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To establish an upper bound of the form H<,ax + b, with equality for equilateral
triangles which occurs when x 2, it is necessary only to determine the equation of
the tangent line at the point (2, 3), and this equation is y= 12;v — 21: we now have

YJINa<il2R-2lr. (6)

If (6) and the known inequality YL^I<2R + 2r, [1] p. 103, is applied to (1), we
obtain the inequality

2>«<14tf-19r (7)

and this is an upper bound for the sequence as desired. We now have 9 r < X ha

^ Yl 9a^Ylwa^Ylmci^Yl,na^ 14 R-19 r with equality throughout when the given
triangle is equilateral.

Roland H. Eddy, Memorial University of Newfoundland,
St. John's, Newfoundland, Canada
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Aufgaben

Aufgabe 929. Die Folge (an) sei definiert durch

3 + (__ \y
fl0 2, an + x an + («>0).

Man ermittle

(-!)[(" + D/2J

„__0 «n~-l
s=Yl 2~; ([ ]• Ganzteilfunktion).

M. Vowe, Therwil

Lösung: Mit vollständiger Induktion zeigt man, dass a4n 6n + 2, fl4w + 1 6« + 4,

#4,, + 2=:6« + 5, fl4„ + 3 6« + 7 für alle «e N0.

oo 1111- + -

(6« + 2)2-l (6« + 4)2-l (6« + 5)2-l (6« + 7)2-l
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Mit Hilfe der Partialbruchzerlegung

1 1

x2-l " 2

ergibt sich

1

x-l x+l

'-(^-T-TtW-L-It-TT-T-tV)--' ' '

2„ 0\6« + l 6« + 4/ 2 n 0\6n + 5 6« + 8/ w 0\6« + 3 6« + 6

:

i y (-iy i y (-ir £ (-ir
2„ 03« + l 2-_-03« + 5 „ 03« + 3

=±y (-Q" 1

y (-*)* y (-ir l

i
2 „ o3w H-1 2„ 03« + 2 ,~o3« + 3+4

Die Summen der auftretenden Reihen sind bekannt Man erhalt

1 / 1

i *YA 1,, 1

¦— n2 + —— ln2 + —,2 \ 3 9/3 4

also

1 (>-f
1

S~
4 P Streckeisen, Zürich

Weitere Losungen sandten H Alzer (Waldbröl, BRD), O Buggisch (Darmstadt,
BRD), P Bundschuh (Köln, BRD), K Dilcher (Halifax, CD), F Gruter, A A Jagers

(Enschede, NL), W Janous (Innsbruck, A), Kee-wai Lau (Hongkong), O P Lossers

(Eindhoven, NL), Chr A Meyer (Bern), I Paasche (Stockdorf, BRD), M Vowe

(Therwil, 2 Losung), K Warneke (Vechta, BRD), H Widmer (Rieden), R Wyss

(Flumenthal) Eine Losung war falsch

Aufgabe 930. Mit den Bezeichnungen von Aufgabe 899 (El Math 39, 102-103
(1984)) und den Abkürzungen H bzw G fur das harmonische bzw das geometrische
Mittel der drei Innenwinkel gilt die Doppelungleichung

(3H/n)3<2r/R<(3G/n)3 (*)

Man beweise den linken Teil von (*)
V D Mascioni, Origlio

Losung Wir beginnen mit der Bemerkung, dass die durch

F(xx,x2,x3) =— + — + —) (sinxj) (sinx2) (sinx3) (1)
1*1 *2 *3/
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definierte positivwertige Funktion in dem in Rl gelegenen Teil der durch die Glei-
n

chung xx + x2 + x3 — beschriebenen Ebene offenbar ein absolutes Minimum hat,

welches mittels Lagrangescher Multiplikatorenregel bestimmt werden kann. Dazu
sind die partiellen Ableitungen von Fzu ermitteln, und

dF _- / 1 1 1 \
-r- (xx,x2,x3) (cotx,-3xlz)\— + — + —\F(xx,x2,x3)
dx, \xx x2 x3J

für / 1, 2, 3 zeigt in Verbindung mit der erwähnten Regel, dass sämtliche drei

Differenzen cot*,- 3x~2 (i 1, 2, 3) gleich sein müssen. Die im Intervall 10, — I definierte
Funktion f(x) := cotx — 3x~2 ist dort wegen

^ '

/,,)=(_-(__),),-!>(__4)^>„
\ x \smxj I \ n 4 /

I man beachte sin x > — x im betrachteten Intervall streng monoton wachsend, weshalb

alle x, einander gleich sein müssen.

Daher ist

n
mit Gleichheit genau für x x x2 x3 —.

6

Sind nun ax, a2, a3 die Innenwinkel eines ebenen Dreiecks mit Inkreisradius r und

Umkreisradius R, so erhält man aus (2), angewandt mit xt := — a, für / 1, 2, 3, mit
Rücksicht auf (1)

2

— \ <F-Ta1,—a2,—a3 —+—+— H2sin — a,
n/ \2 2 2 / \a, a2 ot3) ttx 2

1 1 l\32r
— + — + --
aj a2 a3/ R

(3H
\3 2r

< — genau die behauptete Ungleichung folgt. Übrigens gilt in
n I R

ihr das Gleichheitszeichen genau dann, wenn das Dreieck gleichseitig ist.
P. Bundschuh, Köln, BRD

Weitere Lösungen sandten W. Janous (Innsbruck, A), L. Kuipers (Sierre).
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Aufgabe 931. Eine Gerade gx verlauft durch den Endpunkt A eines ebenen Dreiecks
ABC und schneidet BC im Punkt D Eine zweite Gerade g2 schneidet AB, AC, AD
bzw in F, E, G Es sei x BF/FA, y CE/EA, z DG/GA Man charakterisiere

diejenigen Geradenpaare (gx,g2), fur welche z a) das arithmetische, b) das harmonische,
c) das geometrische Mittel von x und y ist

G Bercea, München, BRD

Losung (Bearbeitung der Redaktion) Der Fall g2 / / BC ist trivial Es sei also

g2-H-BC und g2nBC={H} Mit p BH, q HC, m HD lautet nun unsere
Behauptung

z (x + y)/2 <=> m (p + q)/2 (arithmetisches Mittel)

z Yxy <=> m= P Q (geometrisches Mittel)

z 2x y/(x + y) <=> m 2p q/(p + q) (harmonisches Mittel)

Beweis Nach dem Satz von Menelaos, angewandt auf die Transversale g2 und die
Teildreiecke ABD bzw ACD, gilt (xlz) (m/p) 1 bzw (y/z) (m/q) 1 Daraus ergibt
sich x=pz/m bzw y qz/m und somit unmittelbar die Behauptung Danach ist m
und damit gx in geläufiger Weise konstruierbar

K Warneke, Vechta, BRD

Eine weitere Losung sandte L Kuipers (Sierre)

Neue Aufgaben

Die Losungen sind getrennt nach den einzelnen Aufgaben in Maschinenschrift erbeten
bis 10 April 1986 an Dr H Kappus Dagegen ist die Einsendung von Losungen zu den

mit Problem A, B bezeichneten Aufgaben an keinen Termin gebunden
Bei Redaktionsschluss dieses Heftes sind noch ungelöst Problem 601A (Band 25,
S 67), Problem 625 B (Band 25, S 68), Problem 645A (Band 26, S 46), Problem 672A
(Band 27, S 68), Aufgabe 680 (Band 27, S 116), Problem 724A (Band 30, S 91),
Problem 764A (Band 31, S 44), Problem 862A (Band 36, S 68)

Aufgabe 947. Es bezeichne F(n) die «-te Fibonaccizahl Man ermittle den Wert der
Reihe

* (~l)nF(2n + l)
n=xF(n2)F((n+\)2)

L Kuipers, Sierre
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Aufgabe 948. Es sei F e C1 [0, oo), F(0) 1, F'(x) > 0 fur x e [0, oo) Man zeige, dass

die Funktionalgleichung

F(xf(x)) f(x) + x

f(x)-x
eine eindeutig bestimmte Losung fe C1 (0, oo) besitzt, und ermittle hm/(x)

x-0
P Meier, Basel

Aufgabe 949. In terms of the basic (or q-) number [k] and basic (or q-) factonal [«]'
defined by

\k}-
\-qx

[/»]¦ [!] [2] [3] [»], [0]' 1, (1)

let the basic (or q-) binomial coefficient be given by

[A][A-1] [k-n+l]1

[nV
«=1,2,3,

for arbitrary (real or complex) q and /, | q \ < 1 Also let

Sq(A,n,r)= YL
/ 0 l

k + i

i
r{-(r-qx+])

k + i + l

i

where t is a nonzero constant

Show that

qk+l
Sq(k,n,r)=-^

A + « + l

«
" 0,1,2,

Remark Since

hm (x-1) (/-« +

(2)

(3)

(4)

a limiting case of (4) when q -> 1 would yield problem 904 (see [2]) if we further set
r 2 and k x + n, x being a real number

H M Snvastava, Victoria, CD
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