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Die Gewinnung der Grundformen der sphärischen
Trigonometrie aus der stereographischen Projektion

Die Herleitung des trigonometrischen Formel-Apparates für Eulersche sphärische
Dreiecke stützt sich üblicherweise auf die Einbettung der Träger-Kugel in den
3-dimensionalen euklidischen Raum. In dieser Note soll gezeigt werden, dass die
Basis-Formeln auch an der stereographischen Projektion eines sphärischen Dreiecks

gewonnen werden können. Liegt die Bildfigur einmal vor, dann sind nur noch Ueber-
legungen im Rahmen der 2-dimensionalen euklidischen Geometrie anzustellen.
Die stereographische Projektion ist eine bijektive Abbildung der vollen Kugel auf die
konforme Ebene. Sie ist konform und transformiert Kreise auf der Kugel in Kreise
oder Geraden der Bildebene. Insbesondere gehen Kugel-Grosskreise in Möbius-
Kreise über, die den Hauptkreis « der stereographischen Projektion in diametralen
Punkten schneiden.
Ein Eulersches Dreieck auf der Kugel ist gekennzeichnet durch

0 < a, b, c< n\ 0 < a, ß, y < n. (1)

Mit dem Dreieck ABC ist auch das Nebendreieck ABC Eulersch. C" ist der
Diametralpunkt zu c auf der Kugel (Fig. 1). Da in einem Euler-Dreieck die Seitenlinien die
kürzesten Verbindungen zwischen zwei Eckpunkten sind, besteht die Dreiecksungleichung

(n-a) + (n-b) > c

Diese impliziert für das Primär-Dreieck ABC

a + b + c<2n. (2)

Der Umfang eines Euler-Dreiecks ist also immer kleiner als 2 n.
Den folgenden Herleitungen liegt als Basis-Figur die Konstruktion eines Euler-Dreiecks

aus den drei Seiten a, b, c in der stereographischen Projektion zugrunde. Wir

Figur 1

TT-b
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stützen uns dabei auf das Prinzip der speziellen Lage und wählen als Träger-Grosskreis
für die Seite c den Hauptkreis «. Man kann nun die Seiten a und b an c
anschliessend auf « abtragen und erhält dann die dritte Ecke C durch Aufklappen der
Seiten a und b. Wegen (2) entsteht beim Abtragen der drei Seiten auf « keine Ueber-
lappung. Beim Aufklappen bewegen sich die Endpunkte der Seiten a und b auf
orthogonalen Kugelkreisen zu «; Ka und Kb sind die Spitzen der Berührungskegel zu
den beiden Bahnkurven (Fig. 2).

C)

c

(C)

(C)

Figur 2 Figur 3

Ist insbesondere a b §, dann sind die Bahnkurven Grosskreise, deren stereographische

Bilder Geraden sind (Fig. 3). Man kann unmittelbar aus der Fig. 3 herauslesen,

dass in diesem Falle

<x ß - und y=c

ist.

In der Fig. 3 ist zugleich auch die Konstruktion eines Euler-Dreiecks aus der Seite c

und den Winkeln a ß \ enthalten. In diesem Falle ist

--*-T und : c.

Wir setzen nun für die folgenden Herleitungen ein Euler-Dreieck voraus, das höchstens

eine Seite vom Mass f aufweist. Ohne Beschränkung der Allgemeinheit dürfen
wir annehmen, dass a 4= f und b 4= f ist. Die Fig. 4 zeigt die stereographische Projektion

eines derartigen Kugel-Dreiecks bei Annahme der Punkte A und B auf dem

Hauptkreis «.
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Figur 4

Unter Verwendung des Cosinus-Satzes der ebenen Geometrie werden nun die
Strecken-Quadrate | KaKb |2, | MaMb |2 und | KaMb \2 je auf zwei Arten berechnet.

1) \KaKb\2 tg2a + tg2b-2tgatgbcosy — + —~2-
1

Daraus folgt zunächst

- 2tga tgb cos y r- - tg2a + •

\cosza / \

cos2a cos2b cosa cosb

1 -\ 2cosc
-tg2b\ —

cosc.

cos2 b cos a cos 6
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Multipliziert man die letzte Gleichung mit j cos a cos b, so erhält man

cos c cos a cos b + sina sin b cos y. (3)

Dies ist die Seiten-Cosinus-Formel der sphärischen Trigonometrie.

2) |MflM*|2 tg2a + tg2£-2tgatg£cos(7r-c)
1

+
l i l l

c ^h—yz ~ 2 27cos (n~y) -cos2a cos2/? cosa cos/?

Daraus entnimmt man

1 i \ I 1 \ 2 cos y
-2 tg2a + —2--tg2A + y—.

cosza / \cosz/? / cosa cosß
2tgOLtgßcosc \—r--tg2a + —YZ~^ ß +

1 1

Die Multiplikation der Gleichung mit \cos a cos/5 führt auf

cosy - cosa cosß + sina sinßcosc (4)

Diese Beziehung wird als Winkel-Cosinus-Formel der sphärischen Trigonometrie
bezeichnet.

3) \KaMb\2 tg2a +—="-2tga cos[^- + c
cosz fl cos fl \ 2

i l { l3n \
tgza + —2 2tgfl cos -— -y)cosza cosa \ 2 /

Daraus geht hervor, dass

tgzfl I + 2 tga sinc l—z tgza +2tgfl siny,coszö / cosa \cosza / cosa

1

d.h.

tga sine tgflsiny
cos fl cos a

Durch Multiplikation dieser Gleichung mit cos a cos a erhält man schliesslich

sin a sin c sin a siny, (5)

womit auch die Sinus-Formel der sphärischen Trigonometrie feststeht.
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Wie man leicht bestätigt, gelten die Formeln (3), (4) und (5) auch für Euler-Dreiecke
mit

n „na b — a ß — y=c.

Mit den bis jetzt hergeleiteten Formeln lässt sich in bestimmten Fällen aus drei
vorgegebenen Hauptstücken (Seiten, Winkel) eines Euler-Dreiecks ein viertes berechnen.
Um diese Aufgabe generell bewältigen zu können, benötigt man ebensoviele
Gleichungen, wie man aus 6 Objekten deren 4 auswählen kann. Diese Anzahl beträgt
(6\
I I 15. Zieht man die möglichen zyklischen Vertauschungen in Betracht, dann

liegen in den Formeln (3), (4) und (5) total 3-3 9 Bindungen dieser Art vor. Im
minimalen Formel-Apparat der sphärischen Trigonometrie fehlen uns also noch 6

Beziehungen. Um diese zu erhalten, sind keine zusätzlichen geometrischen Ueberlegun-
gen erforderlich; man kann die 6 noch fehlenden Formeln aus (3), (4) und (5) ableiten.

Dazu ersetze man etwa in der Seiten-Cosinus-Formel

cos c cos fl cos b + sin a sin b cos y, (6)

die Seite b vermöge

sine
cos b cos fl cos c + sin a sin c cos ß und sin b sin/?

siny

durch fl, c, y und ß. Dies führt auf

cosc cos2acosc + cosa sina sinc cosß + sina sine sin/? ctgy,

cosc(l —cos2a) sinfl sine (cosacos/? + sin/?ctgy).

Daraus ergibt sich schliesslich

ctge sinfl cosöCOs/? + sin/?ctgy. (7)

Dies ist die Cotangenten-Formel der sphärischen Trigonometrie.
Da die Seiten und die Winkel untereinander zyklisch vertauscht werden können,
stecken in der Formel (7) 3 Grundbeziehungen für Eulersche Dreiecke. Man kann nun
in (6) auch cosa und sinfl auf analoge Weise ersetzen und erhält dann noch drei
weitere Grundbeziehungen vom selben Typus.
Die präsentierte Herleitung der Cosinus-Formeln und der Sinus-Formel aus der
sphärischen Trigonometrie stützt sich weitgehend auf die Winkel- und M-Kreis-Treue
der stereographischen Projektion. Dem Poincare-Modell der ebenen hyperbolischen
Geometrie liegt ebenfalls eine konforme Abbildung der massgebenden Trägerfläche
zugrunde, bei der die Geodätischen in gewisse Af-Kreise der Bildebene übergehen.
Diese Situation hat H. Meschkowski bei der Herleitung des Basis-Formel-Apparates
für die hyperbolische Trigonometrie ausgenutzt [1]. Im Gegensatz zu Meschkowski,
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der zuerst Beziehungen fur rechtwinklige Dreiecke aufsucht, werden hier sogleich
allgemeine Dreiecke betrachtet

M Jeger, Mathematik-Departement, ETH-Zunch
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Eine Bemerkung zum Schwarzsehen Lemma

Von R Mortini (Losung der Aufgabe 901, El Math, Vol 39, 1984, S 131) und in
einem etwas allgemeineren Zusammenhang von A Pfluger (Varianten des Schwarzsehen

Lemma, El Math Vol 40, 1985, S 46-47) ist u a folgendes bewiesen worden
Ist die Funktion / in der Einheitskreisscheibe D {zeC||z|<l} analytisch mit
Werten in D und ist f(0) 0, so gilt in D die Ungleichung

\f(z)+f(-z)\ 2\z\2,

und fur ein z e D\{0} tritt Gleichheit nur auf, wenn f(z) cz ist und c e dD Dieses
Resultat soll im folgenden auf den Fall erweitert werden, wo / die Einheitskreis-
scheibe analytisch in ein konvexes Gebiet der Ebene abbildet
Es sei g eine in D konvexe Funktion, d h die Funktion g D -> C sei eineindeutig und
analytisch und ihr Bildgebiet konvex Es wird nicht verlangt, dass g normiert, d h

g (0) 0 und fl'(0) 1 sei Ist weiter die Funktion /mD analytisch, ist f(0) g (0)
und hat / seine Werte im Bildgebiet von g, so bildet die Funktion co g~l ° / die
Einheitskreisscheibe D in sich ab und verschwindet im Ursprung Es hat also / die
Darstellung

f=g°co, (1)

wobei co den Voraussetzungen des Schwarzsehen Lemma genügt Immer dann, wenn
zwei Funktionen / und g in D analytisch sind und zwischen ihnen die Beziehung (1)
besteht, heisst f zu g subordiniert Mit der Bezeichnung {z\\z\ < r} Dr folgt dann
aus (1) und dem Schwarzsehen Lemma, dass f(Dr)ag(Dr) und daher \f(z)\
__i max | g (z eld) | ist fur jedes r, 0 < r < 1

e

Es gilt der folgende
Satz: Ist eine in D analytische Funktion /zu einer konvexen Funktion g subordiniert,
so gilt

\f(z)+f(-z)\ * max \g(z2ete)\, zeD (2)
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