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Gedanken zum Integralbegriff
im propädeutischen Unterricht
Teil 1: Elementarintegrale

Wer die Entwicklungen im Mathematikunterricht an Mittel- und Hochschulen in den
letzten Jahrzehnten aufmerksam verfolgt, wird erstaunt feststellen, dass zum Teil
gewaltige Aenderungen in Methodik und Auffassung im algebraischen und
geometrischen Bereich eher kleine Umgestaltungen im Bereich der Analysis gegenüberstehen

In letzter Zeit ist nun vermehrt die Forderung nach Veränderungen auch in
diesem Fach laut geworden Dabei wird in erster Linie von anwendungsonentierter
Seite die Einbeziehung Computer-gerechter Verfahren gefordert Diesem Wunsch ist
sicher nichts entgegenzuhalten Dann kommt man allerdings um die Frage nicht
herum, mittels welcher Massnahmen die erforderliche Zeit gewonnen werden kann
Auf keinen Fall dürfen die Umstrukturierungen in der Weise erfolgen, dass der an
sich veraltete Analysis-Unterncht inhaltlich gekürzt, ansonsten aber in seiner
bestehenden Form beibehalten wird Sowohl an der Mittelschule als auch and der
Hochschule sollte der mathematische Gehalt dieses Faches nicht verringert werden Dies
kann nur auf die Weise realisiert werden, dass dem Einbau neuer Gebiete eine
Vergrösserung der Effektivität des Unterrichtes in den klassischen Fragestellungen
parallel lauft, was durch die Einfuhrung neuer Methoden und Betrachtungsweisen
durchaus erreichbar ist
Die vorliegende Arbeit befasst sich mit dem Integralbegnff im Propadeutikum des

Mathematikunterrichtes an der Hochschule Zwei verschiedene Problemstellungen
fuhren in bekannter Weise zu diesem Begriff einerseits die Frage nach der Existenz

einer Stammfunktion zu einer gegebenen Funktion, anderseits das Inhaltsproblem
Wir behandeln in der vorliegenden Arbeit in erster Linie den zweiten Aspekt Natur-
gemass nimmt die Behandlung des Inhaltsproblems wesentlich mehr Zeit in Anspruch
als die der Stammfunktion
Die Entwicklung des Integralbegnffes im Hochschulunterncht erfolgt seit Jahrzehnten
fast ausschliesslich in folgenden Schritten ([1], [2], [3], [4])
Schritt 1 Einfuhrung des Integrals fur eine Klasse einfacher Funktionen einer
reellen Variablen
Schritt 2 Behandlung uneigentlicher Integrale auf der Basis von Schritt 1

Schritt 3 Entwicklung einer Theorie der mehrdimensionalen Integrale auf der Basis

von Schritt 1

Schritt 4 Einfuhrung des Lebesgueschen Integralbegriffes Mit Schritt 4 ist oft eine
starke Abstraktion der Fragestellung verbunden, indem eine allgemeine Mass- und
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Integrationstheorie auf abstrakten Räumen entwickelt wird, welche auch den
Anforderungen anderer Gebiete, z B der Wahrscheinlichkeitstheorie, gerecht wird
Der Aufbau in diesen vier Schritten erfordert enorm viel Zeit Dies hat ganz verschiedene

Ursachen Der Hauptgrund aber wird sofort klar, wenn man vom Standpunkt
von Schritt 4 aus die ersten drei Schritte betrachtet die elementaren Integralbegriffe
haben grosse strukturelle Schwachen Darauf weist schon der Begriff des «uneigentlichen

Integrals» hin Er erweist sich vom allgemeinen Standpunkt her als ziemlich
unnötig Die uneigentliche Integnerbarkeit absolut integrierbarer Funktionen ist
durch Schritt 4 völlig abgedeckt, und die Betrachtung nicht absolutintegnerbarer
Funktionen ist von so geringer Bedeutung im elementaren Unterricht, dass darauf
ohne Verluste verzichtet werden kann
Eine weitere Schwache zeigt sich bei der Frage nach Stetigkeitseigenschaften Wahrend

diese Frage beim Lebesgue-Integral durch den Lebesgueschen Konvergenzsatz in
befriedigender Weise gelost ist, erweist sie sich bei den elementaren Begriffen als

kompliziert, wenn man sich nicht auf die fur praktische Zwecke ungenügende gleich-
massige Konvergenz beschranken will
Nicht unerwähnt bleiben darf das Problem der Vertauschung der Integrationsreihen-
folge im Rahmen der mehrdimensionalen Integration Auch dieses Problem wird erst
in Schritt 4 befriedigend gelost
Wahrend der Entwicklung im Rahmen der ersten drei Schritte wird der Student
laufend mit Schwierigkeiten konfrontiert, die viel eher im Aufbau des Unterrichtes
als in der mathematischen Natur des Problems begründet sind Als Folge davon geht
er Schritt 4 mit Vorstellungen an, die dem Verständnis oft hinderlich sind Die
Schwierigkeiten werden bei der Behandlung der abstrakten Integrationstheorie noch
dadurch verstärkt, dass im elementaren Unterricht der fur die abstrakten Betrachtungen

notwendige strukturelle Hintergrund in keiner Weise beleuchtet wird
Aufgrund dieser Betrachtungen kommt der Autor zum Schluss, dass die Entwicklung
des Integralbegriffes im Propadeutikum eine der Stellen ist, an der eine Neuorientierung

Aussicht auf Erfolg hat, ja sich geradezu aufdrangt
Im Anschluss an die Diskussion der Schwachen der ersten drei Schritte kann folgender

Katalog von Forderungen an einen neuen Aufbau des Integralbegriffes im
Unterricht aufgestellt werden
1 Zusammenfassung der drei ersten Schritte Insbesondere sollte die Einfuhrung un-

eigenthcher Integrale nicht mehr notwendig sein Wünschenswert wäre eine
einheitliche Behandlung der Integrale in beliebigen Dimensionen

2 Die Entwicklungen sollten strukturell in einem Rahmen erfolgen, der auch bei der
Abstraktion in Schritt 4 als Basis dienen kann Die wichtigsten Eigenschaften des

abstrakten Integrals sollten bereits im elementaren Bereich andeutungsweise sichtbar

sein Die elementaren Entwicklungen sollten den Weg fur Verallgemeinerungen
Vorspuren

3 Die Entwicklungen sollten in einer Form durchgeführt werden, welche Beziehungen

zu anderen Fragestellungen der Analysis erkennen lasst
Selbstverständlich existieren Integralbegriffe, welche allen drei Forderungen gerecht
werden Wir erwähnen insbesondere den 1918 von Daniell entwickelten ([5], [6]) Eine
vierte Forderung stellt sich allerdings solchen allgemeinen Ueberlegungen entgegen,
namhch diejenige der didaktischen Vertretbarkeit Wir wollen nun aber zeigen, dass
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ein elementares Analogon zur Damellschen Integrationstheorie existiert, welches den

Forderungen 1 -3 ebenfalls gerecht wird Dabei sind die folgenden Betrachtungen
absichtlich so elementar wie möglich gehalten Es geht uns hier nicht um grosse
wissenschaftliche Erkenntnisse, sondern um eine effizientere Gestaltung des
propädeutischen Unterrichtes
Mit aller Deutlichkeit sei festgehalten, dass die vorliegende Arbeit als Diskussionsbeitrag

aufgefasst wird und nicht etwa als Musterlosung Es gibt keinen Konigsweg im
Unterricht Verschiedene Möglichkeiten müssen sorgfaltig gegeneinander abgewogen
werden Der Autor ist sich auch des Wagnisses bewusst, jahrzehntelang bewahrte
Unternchts-Inhalte in Frage zu stellen Wenn es hier dennoch vielleicht sogar in etwas
herausfordernder Weise geschieht, so aus der Ueberzeugung heraus, dass eine ernsthafte

Diskussion heute wirklich die Aussicht auf wirkungsvolle Neugestaltungen
eröffnet

1. Vektorverbande von Funktionen

Wir behandeln zunächst diejenigen Strukturen, die uns als Definitionsbereiche von
Integralen dienen Es bezeichne X eine Menge und IR* die Menge aller reellen
Funktionen auf X Neben der Vektorraumstruktur von IR* interessiert von Standpunkt der
Integralkonstruktion her vor allem die im propädeutischen Unterricht oft stiefmütterlich

behandelte Ordnungsstruktur Sie ist gegeben durch die Definition

f < g <=> f(x) < g (x) fur alle x e X

Wir fassen einige Eigenschaften der Relation < zusammen Sie ergeben sich unmittelbar

durch «punktweise» Anwendung der entsprechenden Eigenschaften der Ordnungsrelation

auf IR

(a) < ist eine Halbordnungsrelation auf R* IR* ist bezüglich dieser Relation ein
beschrankt vollständiger Verband Fur jede nicht leere beschrankte Teilmenge J*~

von IR* existiert also das Supremum V / und das Infimum A f bezug-
fer fer

hch < Fur alle xeX gilt V /\(jt) sup/(jc) und A f\(x)= inf/(x),
\fe/ / /6/ \/e/ / fe /

wobei sup bzw inf Suprema bzw Infima in IR bezeichnen

Wir schreiben im folgenden fvg bzw f l\g fur das Supremum bzw das Infimum
zweier Funktionen /, g aus IR*

(b) IR* ist vollständig distributiv Fur jede nicht leere beschrankte Teilmenge °7 von
R* und fur beliebige g e R* gilt also

V/\A0= V (fAg), (Af)vg /\ (fvg)
\fe/ / fe/ \fe/ / fe/

(c) Für alle/, g e R*gilt

fvg+fAg=f+g
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Ist 9 eine beschrankte nicht leere Teilmenge von R* so gilt

V f) + g V (f+g), (Af\ + g= A (f+g)\fey fei \fes fer

für alle g e R*

<x( V/)= V (af), a( A/)= A (af)\fey I fe/ \fe f feF

für alle a e R, a > 0 und

V/ -( A (-/)), A/ -( V (-/))fe/ \fe/ I je/ \f e s /

Wichtig fur die Konstruktionen ist der Begriff der monotonen Folge von Funktionen
Wir nennen eine Folge (/„)wgr aus R* wachsend genau dann, wenn /M</„ + 1 fur
alle n eM Sie heisst fallend genau dann, wenn /„ >/„ + 1 fur alle «eN Sie heisst

monoton genau dann, wenn sie wachsend oder fallend ist

(d) Jede wachsende beschrankte Folge (fn)n E N aus R* konvergiert punktweise gegen
V fn Sind (/„)«<= n und (gn)neM zwei wachsende beschrankte Folgen aus R*

«eN
und bezeichnet / bzw g ihr Supremum, so gilt

/ + 0= V (Jn + Qn), fvg= V (fnvgn), fAg= V (fnAgn)
n e 3N mgN neN

Analoge Aussagen gelten fur fallende Folgen

Fur jede Funktion /eR* ist der Betrag |/| definiert durch |/| (x) =|/(x)| fur
alle x e X Man definiert /+ =/ V 0 und /_ (-/) V 0 /+ heisst der positive Teil
von f, /_ nennt man den negativen Teil Fur alle /eR* gilt |/| =/+ + /_ und

/ /W
Eine Teilmenge T von R* heisst ein Vektorverband genau dann, wenn sie folgende
Eigenschaften besitzt

(i) / ist ein Teilvektorraum von R*
(n) Fur alle fe / ist \j\ e 9

R* ist trivialerweise selbst ein Vektorverband Jeder Vektorverband &~ c R* ist ein
Teilverband von R* denn fur alle fg e °/ ist

fvg {(f+g + \f-g\)e9
und

JAg \(f + g-\j-g\)e9
Insbesondere findet man also /+ e -9 und /_ e 9 fur alle / aus T
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In der höheren Analysis spielt der Begriff des abstrakten Vektorverbandes eine grosse
Rolle. Die einfachen Vektorverbände von Funktionen bilden ein gutes Anschauungsmaterial

für diesen wichtigen Begriff. Für unsere Zwecke dienen sie als Definitionsbereiche

von Integralen. Sie sind aber auch im Lichte von 2. und 3. zu sehen. Wir
wollen nun einige Beispiele betrachten.

Beispiel 1. Der Raum T (X) aller Funktionen / e R* mit der Eigenschaft, dass

{x e X |/(x) ¥=0} endlich ist, ist wohl das einfachste Beispiel eines Vektorverbandes.
Trotz seiner Einfachheit und Durchsichtigkeit ist er aber sehr wichtig, wie wir noch
sehen werden.

Beispiel 2: Wir betrachten den Spezialfall _V=R" (n e N). Es bezeichne €(n) die
Menge aller stetigen Funktionen auf X. Dann ist € (n) ein Vektorverband. In der Tat
ist jede Linearkombination stetiger Funktionen wieder stetig, und dasselbe gilt für
den Betrag einer stetigen Funktion/, wie unmittelbar aus der Beziehung

\f(y)\-\f{xy\<\){y)-J(x)\

hervorgeht.

Beispiel 3: Wie in Beispiel 2 sei X Rw. Dann ist die Menge T(n) aller stetigen
Funktionen auf X mit beschränktem Träger ein Vektorverband. Dabei bezeichnen wir als

Träger einer Funktion f auf X die abgeschlossene Hülle von {x e X |/(x) ¥= 0}. Die
Vektorverbandseigenschaft von tf(ri) ist eine unmittelbare Konsequenz der
entsprechenden Eigenschaft von £(n).
In der klassischen Integrationstheorie auf lokalkompakten topologischen Räumen
spielen Räume stetiger Funktionen mit kompaktem Träger eine entscheidende Rolle.
Besonders wichtig ist dabei ihre Vektorverbandseigenschaft. Die Räume ^(n) sind
einfache Beispiele, mit denen bereits im elementaren Unterricht auf diese wichtigen
Strukturen hingewiesen werden kann. Es wäre möglich, die elementare Theorie der
Integration im Propädeutikum als Theorie der Funktionale auf y(n) zu entwickeln
(I7L [8])- Wir wollen aber einen anderen Weg gehen, der mehr auf der geometrischen
Anschauung aufbaut. Wir werden die im folgenden Beispiel definierten Räume als
Basis verwenden.

Beispiel 4: Es sei wiederum X= R". Eine Funktion / auf X heisse stückweise linear
genau dann, wenn X als Vereinigung endlich vieler Teilmengen Gx,...,Gk dargestellt
werden kann, so dass / linear ist auf jeder Menge Gt. Für uns von Interesse sind die
stückweise linearen Funktionen aus ^(n). Wir nennen diese Funktionen affin. Es

bezeichne ,</(«) die Menge aller affinen Funktionen auf X. Jede affine Funktion ist also

stetig und besitzt beschränkten Träger. Wir wollen zeigen, dass die Räume s/(n)
Vektorverbände sind.
Seren / g e ,$/(n). Dann gibt es Systeme Gu...,Gk bzw. Hx,...,Hm von Teilmengen
von X, so dass X IJ Gt \J H, und / linear ist auf allen Gt bzw. g linear auf

1 <_*<_£ 1 <_/__m

allen _¥,. Für beliebige aJeR ist dann af+ßg linear auf den Mengen Gt nHj
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und es ist X [j (G^Hj). Da wir bereits wissen, dass Jf(ri) ein Vektorverband ist,

können wir schhessen, dass ocf+ßg e$/(n). Es sei nun G := {x e X |/(x) > 0}. Dann
ist |/| linear auf jeder Menge G n G( und ebenso auf jeder Menge (X\G) n G,, und
man findet \f\e srf(ri).
Die folgende Figur zeigt ein Beispiel für den Graphen einer Funktion aus s/(2).
Von der in dieser Figur angedeuteten Beziehung zwischen den Funktionen aus _y(«)
und den Polyedern aus Rn + 1 werden wir bei der Diskussion des Integralbegriffes
Gebrauch machen.

IR2

Die aufgeführten Beispiele zeigen, dass es sich bei den Vektorverbänden um eine
Struktur handelt, deren Einführung im Propädeutikum durchaus gerechtfertigt ist.

2. Positive lineare Funktionale, Elementarintegrale

Die nächste Stufe auf dem Weg zum Integralbegriff ist der Begriff des positiven
linearen Funktionais auf einem Vektorverband. Es bezeichne weiterhin X eine Menge.
9~ sei ein Vektorverband von Funktionen aus R*. Ein positives lineares Funktional
auf 9~ ist eine Abbildung /: &~ -> R mit folgenden Eigenschaften:

(i) / ist linear
(ii) /(/)=_. 0 füralle/e^,/_>0.
Positive lineare Funktionale sind bereits vollständig bestimmt durch ihre Werte auf
den positiven Funktionen. Zur Vereinfachung der genauen Formulierung dieses
Sachverhaltes definieren wir für beliebige Teilmengen 4 von R*

^+:={/e^|/>0}.

Es gilt nun der folgende

Hilfssatz. Sei l: 9~+ -* R+ eine Abbildung mit folgenden Eigenschaften:

(a) Für alle f,ge 9\ ist l(f + g) l(f) + l(g).
(b) Für alle / e 9\ und alle a e R+ ist l(af) a l(f).
Dann gibt es genau ein positives lineares Funtional / auf 9~ mit der Eigenschaft, dass

/(/) f(/)füralle/ey-+.
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Zum Beweis bemerkt man, dass für ein solches Funktional / notwendigerweise / (/)
/~(/+) - l(f-) gelten muss für alle / e 9~. Es ist aber leicht einzusehen, dass das auf

diese Weise definierte Funktional / positiv und linear ist.
Wir wollen wieder Beispiele betrachten.

Beispiel 1. Sei 9~ (X) der. Vektorverband aus Beispiel 1,1. Es sei g e R*. Definiert
man dann

lg: ^(-Y)-R, /- Z f(x)g(x),
xe{f*0}

so ist lg ein positives lineares Funktional auf 9~ (X). Dabei wurde für alle f e&~ (X)
{/ ± 0} := {x e X | f(x) * 0} gesetzt.

Beispiel 2. Ein wichtiges Beispiel bilden die Stieltjes-Funktionale auf y(l). Wir haben
nicht die Absicht, an dieser Stelle näher auf dieses wohlbekannte Beispiel einzugehen.
Es sei jedoch festgehalten, dass auch diese wichtigen Funktionale durchaus in den
hier entwickelten Rahmen passen. Der interessierte Leser sei auf [6] verwiesen.

Beispiel 3. Wir betrachten den Raum s/(ri) der affinen Funktionen auf R". Sei / eine
positive affine Funktion. Wir betrachten den Graphen

{(x,/(x))|x=(x1,x2,...,xA7)eRw}

von /. Diese Hyperfläche schliesst zusammen mit der Hyperebene xw + 1 0 ein n + 1-

dimensionales Polyeder ein, welches wir mit P(f) bezeichnen. Die Situation ist in
Figur 1 angedeutet. Es bezeichne sodann /(/) das n + 1-dimensionale Volumen dieses

Polyeders. Wir behaupten, dass / die Eigenschaften (a) und (b) des obigen Hilfssatzes
besitzt.
Seien /, g es/(n)+. Dann gibt es Teilmengen Hu..., Hm von R", so dass sowohl /
als auch g auf allen Hk linear sind. Wir können annehmen, dass die Teilmengen Hk
«-dimensionale Simplexe sind, welche höchstens n — 1-dimensionale Bereiche gemeinsam

besitzen.
Wir halten nun k fest. Pk(f) bezeichne den prismatischen Teil von P(f) über Hk
und analog definieren wir Pk(g) sowie Pk(f+g). Für ein beliebiges /-dimensionales
Polyeder Q bezeichne V,(Q) dessen /-dimensionales Volumen. Bezeichnen wir sodann
mit X], X2,..., Xn +! die Ecken von Hk, so erhalten wir

i n + l

Vn + (Pk CO) —TT S X*m) Vn (Hk)
n + \ w-i

Analoge Beziehungen ergeben sich für Vn + x(Pk(g)) sowie für Vn + X (Pk(f+g)).
Damit erhält man aber sofort

Vn + ](Pk(f+g))=Vn + ](Pk(f))+Vn + l(Pk(g)).
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Summieren wir uber alle k, so finden wir schliesslich mittels der Additivität des

Polyeder-Inhaltes die gewünschte Eigenschaft (a) (b) ergibt sich analog
Der oben formulierte Hilfssatz impliziert nun die Existenz eines eindeutig bestimmten

positiven linearen Funktionais /„ auf $/(ri), welches fur alle / e <*/(«)+ den Wert
des Volumens von P (/) annimmt
Zu diesem Beispiel sind einige Bemerkungen angebracht Das Funktional /„ wird
Ausgangspunkt sein fur unsere Behandlung des «-dimensionalen Integrals Es stellt sich
naturlich die Frage, wie weit der Student im Propadeutikum mit den Eigenschaften
des Polyedennhaltes vertraut ist Dazu ist zu bemerken, dass von der Mittelschule her
eine recht gute Vorstellung vorhanden ist fur die Dimensionen 2 und 3 Die
Verallgemeinerung auf beliebige Dimensionen erfolgt meist im propädeutischen Unterricht
in linearer Algebra Wir mochten jedoch betonen, dass unserer Auffassung nach an
dieser Stelle durchaus auf der Analogie zu den Dimensionen 2 und 3 aufgebaut werden

darf Dies umsomehr, als eigentlich nur die Eigenschaften des Inhaltes von
Simplexen vorausgesetzt werden müssen, wie wir kurz zeigen wollen
Wir haben oben Gebrauch gemacht von der Inhaltsformel fur einen prismatischen
Korper uber einen Simplex als Grundbereich Bezeichnet H ein «-dimensionales Simplex

mit den Ecken Xu X2, Xn + U und wird der prismatische Korper P uber H
durch den Graphen der linearen Funktion / erzeugt, so ist

i n+1

vn+](P) ——YLf(Xm)vn(H)
n + l w__,

Es ist nicht schwer, diese Formel anschaulich zu begründen Aufgrund der dem
Studenten bekannten Resultate fur « 1 und « 2 ist es naheliegend, Vn + x(P)
anzusetzen als Produkt des Inhaltes der Grundflache H mit einer linearen Funktion
der Kantenlangen f(Xm) Da sich die Reihenfolge der Bezeichnung der Ecken des

Simplexes nicht auf den Inhalt von P auswirken darf, muss die lineare Funktion der
Kantenlangen symmetrisch sein Der Faktor l/(« + 1) schliesslich ergibt sich daraus,
dass die Formel fur den Spezialfall eines «+1-dimensionalen Quaders P dessen

wohlbekanntes Volumen ergeben muss Es sei noch erwähnt, dass die Formel in der
einfachen Form

Vn + l(P) f(S)Vn(H)

geschrieben werden kann, wenn wir mit S den Schwerpunkt von H bezeichnen
Die durch affine Funktionen erzeugten Polyeder sind Vereinigungen von prismatischen

Korpern uber Simplexen Wir können den Inhalt eines solchen Polyeders als
Summe der Inhalte der prismatischen Teilkorper definieren, wenn wir uns von der
Unabhängigkeit dieser Zahl von der Wahl der Zerlegung des Polyeders in Prismen
überzeugen Unter Verwendung obiger Notationen genügt es zu zeigen, dass bei einer
Zerlegung von H in Teilsimplexe Hk mit Schwerpunkt Sk die Formel

f(S)Vn(H) YLf(Sk)Vn(Hk)
k
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gilt. Bezeichnen wir für einen Punkt X mit x dessen Ortsvektor in Bezug auf ein
festgelegtes Koordinatensystem, so folgt aus den Eigenschaften des Schwerpunktes

Vn(H)3=Y.V„(Hk)sk,
k

und man erhält die gesuchte Formel unter Verwendung der Linearität von /
Es ist also durchaus möglich, für Polyeder, die durch affine Funktionen erzeugt werden,

einen Inhaltsbegriff auf der Basis des Inhaltes von Simplexen zu entwickeln.
Ueber die allgemeinen Grundlagen des Inhaltes von Polyedern vergleiche man [9],
[10].
Die in den drei Beispielen behandelten Funktionale haben alle eine wichtige
Eigenschaft, nämlich die Nullstetigkeit. Ein positives lineares Funktional / auf einem
Vektorverband & heisst nullstetig genau dann, wenn für jede fallende Folge (f„)„En
aus 9~ mit A fn 0 die Beziehung inf / (/„) 0 besteht. Die Nullstetigkeit ist

neN neN
äquivalent zu jeder der folgenden Eigenschaften:

(c) Für alle wachsenden Folgen (f„)„ e N aus Sf mit

V fn fe9~ gilt /(/)= sup /(/„).
neN „gn

(d) Für jede fallende Folge (f„)„ e N aus J*~ mit

A fn=fe9~ gilt /(/)= inf/(/„).
neN neN

Der Beweis der Nullstetigkeit für die Funktionale /„ beruht auf dem im Propädeutiken

bewiesenen Satz von Dini, wonach für fallende Folgen (/w)„6n aus J^(n)
mit A f„ 0 stets die Beziehung

neN

inf (sup/„(x)\ 0
"eN\xe_f /

besteht. Ist (/„)„ e N eine solche Folge aus j/(«), so gilt

fn ]ffn lffn<]ff ffn-

Die Folge (Yf„)„ e n ist selbst von dieser Art und es gibt demnach zu jeder Zahl e > 0

eine Zahl n(s) e N, so dass |/7w(x) < s für alle m > n und alle x e X. Damit ist aber

fm<,eYfi für alle m _> n(e) und es ergibt sich ln(fm) <eln(Yfx) für alle solchen m.

Hieraus folgt die Nullstetigkeit von ln.
Selbstverständlich ergibt sich auf diese Weise die Nullstetigkeit für beliebige positive
lineare Funktionale auf Vektorverbänden Sfayf(n). Im Hintergrund steht die
Theorie der positiven linearen Funktionale auf Vektorverbänden von stetigen
Funktionen mit kompaktem Träger auf einem lokalkompakten topologischen Raum.

Damit ist wieder ein Anschluss an ein wichtiges Thema der höheren Analysis herge-
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stellt Beispiel 1 gehört ebenfalls in diesen Rahmen Man hat nur X mit der diskreten
Topologie zu versehen Die Funktionale lg sind also ebenfalls alle nullstetig
Die positiven linearen Funktionale /„ und lg treten auf naturliche Weise im propädeutischen

Unterricht in Erscheinung Im allgemeinen wird aber dort leider auf die
Gemeinsamkeiten kein Gewicht gelegt Strukturell gehören sie jedoch in denselben
Rahmen Dementsprechend zeigen sich grosse Analogien hinsichtlich der mit ihnen
verbundenen Problemstellungen Mit einem fundamentalen Problem, namhch der
Erweiterung solcher Funktionale befassen wir uns im zweiten Teil dieser Arbeit

K Weber, Mathematik-Departement ETH-Zunch
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Ein Kettenkomplex auf geordneten Tupeln

Einleitung

Ein Kettenkomplex C(«), dessen q-te Kettengruppe von allen angeordneten ^-Tupeln
(i\,ii, ,iq) mit J7e{l,2, ,«} und ij^ik fur j=frk frei abelsch erzeugt wird, wird
definiert Dann wird gezeigt, dass der Komplex azyklisch bis zur Dimension « ist
In Gruppentheorie und Kombinatorik wurde seit einigen Jahren ein Kettenkomplex
betrachtet, dessen formale Definition sich von derjenigen des «-Simplex nur dann
unterscheidet, dass man statt (ungeordneten) Teilmengen der Menge {1,2, ,«} nun
(geordnete) Tupel nimmt Die einzige uns bekannte schriftlich niedergelegte Definition

(einer mod-2-Version) dieses Kettenkomplexes befindet sich in einem Manuskript
von W Mielants [1], Seite 39ff, der Kettenkomplex wurde aber auch von H Hiller
und L Scott betrachtet Da die Definition des Komplexes dem «-Simplex analog ist,
eine elementare Betrachtung der Eulercharaktenstik aber sofort zeigt, dass der Komplex

nicht azykhsch sein kann, wird man sofort zu der Vermutung gefuhrt, dass der
Komplex «sphärisch» ist, d h nur die höchste Homologiegruppe nicht verschwindet
Diese Vermutung von L Smith, H Hiller und L Scott wird im folgenden (mit voll-
standig elementaren Mitteln) gezeigt Wir danken L Smith mehr fur die Mitteilung
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