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To establish an upper bound of the form H <ax+b, with equality for equilateral
triangles which occurs when x =2, it is necessary only to determine the equation of
the tangent line at the point (2, 3), and this equation is y =12 x — 21: we now have

> IN,<12R-21r. (6)

If (6) and the known inequality > AI<2R+2r, [1] p. 103, is applied to (1), we
obtain the inequality

> n,<14R—19r (7)

and this is an upper bound for the sequence as desired. We now have 9r< > A,
<D g.<D W< my<Y n,<14R—19r with equality throughout when the given
triangle is equilateral.
Roland H. Eddy, Memorial University of Newfoundland,
St. John’s, Newfoundland, Canada
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Aufgaben

Aufgabe 929. Die Folge (a,) sei definiert durch

34+ (= 1)

5 (n=0).

a0=2a Any1=ap+

Man ermittle

© (_ )ln+172]
5= —(—-——)2——l- ([ ]: Ganzteilfunktion) .

n=10 ap—

M. Vowe, Therwil

Losung: Mit vollstindiger Induktion zeigt man, dass a;,=6n+2, as,+1=6n+4,
an+2=6n+5, a4,,3=6n+7 firalle ne N,.

d 1 1 1 1
s= — — = + :
neol 6n+2)2—1 (6n+4)>*—1 (6n+532-1 (6n+7)*—1
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Mit Hilfe der Partialbruchzerlegung

11 1
x2—1 2{x—-1 x+1

ergibt sich:

1 & 1 1 1 & 1 ad 1 1

R e R R
2, =0\6n+1 6n+4 2., =0 6n+5 6n+8 neo\6n+3 6n+6
I & D" 1 =" ="

B 2n§’03n+1 2,,203n+5 Zo3n+3
L3 =D L& ED & E

- —srxilo3
2,,=03n+1 2,,..03’1"‘2 ,,=03n+3 4

1 (1 )3\ 1 )3} 1 1
| =m2+ LY SR S 2 CA BRI S
T3 ( n ) ( 3 1T ) 3 T

also

1
4 P. Streckeisen, Ziirich

Weitere Losungen sandten H. Alzer (Waldbrol, BRD), O. Buggisch (Darmstadt,
BRD), P. Bundschuh (K6ln, BRD), K. Dilcher (Halifax, CD), F. Griiter, A. A. Jagers
(Enschede, NL), W. Janous (Innsbruck, A), Kee-wai Lau (Hongkong), O. P. Lossers
(Eindhoven, NL), Chr. A. Meyer (Bern), I. Paasche (Stockdorf, BRD), M. Vowe
(Therwil; 2. Losung), K. Warneke (Vechta, BRD), H. Widmer (Rieden), R. Wyss
(Flumenthal). Eine Losung war falsch.

Aufgabe 930. Mit den Bezeichnungen von Aufgabe 899 (El. Math. 39, 102-103
(1984)) und den Abkiirzungen H bzw. G fiir das harmonische bzw. das geometrische
Mittel der drei Innenwinkel gilt die Doppelungleichung

(3H/n)?<2r/R < (3G/n)3. (*)

Man beweise den linken Teil von (*).
V. D. Mascioni, Origlio

Losung: Wir beginnen mit der Bemerkung, dass die durch

I U B : :
F(xy,x3,x3):= (—; -+ —)—C-;Jr —;;) (sinx,) (sinx;) (sinx3) (1)
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definierte positivwertige Funktion in dem in R} gelegenen Teil der durch die Glei-
chung x,+x2+x3=—72£- beschriebenen Ebene offenbar ein absolutes Minimum hat,

welches mittels Lagrangescher Multiplikatorenregel bestimmt werden kann. Dazu
sind die partiellen Ableitungen von F zu ermitteln, und

OF NI
(X],Xz,x:;)—(COtY,‘".BX, ) —+—+— F(,’C],Xz,.x:;)
Ox, X1 X X3

fir i =1, 2, 3 zeigt in Verbindung mit der erwdhnten Regel, dass samtliche drei Diffe-

renzen cotx;— 3x;72 (i=1, 2, 3) gleich sein miissen. Die im Intervall (O, %) definierte
Funktion f(x) := cotx — 3x~%ist dort wegen

2 2
f(x)= (—6——( ‘x ) ) x> (——~12 - zz__) x>0
X sin x n 4

: 2 .
(man beachte sinx > — x im betrachteten Intervall) streng monoton wachsend, wes-
n

halb alle x; einander gleich sein miissen.

Daher ist
F(rxx)>F(—7z——7—z——7—t—— o) 2
TERTIE= 667 6) \n
mit Gleichheit genau fiir x;=x;=x3= —76t—

Sind nun «,, a,, a3 die Innenwinkel eines ebenen Dreiecks mit Inkreisradius » und

. . . 1 :
Umkreisradius R, so erhélt man aus (2), angewandt mit x;:= > o; fir i=1, 2, 3, mit
Riicksicht auf (1)

(9)3<F(1a 1 1a) L1 332
—| < Fl—oa, —oy, —o3]=|—+ in ——-ot
T 2 l 2 2 2 3 o a2 A3/ i=1 >

(1 1 1)32r
=|—+—4+—| —,
o A, a3/ R

3
woraus mit (——n—-—) < ——é— genau die behauptete Ungleichung folgt. Ubrigens gilt in

ihr das Gleichheitszeichen genau dann, wenn das Dreieck gleichseitig ist.
P. Bundschuh, Kéln, BRD

Weitere Losungen sandten W. Janous (Innsbruck, A), L. Kuipers (Sierre).
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Aufgabe 931. Eine Gerade g; verlauft durch den Endpunkt 4 eines ebenen Dreiecks
ABC und schneidet BC im Punkt D. Eine zweite Gerade g, schneidet AB, AC, AD
bzw. in F, E, G. Es sei x = BF/FA, y= CE/EA, z = DG/GA. Man charakterisiere die-
jenigen Geradenpaare (g,, g,), fir welche z a) das arithmetische, b) das harmonische,
c) das geometrische Mittel von x und y ist.

G. Bercea, Miinchen, BRD

Losung (Bearbeitung der Redaktion): Der Fall g, // BC ist trivial. Es sei also
g> 7 BC und g,nBC={H}. Mit p:=BH, q:= HC, m:= HD lautet nun unsere
Behauptung:

z=(x+y)/2 <= m=(p+q)/2 (arithmetisches Mittel)
z=)xy < m=pgq (geometrisches Mittel)
z=2xy/(x+y) <« m=2pq/(p+q) (harmonisches Mittel) .

Beweis: Nach dem Satz von Menelaos, angewandt auf die Transversale g, und die
Teildreiecke ABD bzw. ACD, gilt (x/z) (m/p) =1 bzw. (y/z) (m/q) = 1. Daraus ergibt
sich x=pz/m bzw. y =¢qz/m und somit unmittelbar die Behauptung. Danach ist m
und damit g, in gelaufiger Weise konstruierbar.

K. Warneke, Vechta, BRD

Eine weitere Losung sandte L. Kuipers (Sierre).

Neue Aufgaben

Die Losungen sind getrennt nach den einzelnen Aufgaben in Maschinenschrift erbeten
bis 10. April 1986 an Dr. H. Kappus. Dagegen ist die Einsendung von Lésungen zu den
mit Problem ... A, B bezeichneten Aufgaben an keinen Termin gebunden.

Bei Redaktionsschluss dieses Heftes sind noch ungeldst: Problem 601A (Band 25,
S. 67), Problem 625B (Band 25, S. 68), Problem 645A (Band 26, S. 46), Problem 672A
(Band 27, S.68), Aufgabe 680 (Band 27, S.116), Problem 724A (Band 30, S.91),
Problem 764 A (Band 31, S. 44), Problem 862A (Band 36, S. 68).

Aufgabe 947. Es bezeichne F(n) die n-te Fibonaccizahl. Man ermittle den Wert der
Reihe

2 (=1 FQn+1)

2

ns1 F(n?) F((n+1)%)

L. Kuipers, Sierre
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Aufgabe 948. Es sei F e C'[0,0), F(0) =1, F'(x) > 0 fiir x €[0,00). Man zeige, dass
die Funktionalgleichung

: f(x)+x
F(xf(x))="—
J(x)—x

eine eindeutig bestimmte Losung f € C!(0, o0) besitzt, und ermittle lim f(x).

x—-0

P. Meier, Basel

Aufgabe 949. In terms of the basic (or ¢g-) number [1] and basic (or ¢-) factorial [#]!
defined by

1-q*

l—g¢q

[4]=  [alt=0112113] ... 1], [0]!=1, (1

let the basic (or ¢-) binomial coefficient be given by

A A [A][A—=1]...[A—n+1]
=1, = , =1,2,3,...,
{0] [nJ Tl ol @
for arbitrary (real or complex) ¢ and 4, |¢g| < 1. Also let
5[l A+d A+i+1] .
S, (mr) =3, {[ ==yt }*} (3)
i=0 ! l
where r 1s a nonzero constant.
Show that
A+ n+1
S, (mr) =4 Z . n=0,1,2.... @)
r

Remark: Since

fien [z}z A=1D...(A—n+1) 2(1)’

g-1|n n! n

a limiting case of (4) when ¢ — 1 would yield problem 904 (see [2]) if we further set
r=2and A= x +n, x being a real number.

H. M. Srivastava, Victoria, CD
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