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Gedanken zum Integralbegriff
im propadeutischen Unterricht
Teil 2: Der Integralbegriff

Im ersten Teil dieser Arbeit haben wir den Begriff des Elementarintegrals behandelt.
Dabei ging es uns insbesondere darum, diesen Begriff in ein allgemeines Umfeld ein-
zubetten, welches auch in anderen Bereichen der Analysis von Bedeutung ist. Der
auch heute noch oft beschrittene klassische Weg iiber das Riemann-Integral wird
dieser Forderung sicher nicht gerecht. In der vorliegenden zweiten Arbeit geht es nun
darum, einen Integralbegriff zu entwickeln, der den, im ersten Teil formulierten, allge-
meinen Forderungen weitgehend gerecht wird.

Die hier diskutierte Methode lehnt sich eng an die von Daniell entwickelte allgemeine
Integralkonstruktion an [1]. Auf die berechtigte Frage, warum wir nicht gleich diese
Konstruktion in ihrer vollen Allgemeinheit im Propadeutikum behandeln wollen,
werden wir spiter eingehen.

Wir diskutieren die Methode gleich fiir ein beliebiges positives lineares nullstetiges
Funktional / auf einem Vektorverband . von Funktionen auf einer Menge X. In der
Tat hingt sie in keiner Weise von zusitzlichen strukturellen Voraussetzungen ab. Sie
ist damit unmittelbar auf alle im ersten Teil behandelten Beispiele von Elementar-
integralen anwendbar.

Wir zerlegen die Konstruktion in mehrere einfache Schritte.

Schritt 1: Es bezeichne # ' die Menge aller Funktionen f € R¥, zu denen eine wach-
sende Folge (f,),en von Funktionen aus ¥ existiert, so dass f= \/N f» und
ne

sup /(f,) < co. Dann besitzt.# ' folgende Eigenschaften.
neN

(a) Firralle f,ge s ist f+ges", fvges  und fAges'
(b) Fiiralle fe ¥'undallea e R, ista fe &
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Zu f e 7' existiert laut Voraussetzung eine wachsende Folge (f,),n aus %, so dass

f=V f,und sup /(f,) < co. Analog sei (g,), e n gewdhlt fiir g. Mit Hilfe von 1, (d)
neN neN

erhilt man
f+g=v(fn+gn): fvg:v(fnvgn)a f/\g’—‘v(fn/\gn)-
neN neN neN
Weiter hat man

sup[(fn+gn)= Supl(fn)+ Supl(gn) < .
neN neN neN

Schliesslich gilt fiir alle n e N f,Vg,+f,Agn= fatg, und dies impliziert

sup [ (fn Vv gn) +sup [ (fuAgn) =supl(f,) +supl(g,) < ©,
neN neN neN neN

woraus sich die Endlichkeit der beiden links stehenden Summanden ergibt. Damit ist
(a) bewiesen. (b) erhalt man dhnlich.

Schritt 2: Sei f € . (f)wen und (gn)nen seien zwei wachsende Folgen aus % mit
der Eigenschaft, dass

f= V fu=V ¢gn.
neN neN
Dann ist

sup /(f») = sup /(gn) -
neN neN

Dies ergibt sich leicht aus der Nullstetigkeit. Fiir alle ne N ist ndmlich
Sn= \/N (fu A gm) und 2,(c) impliziert
me

l(fn) = sup l(fn/\gm) = sup l(gm) .

meN meN

Damit ist aber

sup /(f,) < sup /(g,)
neN neN

und analog ergibt sich die andere Richtung.
Unter Beriicksichtigung von Schritt 2 definieren wir fiir alle f € 7!

1" (f):=sup [ (f»)

neN

wobei (f,). e N €ine beliebige wachsende Folge aus # bezeichnet mit /= V f,.
neN
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Schritt 3: Es gelten folgende Aussagen:

(a) Firalle f,ge 7 gilti'(f+g)=1"(f)+1"(g).

(b) Firalle f €5 und alle o € R, gilt /' (a f) = oI (f).

(c) Firalle f,ge s, f<gglt!'(f)<I'(g).

(d) Fiir jede fallende Folge (f;,), c n aus.# ' mit /\Nf,, =0 gilt in{qlT (f,) =0.
ne ne

(€) Ist (fy)nen eine wachsende Folge aus #', so dass V f, existiert und

sup I'(f,) < o0,s0ist V f,e F neN
neN neN

(a) Sind (f\)nen und (g,)nen Wachsende Folgen aus %, so dass f= V f, und
g =V gn,so findet man laut Schritt 1 neN
neN

f+g =n>/N(fn+gn)

und damit

Nf+g)= su%l(fﬁgn) = sugl(fn) + su%l(gn) =I'NH+1"(g).

(b) folgt analog.
(c) ergibt sich aus den Ueberlegungen in Schritt 2.

(d) Sei (f)nen eine fallende Folge aus .# ' mit der Eigenschaft, dass /\]N fn=0. Es
ne

sei ¢ eine echt positive Zahl. Zu jedem n € N gibt es dann eine Funktion g, € 7,
so dass

gn<fo und ['(f,)) <I(gn)+e/2".

Fir alle n € N setzen wir h,:= A g,. Dann ist (h,),n eine fallende Folge aus &
ms<n

und es gilt A A4, =0, woraus
neN

inf [(h,)=0
neN

folgt. Fiir alle n € N ist aber

f,,-—h,,S. Z (fm_gm)

ms<n
und es ergibt sich

() —1(hy) < 2 &/2".

m<n
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Damit ist auch
inf IT(f,)=0.
neN
(e) Fiir alle n € N sei (f,»)men €ine wachsende Folge aus .7, so dass f,= V f,n,-
meN

Fiir alle m € N setzen wir ¢g,,:= V f,». Dann ist (g,,)men €ine wachsende Folge
aus .7, es gilt n=m

und

sup /(gm) < sup/(f,) <.

meN neN

Schritt 4: Symmetrisch zu den bisher ausgefiihrten Schritten setzt man ¢ gleich der
Menge aller Funktionen f € R¥, zu denen eine fallende Folge (f,),c ~ aus & existiert,
so dass f = /\Nf,, und inf /(f,) > — oo. Fiir alle f € '} setzt man

ne neN

1H(f) = inf [(fy),
neN

wobei (f,), « n €ine Folge der oben beschriebenen Art ist. Die fiir #* und /* geltenden
Gesetze sind vollig analog denjenigen, welche fiir #' und /' formuliert wurden. Man
sieht leicht, dass f € #* genau dann, wenn — f € %" und fiir alle solchen Funktionen f

gilt () ==1"(= /).

Schritt 5: Ist (f,)n e n eine fallende Folge aus # ' und (g,), < N €ine wachsende Folge

aus 7Y, sodass A f,= V g,,so0gilt
neN neN

inf /' (fn) = sup It (gn) .
neN neN

In der Tat ist (f,—¢gn)nen eine fallende Folge aus %' und es gilt A (f,—g,) =0,
was laut Schritt 3 (d) neN

inf /" (f,) — sup /* (g,) = inf /" (f,—gn) =0
neN neN neN

zur Folge hat.

Schritt 6: Wir setzen nun % (/) gleich der Menge aller f € R*, zu denen eine fallende
Folge (f;)n e n aus.# " und eine wachsende Folge (g,), c n aus #* existieren, so dass

f= N fn= V gn.
neN neN
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Fiir alle solchen f setzen wir

I(f):= in;ﬁ (fa) =sup /*(g,) .

neN

Dann ist % (/) ein Vektorverband und / ein positives lineares nullstetiges Funktional

auf ¥ (I). Es ist # c¥'U s c.# (I) und fiir alle f €. gilt [(f) =1(f). Fir alle

feFgiltI'(f)=1(f) und ebenso hat man /* (f) = I(f) fiir alle f € .

Die Behauptungen ergeben sich leicht aus den bisher beschriebenen Schritten. Wir

geben den Beweis der Nullstetigkeit.

Sei (f,)nen eine fallende Folge aus % (/), so dass /\Nf,, = (. Fiir alle n € N gibt es
nhe

dann eine fallende Folge (f,m)men aus #' mit f,= A f,,. Fiir alle m € N setzen
meN

Wir ¢,,:= A fym. Dann ist (g,)men €ine fallende Folge aus .# ', fiir alle m € N ist
n<m

gm= fnund esist A g,,=0. Schritt 4(d) impliziert inf /' (g,,) = 0. Damit ist auch
meN meN
inf I(f,) = 0. [ ist also in der Tat nullstetig.
neN

Damit ist unsere Integralkonstruktion beendet. Wir nennen (¥ (/),/) das elementare
Integral von (¥,/) und / das elementare Integral von /. Die Funktionen aus .# (/)
heissen integrierbar. .

Die Nullstetigkeit des elementaren Integrales und ihre dquivalenten Formulierungen
II(c), (d) werden sich als sehr brauchbar erweisen. Es sei noch auf eine andere Kon-
vergenzeigenschaft hingewiesen.

Satz 1: Sei (f,)nen eine Folge integrierbarer Funktionen, welche punktweise gegen eine
integrierbare Funktion f konvergiert. g sei eine integrierbare Funktion mit der Eigen-
schaft, dass | f,,| < g fiir alle n € N. Dann gilt [ (f) = lim [(f,).

n— o
Laut Schritt 6 ist (% (/),]) selbst ein Elementarintegral. Es geniigt also, wenn wir den
Satz fiir elementar integrierbare Funktionen beweisen. Es seien also alle Funktionen
aus #. Nun beachte man, dass

f=NA V fm=NV_ N fn.

neN m2n neN mz2n

ist eine fallende Folge aus.# ' und ( N fm eine wachsende Folge aus

mzn )neN

(L)
2n neN
%1, Damit ergibt sich

l_(f)=inflT( V f,,,)z inf sup /(f,,) = sup inf/(f,)

neN mzn neNmz2n neNmzn

Zsup It A fm)=1(f)

neN 2n

woraus man unmittelbar die gesuchte Beziehung erhalt.
Satz 1 ist verwandt mit dem Konvergenzsatz von Lebesgue. Seine Vorteile gegeniiber
den Konvergenzsitzen, welche fir das Riemann-Integral unter Verwendung der
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gleichmissigen Konvergenz bewiesen werden, sind offensichtlich. Der Fall der
gleichmissigen Konvergenz ist natiirlich als Spezialfall enthalten.

Es ist nicht schwer, Satz 1 zu einer, dem Lebesgueschen Satz dhnlichen Existenzaus-
sage auszubauen. Wir betrachten einen Teilvektorverband # von % (I). (4,1],) ist
dann wieder ein Elementarintegral. Wir nennen 4 ein Erzeugendensystem von .# (/)
genau dann, wenn #'=%" (und damit natiirlich auch #*=.'). Setzt man nun in
Satz 1 voraus, dass die Funktionen f, einem Erzeugendensystem % von .¥ (/) ange-
héren und f lediglich R* angehért, so findet man mit derselben Beweisidee, dass
fe# (I) sein muss. Die oben bewiesene Formel bleibt natiirlich erhalten. Auf eine
weitere, fiir die Anwendungen niitzliche Eigenschaft wollen wir noch hinweisen.

Satz 2: Sei 4 ein Erzeugendensystem von ¥ (l). 5 sei eine Menge integrierbarer Funk-
tionen mit folgenden Eigenschaften:

1) dc#
(i) Ist (f,)nen eine monotone Folge aus # fiir welche {I(f,)} beschrinkt ist in R,

so ist lim f, € &7

n— oo

Dann ist % =7 ().
Der Beweis ergibt sich unmittelbar aus der Konstruktion des Integrals.
Wir nennen diesen Satz das Induktionsprinzip. In einer allgemeineren Form ist es in
[2] behandelt.
Bevor wir zur Diskussion der Konstruktion im Sinne der allgemeinen Forderungen
kommen, wollen nur nun einige Fragestellungen kurz anschneiden, die sich im Zu-
sammenhang mit dem Integralbegriff ergeben.

A) Das Inhaltsproblem. Wir gehen aus vom Elementarintegral (+/(n), /,) (Beispiel 3 im
ersten Teil). Eine Menge 4 — R” heisse integrierbar genau dann, wenn die charakteri-
stische Funktion e, integrierbar ist. u,(A) :=[,(e,) nennen wir den Inhalt von 4. Wir
gelangen damit leicht zu einem Inhaltsbegriff in beliebigen Dimensionen. Die inte-
grierbaren Mengen bilden einen Mengenring, das heisst, mit zwei integrierbaren Men-
gen 4 und B sind auch die Mengen 4 U B, A n B und A\B integrierbar, denn es ist

equp=¢e4Vep, e4np=eq4Neg und eqpp=e —€4~p.

Die Inhaltsfunktion u, ist additiv, positiv und nullstetig, wie sich unmittelbar aus den
entsprechenden Eigenschaften des Funktionals /, ergibt. Auch der obige Konvergenz-
satz ldsst sich sofort auf die Inhaltsfunktion iibertragen. Der Mengenring der integrier-
baren Mengen enthilt alle beschriankten offenen und alle kompakten Teilmengen des
R". Dies ergibt sich leicht aus der Konstruktion der integrierbaren Funktionen. Eine
genauere Charakterisierung geben wir spiter. Es zeigt sich aber bereits hier, dass man
tiber die Konstruktion zu einem brauchbaren Inhaltsbegriff gelangt.

B) Uneigentliche Integrale. Die Einfithrung dieses Begriffs eriibrigt sich. Aus der Kon-
struktion geht ndmlich hervor, dass wir sowohl unbeschrinkte Funktionen als auch
unbeschriankte Definitionsbereiche in geniigendem Umfange beriicksichtigen. Die
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angegebenen Konvergenzsidtze beantworten auch gleich die Frage nach der prak-
tischen Berechnung der Integrale solcher Funktionen. Analoge Bemerkungen gelten
fiir die unter A) eingefiihrten integrierbaren Mengen.

C) Die praktische Berechnung von Integralen. Wir betrachten wieder besonders die
Situation im R” Die Einfiihrung des Integrals auf der Basis der affinen Funktionen
liegt sehr nahe bei wichtigen numerischen Integrationsmethoden (Rechteck-Methode,
Trapezregel, Simpson-Regel, ..., (siehe [4], [5], [6]). Die Konvergenzsitze ermdog-
lichen eine einfache Behandlung dieser fiir die Praxis wichtigen Methoden.

D) Die Vertauschung der Integrationsreihenfolge. Wir haben bereits im ersten Teil auf
dieses Problem hingewiesen. Insbesondere an dieser Stelle zeigt sich die Schwéche des
Riemann-Integrals. Wir wollen uns iiberlegen, was die Konstruktion in diesem Zu-
sammenhang fiir Moglichkeiten bietet. Dabei geniigt es, wenn wir den Fall R?=R xR
betrachten.

Es bezeichne ¢ den von den charakteristischen Funktionen beschrankter Rechtecke
des IR? erzeugten Vektorverband. Dieser Raum ist offenbar ein Erzeugendensystem
von ¥ (/). Fiir Funktionen aus # ist die Vertauschbarkeit der Integrationsreihenfolge
trivial. Aufgrund der Konvergenzeigenschaften des Integrals und des Induktionsprin-
zips ergibt sie sich dann aber fiir alle integrierbaren Funktionen auf R2 Die Ver-
tauschbarkeit der Integrationsreihenfolge stellt also im Rahmen der Integrale /, kein
Problem dar. Man beachte auch hier wieder, dass wir die grundlegenden Aussagen
gleich auch fiir unbeschriankte Funktionen und Integrationsbereiche erhalten.

E) Charakterisierung der integrierbaren Funktionen des R". Wir sind nicht der Auf-
fassung, dass diese im Propadeutikum durchgefiihrt werden muss. Es geniigt sicher,
wenn gewisse wichtige Klassen hervorgehoben werden. So zeigt man ohne Schwierig-
keiten, dass alle stiickweise stetigen Funktionen mit beschranktem Trédger integrierbar
sind. Eine genauere Untersuchung zeigt folgendes:

Satz 3: Eine Funktion f € R¥ ist genau dann integrierbar, wenn sie folgende Eigen-
schaften besitzt:

(1) f gehort hochstens der ersten Baireschen Klasse an.
(i) |f| ist nach oben beschrinkt durch eine reellwertige, nach unten halbstetige
Funktion aus .« (n)".

Besitzt eine Funktion diese Eigenschaften, so ist sie punktweiser Limes einer Folge
von stetigen Funktionen mit beschrinktem Triager, welche den Voraussetzungen des
oben formulierten erweiterten Grenzwertsatzes geniigt. Die stetigen Funktionen mit
beschrinktem Tréger bilden ein Erzeugendensystem von % (/,). Damit ist f integrier-
bar.

Ist umgekehrt f integrierbar, so ist f von oben approximierbar durch eine Folge inte-
grierbarer, nach unten halbstetiger Funktionen, und analog von unten approximierbar
durch eine Folge integrierbarer nach oben halbstetiger Funktionen. Damit geniigt f
der Bedingung (ii). Es ergibt sich aber weiter aufgrund des Satzes iiber die Trennbar-



150 El. Math., Vol. 41, 1986

keit halbstetiger Funktionen durch stetige Funktionen auch, dass f punktweiser
Limes von stetigen Funktionen mit beschranktem Trager ist. Damit geniigt / der Be-
dingung (1).

Satz 3 zeigt, dass .# (/,) eine recht umfangreiche Klasse wichtiger Funktionen beinhal-
tet und sicher fiir die Zwecke des Propdadeutikums ausreicht. Ueber Satz 3 erhilt man
auch leicht eine Charakterisierung der integrierbaren Mengen. Mehr Information
liber die hier beschriebenen Funktionen erhélt der Leser in [3].

F) Integration und Differentiation. Selbstverstindlich behalten die im propiadeutischen
Unterricht durchgefiihrten Betrachtungen iiber die elementaren Zusammenhinge zwi-
schen der Integrierbarkeit und der Differenzierbarkeit ithre Bedeutung bei. Sie sind
auch ohne Schwierigkeiten mit Hilfe des hier entwickelten Integralbegriffes durch-
zufithren. Soweit dies die Differenzierbarkeit in ihrer klassischen Bedeutung betrifft,
wird man sich natiirlich auf die Betrachtung von Stammfunktionen stetiger Funk-
tionen beschrinken miissen, denn der Begriff der Differenzierbarkeit fast iiberall und
die sich daraus ergebenden Beziehungen gehoren nicht in den elementaren Unterricht.
Anderseits kann man aber in gewohnter Weise unbestimmte Integrale definieren, und
mann kann sich die Frage stellen, ob dies nicht ein giinstiger Ort ist fiir den ersten
Kontakt des Studenten mit dem Begriff der verallgemeinerten Differenzierbarkeit,
wenn auch nur im exemplarischen Rahmen. Eine Funktion F heisse verallgemeinert
differenzierbar genau dann, wenn sie unbestimmtes Integral einer integrierbaren
Funktion f ist. Mit Hilfe der Konvergenzsitze lassen sich leicht die Differentiations-
regeln von den stetig differenzierbaren Funktionen auf die verallgemeinert differen-
zierbaren Funktionen erweitern. Entsprechend verallgemeinert man die Beziehungen
der verallgemeinerten Differentiation zur Integration. Auch hier bestehen wieder
zahlreiche Ankniipfungspunkte zur héheren Analysis.

G) Summierbarkeit. Zum Schluss-wollen wir noch ein paar Bemerkungen anschliessen
zur Integration im Rahmen der Elementarintegrale (¥ (X), /,), wobei wir uns auf den
Fall der Funktion g(x) =1 beschrianken. Es ist leicht zu sehen, dass im Falle des
Definitionsbereiches X = N eine Funktion f genau dann integrierbar ist beziiglich /,,
wenn (f(n)),en absolut summierbar ist. Aus den Sitzen iiber das Integral ergeben
sich die Sétze iiber summierbare Zahlenfolgen. Die Verallgemeinerung auf beliebige
Definitionsbereiche X ist fiir zahlreiche Anwendungen in der Analysis von Bedeutung
und gehort sicher in den propddeutischen Unterricht. Zwei Eigenschaften zeichnen
dieses Beispiel aus. Erstens zeigt es, dass der Begriff der Integration nicht im be-
schrinkten Rahmen der Funktionen auf R” gesehen werden darf. In diesem Sinne
kann das Beispiel der summierbaren Funktionen auch als Motivation fiir die Begriffs-
bildungen dienen. Zweitens kann man anhand dieses Beispiels sehr gut die einzelnen
Schritte der Konstruktion des Integrals verfolgen. Eine vollstindige Behandlung findet
man in [2].

Nun miissen wir uns noch iiberlegen, wie weit wir den Forderungen gerecht werden,
die wir im ersten Teil dieser Arbeit aufgestellt haben.

Forderung 1: Wie wir gesehen haben, ist Forderung 1 in vollem Umfange erfiillt. Die
Methode ist dimensionsunabhingig und umfasst auch die uneigentlichen Integrale.
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Forderung 2: Wir haben bereits erwdhnt, dass sich die hier beschriebene Methode
ganz an der Daniellschen Konstruktion orientiert. Letztere erfolgt in den hier be-
schriebenen Schritten mit dem Unterschied, dass im Rahmen des R* gearbeitet wird,
also die Funktionswerte co und — oo zugelassen werden, und ausserdem die Konver-
genz fast iiberall an die Stelle der punktweisen Konvergenz tritt ([2], [7], [8]). Die hier
beschriebene Methode macht den Studenten mit Begriffen und Konstruktionen be-
kannt, die auch in der allgemeinen Integrationstheorie fundamental sind.

Es bleibt die Frage, warum wir nicht gleich mit der Daniellschen Konstruktion arbei-
ten wollen. Dazu ist zunédchst zu bemerken, dass eine saubere Behandlung der Opera-
tionen mit Funktionen aus R* nicht ohne einen gewissen Aufwand moglich ist. In den
gangigen Lehrbiichern wird an dieser Stelle meist etwas «gemogelt». Es werden Kon-
zessionen gemacht, die fiir den fortgeschrittenen Leser zwar durchaus gerechtfertigt
sind, im propéddeutischen Unterricht aber nicht Verwendung finden sollten. Dieselbe
Bemerkung ist zum Begriff «fast iiberall» zu machen. Man denke nur an die Schwie-
rigkeiten, die bei einer sauberen Formulierung des Satzes von Fubini in der allgemei-
nen Integrationstheorie entstehen.

Alle genannten Probleme sind technischer Natur. Es ergeben sich keine Folgen fiir das
Verstandnis, wenn sie beim ersten Kontakt mit der Materie eliminiert werden. In
spateren Spezialvorlesungen konnen sie mit Leichtigkeit bewiltigt werden, was dort
wiederum zu mehr Raum fiir interessantere Untersuchungen fiihrt.

Forderung 3: Wir haben an mehreren Stellen auf Verbindungen zu anderen Fragestel-

lungen der Analysis hingewiesen. Die Zahl dieser Verbindungen konnte leicht erhoht
werden.

Es bleibt uns schliesslich noch das Problem der didaktischen Vertretbarkeit der
Methode im Propadeutikum. Das Verfahren bewegt sich sicherlich an der oberen
Grenze des im Propddeutikum Durchfithrbaren. Auf der anderen Seite ist es aber
leicht zu motivieren. Die Methode der Approximation von zwei Seiten ist dem
Studenten vom Schulunterricht her wohlbekannt. Sie ist ihm dort bei der Berechnung
der Inhalte einfacher Gebiete der Ebene und des Raumes begegnet. Basierend auf
diesen elementaren Beispielen sollte die Konstruktion mit Erfolg behandelt werden
konnen.

K. Weber, Mathematik-Departement, ETH-Ziirich
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