n eine fallende Folge aus ^~T mit der Eigenschaft, dass A f„ 0. Es
«eN

sei e eine echt positive Zahl. Zu jedem « e N gibt es dann eine Funktion g„ e &~+9

so dass

gn<fn und /T(/w)</(^) + £/2".

Für alle « e N setzen wir hn:= A gm. Dann ist (hn)new eine fallende Folge aus &~
m<,n

und es gilt A hn 0, woraus
«eN

inf/(«„) 0
«eN

folgt. Für alle « e N ist aber

fn~hn< Yl (fm-Qm)
m <_ «

und es ergibt sich

lHfn)~l(hn)< YL e/2\
m __ n
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Damit ist auch

inf/T(/„) 0.
«eN

(e) Für alle « e N sei (/„w)wgn eine wachsende Folge aus J% so dass /„= V f„m.
m e N

Für alle m e N setzen wir gm:= V /rtW. Dann ist (_7m)WGN eine wachsende Folge
aus sr, es gilt n*m

V gm= V /„
m e N « e N

und

sup l(gm)< sup /(/„) < oo.
m e N « e N

Schritt 4: Symmetrisch zu den bisher ausgeführten Schritten setzt man J^ gleich der
Menge aller Funktionen / e IR/, zu denen eine fallende Folge (/„)„ e N aus T existiert,
so dass / A fn und inf / (/„) > - oo. Für alle f e^x setzt man

neN neN

/'(/):= inf /(/„),
neN

wobei (/„)„ e N eine Folge der oben beschriebenen Art ist. Die für ST^ und ll geltenden
Gesetze sind völlig analog denjenigen, welche für Jrt und /T formuliert wurden. Man
sieht leicht, dass / e ßf1 genau dann, wenn — / e Jrt und für alle solchen Funktionen /
gx\tl'(f) -l\-f).
Schritt 5: Ist (/„)„ e N eine fallende Folge aus Jrt und (gn)„ G n eine wachsende Folge
aus jr\ sodass A f„= V gn, so gilt

« e N « e N

inf /'(/«) sup lHgH).
«eN neM

In der Tat ist (fn — gn)nen eine fallende Folge aus Jrt und es gilt A (/„ — #„) 0,

was laut Schritt 3 (d) "eN

inf/t(/n)-sup/i(^)=inf/r(/«-^«) 0
neN «eN neN

zur Folge hat.

Schritt 6: Wir setzen nun &~ (/) gleich der Menge aller / e R* zu denen eine fallende
Folge (fn)n e n aus Jrt und eine wachsende Folge (g„)„ e N aus Jri existieren, so dass

/___ Af„= V g„.
neN neN
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Für alle solchen / setzen wir

/(/) inf/'(/„) sup/'(#«)
«eN „gN

Dann ist 9 (/) ein Vektorverband und T ein positives lineares nullstetiges Funktional
auf 9 (/) Es ist >_c_ 9 T u 9 l c 9~ (/) und fur alle [e9~ gilt / (/) T(f) Fur alle

/ e ^ gilt /T (/) / (/) und ebenso hat man ll (f) T(f) fur alle f e9~l
Die Behauptungen ergeben sich leicht aus den bisher beschriebenen Schritten Wir
geben den Beweis der Nullstetigkeit
Sei (fn)n e n eine fallende Folge aus 9 (/), so dass A f„ 0 Fur alle « e N gibt es

«eN
dann eine fallende Folge (/wm)meN aus 9 T mit fn= A fnm Fur alle m e N setzen

m e N

wir gm A fnm Dann ist (#w)wgn eine fallende Folge aus J*T, fur alle «7 6 N ist
n __ m

gm > fm und es ist A gm 0 Schritt 4 (d) impliziert inf /T (#m) 0 Damit ist auch
m e N m e N

inf T(f„) 0 /ist also in der Tat nullstetig
«eN
Damit ist unsere Integralkonstruktion beendet Wir nennen (9" (/), 7) das elementare
Integral von (9,1) und T das elementare Integral von / Die Funktionen aus 9~(l)
heissen integrierbar
Die Nullstetigkeit des elementaren Integrales und ihre äquivalenten Formulierungen
II (c), (d) werden sich als sehr brauchbar erweisen Es sei noch auf eine andere
Konvergenzeigenschaft hingewiesen

Satz 1 Sei (fn)n G n eine Folge integrierbarer Funktionen, welche punktweise gegen eine
integrierbare Funktion f konvergiert g sei eine integrierbare Funktion mit der Eigenschaft,

dass \fn\<gfur alle «eN Dann gilt T(f) hm T(fn)
« -* 00

Laut Schritt 6 ist (9~ (/), 7) selbst ein Elementarintegral Es genügt also, wenn wir den
Satz fur elementar integrierbare Funktionen beweisen Es seien also alle Funktionen
aus 9 Nun beachte man, dass

/= A V fm= V A fm
«eN m__« «eNm__«

V fm\ ist eine fallende Folge aus 9 T und A fm\ eine wachsende Folge aus
\m __ « In e N \m 2> « in e N

9 l Damit ergibt sich

T(f) inf /T V fm\ > inf sup / (fm) > sup inf / (fm)
«eN \w__n / neNm__n «eNm__«

__sup/A( A /-) /"(/),
«eN \w__« /

woraus man unmittelbar die gesuchte Beziehung erhalt
Satz 1 ist verwandt mit dem Konvergenzsatz von Lebesgue Seine Vorteile gegenüber
den Konvergenzsatzen, welche fur das Riemann-Integral unter Verwendung der
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gleichmassigen Konvergenz bewiesen werden, sind offensichtlich Der Fall der

gleichmassigen Konvergenz ist naturlich als Spezialfall enthalten
Es ist nicht schwer, Satz 1 zu einer, dem Lebesgueschen Satz ähnlichen Existenzaussage

auszubauen Wir betrachten einen Teilvektorverband $ von 9r(l) {f,T\#) ist
dann wieder ein Elementarintegral Wir nennen & ein Erzeugendensystem von 9' (l)
genau dann, wenn ^t=Jrt (und damit natürlich auch ^i=9ri) Setzt man nun in
Satz 1 voraus, dass die Funktionen /„ einem Erzeugendensystem -? von 9~(l)
angehören und / lediglich R* angehört, so findet man mit derselben Beweisidee, dass

f e 9 (l) sein muss Die oben bewiesene Formel bleibt naturlich erhalten Auf eine
weitere, fur die Anwendungen nutzliche Eigenschaft wollen wir noch hinweisen

Satz 2 Sei ^ ein Erzeugendensystem von 9r(l) 2^ sei eine Menge integrierbarer
Funktionen mit folgenden Eigenschaften

(\) 4<z2P
(n) Ist (fn)neu eine monotone Folge aus W fur welche {/"(/„)} beschrankt ist in R,

so ist hm /„e/«-* oo

Dann ist W T (l)
Der Beweis ergibt sich unmittelbar aus der Konstruktion des Integrals
Wir nennen diesen Satz das Induktionsprinzip In einer allgemeineren Form ist es in
[2] behandelt
Bevor wir zur Diskussion der Konstruktion im Sinne der allgemeinen Forderungen
kommen, wollen nur nun einige Fragestellungen kurz anschneiden, die sich im
Zusammenhang mit dem Integralbegriff ergeben

A) Das Inhaltsproblem Wir gehen aus vom Elementarintegral (s/(ri), ln) (Beispiel 3 im
ersten Teil) Eine Menge A cz Rn heisse integrierbar genau dann, wenn die charakteristische

Funktion eA integrierbar ist p„ (A) ln (eA) nennen wir den Inhalt von A Wir
gelangen damit leicht zu einem Inhaltsbegriff in beliebigen Dimensionen Die
integrierbaren Mengen bilden einen Mengenring, das heisst, mit zwei integrierbaren Mengen

A und B sind auch die Mengen Akj B,An B und A\B integrierbar, denn es ist

^u. ^v^i eAnB eAAeB und eA\B eA-eAnB

Die Inhaltsfunktion p„ ist additiv, positiv und nullstetig, wie sich unmittelbar aus den
entsprechenden Eigenschaften des Funktionais l„ ergibt Auch der obige Konvergenzsatz

lasst sich sofort auf die Inhaltsfunktion übertragen Der Mengenring der integrierbaren

Mengen enthalt alle beschrankten offenen und alle kompakten Teilmengen des
Rrt Dies ergibt sich leicht aus der Konstruktion der integrierbaren Funktionen Eine

genauere Charakterisierung geben wir spater Es zeigt sich aber bereits hier, dass man
uber die Konstruktion zu einem brauchbaren Inhaltsbegriff gelangt

B) Uneigentliche Integrale Die Einfuhrung dieses Begriffs erübrigt sich Aus der
Konstruktion geht namhch hervor, dass wir sowohl unbeschrankte Funktionen als auch
unbeschrankte Definitionsbereiche m genügendem Umfange berücksichtigen Die
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angegebenen Konvergenzsatze beantworten auch gleich die Frage nach der
praktischen Berechnung der Integrale solcher Funktionen Analoge Bemerkungen gelten
fur die unter A) eingeführten integrierbaren Mengen

C) Die praktische Berechnung von Integralen Wir betrachten wieder besonders die
Situation im R" Die Einfuhrung des Integrals auf der Basis der affinen Funktionen
hegt sehr nahe bei wichtigen numerischen Integrationsmethoden (Rechteck-Methode,
Trapezregel, Simpson-Regel, (siehe [4], [5], [6]) Die Konvergenzsatze ermöglichen

eine einfache Behandlung dieser fur die Praxis wichtigen Methoden

D) Die Vertauschung der Integrationsreihenfolge Wir haben bereits im ersten Teil auf
dieses Problem hingewiesen Insbesondere an dieser Stelle zeigt sich die Schwache des

Riemann-Integrals Wir wollen uns überlegen, was die Konstruktion in diesem
Zusammenhang fur Möglichkeiten bietet Dabei genügt es, wenn wir den Fall R2 R x R
betrachten
Es bezeichne f den von den charakteristischen Funktionen beschrankter Rechtecke
des R2 erzeugten Vektorverband Dieser Raum ist offenbar ein Erzeugendensystem
von 9 (l2) Fur Funktionen aus ^ ist die Vertauschbarkeit der Integrationsreihenfolge
trivial Aufgrund der Konvergenzeigenschaften des Integrals und des Induktionsprinzips

ergibt sie sich dann aber fur alle integrierbaren Funktionen auf R2 Die
Vertauschbarkeit der Integrationsreihenfolge stellt also im Rahmen der Integrale /„ kein
Problem dar Man beachte auch hier wieder, dass wir die grundlegenden Aussagen
gleich auch fur unbeschrankte Funktionen und Integrationsbereiche erhalten

E) Charakterisierung der integrierbaren Funktionen des R" Wir sind nicht der
Auffassung, dass diese im Propadeutikum durchgeführt werden muss Es genügt sicher,
wenn gewisse wichtige Klassen hervorgehoben werden So zeigt man ohne Schwierigkeiten,

dass alle stuckweise stetigen Funktionen mit beschranktem Trager integrierbar
sind Eine genauere Untersuchung zeigt folgendes

Satz 3 Eine Funktion / e Rx ist genau dann integrierbar, wenn sie folgende
Eigenschaften besitzt

(i) / gehört höchstens der ersten Baireschen Klasse an
(n) |/| ist nach oben beschrankt durch eine reellwertige, nach unten halbstetige

Funktion aus _^(«)T

Besitzt eine Funktion diese Eigenschaften, so ist sie punktweiser Limes einer Folge
von stetigen Funktionen mit beschranktem Trager, welche den Voraussetzungen des

oben formulierten erweiterten Grenzwertsatzes genügt Die stetigen Funktionen mit
beschranktem Trager bilden ein Erzeugendensystem von 9~ (/„) Damit ist / integrierbar

Ist umgekehrt / integrierbar, so ist / von oben approximierbar durch eine Folge mte-
gnerbarer, nach unten halbstetiger Funktionen, und analog von unten approximierbar
durch eine Folge integrierbarer nach oben halbstetiger Funktionen Damit genügt /
der Bedingung (n) Es ergibt sich aber weiter aufgrund des Satzes uber die Trennbar-
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keit halbstetiger Funktionen durch stetige Funktionen auch, dass / punktweiser
Limes von stetigen Funktionen mit beschranktem Trager ist Damit genügt / der
Bedingung (i)
Satz 3 zeigt, dass 9 (ln) eine recht umfangreiche Klasse wichtiger Funktionen beinhaltet

und sicher fur die Zwecke des Propadeutikums ausreicht Ueber Satz 3 erhalt man
auch leicht eine Charakterisierung der integrierbaren Mengen Mehr Information
uber die hier beschriebenen Funktionen erhalt der Leser in [3]

F) Integration und Differentiation Selbstverständlich behalten die im propädeutischen
Unterricht durchgeführten Betrachtungen uber die elementaren Zusammenhange
zwischen der Integnerbarkeit und der Differenzierbarkeit ihre Bedeutung bei Sie sind
auch ohne Schwierigkeiten mit Hilfe des hier entwickelten Integralbegriffes
durchzufuhren Soweit dies die Differenzierbarkeit in ihrer klassischen Bedeutung betrifft,
wird man sich naturlich auf die Betrachtung von Stammfunktionen stetiger
Funktionen beschranken müssen, denn der Begriff der Differenzierbarkeit fast überall und
die sich daraus ergebenden Beziehungen gehören nicht in den elementaren Unterricht
Anderseits kann man aber in gewohnter Weise unbestimmte Integrale definieren, und

mann kann sich die Frage stellen, ob dies nicht ein gunstiger Ort ist fur den ersten
Kontakt des Studenten mit dem Begriff der verallgemeinerten Differenzierbarkeit,
wenn auch nur im exemplarischen Rahmen Eine Funktion F heisse verallgemeinert
differenzierbar genau dann, wenn sie unbestimmtes Integral einer integrierbaren
Funktion / ist Mit Hilfe der Konvergenzsatze lassen sich leicht die Differentiationsregeln

von den stetig differenzierbaren Funktionen auf die verallgemeinert
differenzierbaren Funktionen erweitern Entsprechend verallgemeinert man die Beziehungen
der verallgemeinerten Differentiation zur Integration Auch hier bestehen wieder
zahlreiche Anknüpfungspunkte zur höheren Analysis

G) Summierbarkeit Zum Schluss wollen wir noch ein paar Bemerkungen anschhessen

zur Integration im Rahmen der Elementarintegrale (9~(X), lg), wobei wir uns auf den
Fall der Funktion g (x) 1 beschranken Es ist leicht zu sehen, dass im Falle des

Definitionsbereiches X= N eine Funktion / genau dann integrierbar ist bezüglich lg,
wenn (f(n))„ G N absolut summierbar ist Aus den Sätzen uber das Integral ergeben
sich die Satze uber summierbare Zahlenfolgen Die Verallgemeinerung auf beliebige
Definitionsbereiche X ist fur zahlreiche Anwendungen in der Analysis von Bedeutung
und gehört sicher in den propädeutischen Unterricht Zwei Eigenschaften zeichnen
dieses Beispiel aus Erstens zeigt es, dass der Begriff der Integration nicht im
beschrankten Rahmen der Funktionen auf Rw gesehen werden darf In diesem Sinne
kann das Beispiel der summierbaren Funktionen auch als Motivation fur die Begriffs-
bildungen dienen Zweitens kann man anhand dieses Beispiels sehr gut die einzelnen
Schritte der Konstruktion des Integrals verfolgen Eine vollständige Behandlung findet
man in [2]
Nun müssen wir uns noch überlegen, wie weit wir den Forderungen gerecht werden,
die wir im ersten Teil dieser Arbeit aufgestellt haben

Forderung 1 Wie wir gesehen haben, ist Forderung 1 in vollem Umfange erfüllt Die
Methode ist dimensionsunabhangig und umfasst auch die uneigentlichen Integrale
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Forderung 2 Wir haben bereits erwähnt, dass sich die hier beschriebene Methode
ganz an der Daniellschen Konstruktion orientiert Letztere erfolgt in den hier
beschriebenen Schritten mit dem Unterschied, dass im Rahmen des R* gearbeitet wird,
also die Funktionswerte oo und — oo zugelassen werden, und ausserdem die Konvergenz

fast überall an die Stelle der punktweisen Konvergenz tritt ([2], [7], [8]) Die hier
beschriebene Methode macht den Studenten mit Begriffen und Konstruktionen
bekannt, die auch in der allgemeinen Integrationstheorie fundamental sind
Es bleibt die Frage, warum wir nicht gleich mit der Daniellschen Konstruktion arbeiten

wollen Dazu ist zunächst zu bemerken, dass eine saubere Behandlung der Operationen

mit Funktionen aus R* nicht ohne einen gewissen Aufwand möglich ist In den

gangigen Lehrbuchern wird an dieser Stelle meist etwas «gemogelt» Es werden
Konzessionen gemacht, die fur den fortgeschrittenen Leser zwar durchaus gerechtfertigt
sind, im propädeutischen Unterricht aber nicht Verwendung finden sollten Dieselbe
Bemerkung ist zum Begriff «fast überall» zu machen Man denke nur an die
Schwierigkeiten, die bei einer sauberen Formulierung des Satzes von Fubini in der allgemeinen

Integrationstheorie entstehen
Alle genannten Probleme sind technischer Natur Es ergeben sich keine Folgen fur das

Verständnis, wenn sie beim ersten Kontakt mit der Materie eliminiert werden In
spateren SpezialVorlesungen können sie mit Leichtigkeit bewältigt werden, was dort
wiederum zu mehr Raum fur interessantere Untersuchungen fuhrt

Forderung 3 Wir haben an mehreren Stellen auf Verbindungen zu anderen Fragestellungen

der Analysis hingewiesen Die Zahl dieser Verbindungen konnte leicht erhöht
werden

Es bleibt uns schliesslich noch das Problem der didaktischen Vertretbarkeit der
Methode im Propadeutikum Das Verfahren bewegt sich sicherlich an der oberen
Grenze des im Propadeutikum Durchfuhrbaren Auf der anderen Seite ist es aber
leicht zu motivieren Die Methode der Approximation von zwei Seiten ist dem
Studenten vom Schulunterricht her wohlbekannt Sie ist ihm dort bei der Berechnung
der Inhalte einfacher Gebiete der Ebene und des Raumes begegnet Basierend auf
diesen elementaren Beispielen sollte die Konstruktion mit Erfolg behandelt werden
können

K Weber, Mathematik-Departement, ETH-Zunch
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