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ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires — Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts

El. Math. Vol. 41 Nr. 5 Seiten 107-138 Basel, den 10. September 1986

Gedanken zum Integralbegriff
im propadeutischen Unterricht
Teil 1: Elementarintegrale

Wer die Entwicklungen im Mathematikunterricht an Mittel- und Hochschulen in den
letzten Jahrzehnten aufmerksam verfolgt, wird erstaunt feststellen, dass zum Teil
gewaltige Aenderungen in Methodik und Auffassung im algebraischen und geo-
metrischen Bereich eher kleine Umgestaltungen im Bereich der Analysis gegeniiber-
stehen. In letzter Zeit ist nun vermehrt die Forderung nach Verdnderungen auch in
diesem Fach laut geworden. Dabei wird in erster Linie von anwendungsorientierter
Seite die Einbeziehung Computer-gerechter Verfahren gefordert. Diesem Wunsch ist
sicher nichts entgegenzuhalten. Dann kommt man allerdings um die Frage nicht
herum, mittels welcher Massnahmen die erforderliche Zeit gewonnen werden kann.
Auf keinen Fall diirfen die Umstrukturierungen in der Weise erfolgen, dass der an
sich veraltete Analysis-Unterricht inhaltlich gekiirzt, ansonsten aber in seiner beste-
henden Form beibehalten wird. Sowohl an der Mittelschule als auch and der Hoch-
schule sollte der mathematische Gehalt dieses Faches nicht verringert werden. Dies
kann nur auf die Weise realisiert werden, dass dem Einbau neuer Gebiete eine Ver-
grosserung der Effektivitdt des Unterrichtes in den klassischen Fragestellungen par-
allel lauft, was durch die Einfilhrung neuer Methoden und Betrachtungsweisen
durchaus erreichbar ist.

Die vorliegende Arbeit befasst sich mit dem Integralbegriff im Propadeutikum des
Mathematikunterrichtes an der Hochschule. Zwei verschiedene Problemstellungen
fiihren in bekannter Weise zu diesem Begriff: einerseits die Frage nach der Existenz
einer Stammfunktion zu einer gegebenen Funktion, anderseits das Inhaltsproblem.
Wir behandeln in der vorliegenden Arbeit in erster Linie den zweiten Aspekt. Natur-
gemiss nimmt die Behandlung des Inhaltsproblems wesentlich mehr Zeit in Anspruch
als die der Stammfunktion.

Die Entwicklung des Integralbegriffes im Hochschulunterricht erfolgt seit Jahrzehnten
fast ausschliesslich in folgenden Schritten ([1], [2], [3], [4]).

Schritt 1: Einfiihrung des Integrals fiir eine Klasse einfacher Funktionen einer
reellen Variablen.

Schritt 2: Behandlung uneigentlicher Integrale auf der Basis von Schritt 1.

Schritt 3: Entwicf(lung einer Theorie der mehrdimensionalen Integrale auf der Basis
von Schritt 1.

Schritt 4: Einfithrung des Lebesgueschen Integralbegriffes. Mit Schritt 4 ist oft eine
starke Abstraktion der Fragestellung verbunden, indem eine allgemeine Mass- und
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Integrationstheorie auf abstrakten Raumen entwickelt wird, welche auch den Anfor-

derungen anderer Gebiete, z. B. der Wahrscheinlichkeitstheorie, gerecht wird.

Der Aufbau in diesen vier Schritten erfordert enorm viel Zeit. Dies hat ganz verschie-

dene Ursachen. Der Hauptgrund aber wird sofort klar, wenn man vom Standpunkt

von Schritt 4 aus die ersten drei Schritte betrachtet: die elementaren Integralbegriffe
haben grosse strukturelle Schwéachen. Darauf weist schon der Begriff des «uneigent-
lichen Integrals» hin. Er erweist sich vom allgemeinen Standpunkt her als ziemlich
unnotig. Die uneigentliche Integrierbarkeit absolut integrierbarer Funktionen ist
durch Schritt 4 vollig abgedeckt, und die Betrachtung nicht absolutintegrierbarer

Funktionen ist von so geringer Bedeutung im elementaren Unterricht, dass darauf

ohne Verluste verzichtet werden kann.

Eine weitere Schwiche zeigt sich bei der Frage nach Stetigkeitseigenschaften. Wih-

rend diese Frage beim Lebesgue-Integral durch den Lebesgueschen Konvergenzsatz in

befriedigender Weise gelGst ist, erweist sie sich bei den elementaren Begriffen als
kompliziert, wenn man sich nicht auf die fiir praktische Zwecke ungeniigende gleich-
maissige Konvergenz beschrianken will.

Nicht unerwihnt bleiben darf das Problem der Vertauschung der Integrationsreihen-

folge im Rahmen der mehrdimensionalen Integration. Auch dieses Problem wird erst

in Schritt 4 befriedigend gelost.

Wihrend der Entwicklung im Rahmen der ersten drei Schritte wird der Student

laufend mit Schwierigkeiten konfrontiert, die viel eher im Aufbau des Unterrichtes

als in der mathematischen Natur des Problems begriindet sind. Als Folge davon geht
er Schritt4 mit Vorstellungen an, die dem Verstindnis oft hinderlich sind. Die

Schwierigkeiten werden bei der Behandlung der abstrakten Integrationstheorie noch

dadurch verstirkt, dass im elementaren Unterricht der fiir die abstrakten Betrachtun-

gen notwendige strukturelle Hintergrund in keiner Weise beleuchtet wird.

Aufgrund dieser Betrachtungen kommt der Autor zum Schluss, dass die Entwicklung

des Integralbegriffes im Propddeutikum eine der Stellen ist, an der eine Neuorien-

tierung Aussicht auf Erfolg hat, ja sich geradezu aufdrangt.

Im Anschluss an die Diskussion der Schwichen der ersten drei Schritte kann folgen-

der Katalog von Forderungen an einen neuen Aufbau des Integralbegriffes im

Unterricht aufgestellt werden.

1. Zusammenfassung der drei ersten Schritte. Insbesondere sollte die Einfithrung un-
eigentlicher Integrale nicht mehr notwendig sein. Wiinschenswert wire eine ein-
heitliche Behandlung der Integrale in beliebigen Dimensionen.

2. Die Entwicklungen sollten strukturell in einem Rahmen erfolgen, der auch bei der
Abstraktion in Schritt 4 als Basis dienen kann. Die wichtigsten Eigenschaften des
abstrakten Integrals sollten bereits im elementaren Bereich andeutungsweise sicht-
bar sein. Die elementaren Entwicklungen sollten den Weg fiir Verallgemeinerungen
vorspuren.

3. Die Entwicklungen sollten in einer Form durchgefithrt werden, welche Beziehun-
gen zu anderen Fragestellungen der Analysis erkennen lisst.

Selbstverstandlich existieren Integralbegriffe, welche allen drei Forderungen gerecht

werden. Wir erwidhnen insbesondere den 1918 von Daniell entwickelten ([5], [6]). Eine

vierte Forderung stellt sich allerdings solchen allgemeinen Ueberlegungen entgegen,
ndmlich diejenige der didaktischen Vertretbarkeit. Wir wollen nun aber zeigen, dass
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ein elementares Analogon zur Daniellschen Integrationstheorie existiert, welches den
Forderungen 1.—3. ebenfalls gerecht wird. Dabei sind die folgenden Betrachtungen
absichtlich so elementar wie moglich gehalten. Es geht uns hier nicht um grosse
wissenschaftliche Erkenntnisse, sondern um eine effizientere Gestaltung des propa-
deutischen Unterrichtes.

Mit aller Deutlichkeit sei festgehalten, dass die vorliegende Arbeit als Diskussions-
beitrag aufgefasst wird und nicht etwa als Musterlosung. Es gibt keinen Konigsweg im
Unterricht. Verschiedene Moglichkeiten miissen sorgfiltig gegeneinander abgewogen
werden. Der Autor ist sich auch des Wagnisses bewusst, jahrzehntelang bewihrte
Unterrichts-Inhalte in Frage zu stellen. Wenn es hier dennoch vielleicht sogar in etwas
herausfordernder Weise geschieht, so aus der Ueberzeugung heraus, dass eine ernst-
hafte Diskussion heute wirklich die Aussicht auf wirkungsvolle Neugestaltungen
eroffnet.

1. Vektorverbidnde von Funktionen

Wir behandeln zunidchst diejenigen Strukturen, die uns als Definitionsbereiche von
Integralen dienen. Es bezeichne X eine Menge und R* die Menge aller reellen Funk-
tionen auf X. Neben der Vektorraumstruktur von IR¥ interessiert von Standpunkt der
Integralkonstruktion her vor allem die im propadeutischen Unterricht oft stiefmiitter-
lich behandelte Ordnungsstruktur. Sie ist gegeben durch die Definition

f<g:<=f(x)<g(x) firalle xeX.

Wir fassen einige Eigenschaften der Relation < zusammen. Sie ergeben sich unmittel-
bar durch «punktweise» Anwendung der entsprechenden Eigenschaften der Ordnungs-
relation auf R.

(a) < ist eine Halbordnungsrelation auf R*. R¥ ist beziiglich dieser Relation ein
beschrinkt vollstindiger Verband. Fiir jede nicht leere beschriankte Teilmenge %
von R¥ existiert also das Supremum V f und das Infimum A f beziig-

fe¥ fe¥
lich <. Fir alle x e X gilt (/\//_f)(x)=supf(x) und (fé\_f)(x)=fi£f_f(x),
€7 fer fe ¥

wobei sup bzw. inf Suprema bzw. Infima in R bezeichnen.

Wir schreiben im folgenden fVv g bzw. f A g fir das Supremum bzw. das Infimum
zweier Funktionen f, g aus R¥,

(b) RY ist vollstindig distributiv. Fiir jede nicht leere beschriankte Teilmenge . von
R* und fiir beliebige g € R* gilt also

(Y S)hg= Y TN, (AS]Ve= N (V).

(c) Firalle f, g € R¥ gilt

fvg+fng=f+g.
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Ist.# eine beschrinkte nicht leere Teilmenge von R¥, so gilt
( V‘f)+g= VvV (f+9), ( A f)+g= N (f+9)

fe¥ feF fes fesF

fiir alle g € R¥,

(U500 K e

€7

fiir alle « € R, « = 0 und
V,f=—(/\ (—f)), /\_f=-(\/ (-—f))-
fes fes fev fes

Wichtig fiir die Konstruktionen ist der Begriff der monotonen Folge von Funktionen.
Wir nennen eine Folge (f,),er aus R* wachsend genau dann, wenn f, < f,, fiir
alle n € N. Sie heisst fallend genau dann, wenn f, > f,, fiir alle n € N. Sie heisst
monoton genau dann, wenn sie wachsend oder fallend ist.

(d) Jede wachsende beschrinkte Folge (f,),n aus R¥ konvergiert punktweise gegen
V f,. Sind (f)nen und (gn)nen zwei wachsende beschrinkte Folgen aus RY
neN

und bezeichnet f bzw. g ihr Supremum, so gilt

f+gﬁluﬂ+ga, fvgizﬁﬂVg», ngilﬁﬂAg”'

Analoge Aussagen gelten fiir fallende Folgen.

Fiir jede Funktion f e R¥ ist der Betrag |f| definiert durch |f]|(x):=|f(x)| fiir
alle x € X. Man definiert f:= fVv 0 und f_:=(—f) V0. f, heisst der positive Teil
von f, f_ nennt man den negativen Teil. Fiir alle fe R gilt |f|=f.+ /. und
f=f—/

Eine Teilmenge % von R¥ heisst ein Vektorverband genau dann, wenn sie folgende
Eigenschaften besitzt:

(i) .7 ist ein Teilvektorraum von R¥.
(ii) Firalle fe ¥ ist|f| e ..

RY ist trivialerweise selbst ein Vektorverband. Jeder Vektorverband % < R¥ ist ein
Teilverband von R¥, denn fiir alle £, g € ¥ ist

fvg=3(f+g+|f-ghes
und
fAg=3(f+g-If-gle7.

Insbesondere findet man also f, € # und f_e .7 fiir alle f aus.7.



El. Math., Vol. 41, 1986 111

In der hoheren Analysis spielt der Begriff des abstrakten Vektorverbandes eine grosse
Rolle. Die einfachen Vektorverbiande von Funktionen bilden ein gutes Anschauungs-
material fiir diesen wichtigen Begriff. Fiir unsere Zwecke dienen sie als Definitions-
bereiche von Integralen. Sie sind aber auch im Lichte von 2. und 3. zu sehen. Wir
wollen nun einige Beispiele betrachten.

Beispiel I. Der Raum .# (X) aller Funktionen f e R* mit der Eigenschaft, dass
{x € X | f(x) # 0} endlich ist, ist wohl das einfachste Beispiel eines Vektorverbandes.
Trotz seiner Einfachheit und Durchsichtigkeit ist er aber sehr wichtig, wie wir noch
sehen werden.

Beispiel 2: Wir betrachten den Spezialfall X =IR" (n € N). Es bezeichne ¢ (n) die
Menge aller stetigen Funktionen auf X. Dann ist # (n) ein Vektorverband. In der Tat
ist jede Linearkombination stetiger Funktionen wieder stetig, und dasselbe gilt fiir
den Betrag einer stetigen Funktion f, wie unmittelbar aus der Beziehung

o=@ <1700 - r@ |

hervorgeht.

Beispiel 3: Wie in Beispiel 2 sei X = R”. Dann ist die Menge . (n) aller stetigen Funk-
tionen auf X mit beschranktem Trédger ein Vektorverband. Dabei bezeichnen wir als
Trager einer Funktion f auf X die abgeschlossene Hiille von {x € X | f(x) # 0}. Die
Vektorverbandseigenschaft von . (n) ist eine unmittelbare Konsequenz der entspre-
chenden Eigenschaft von # (n).

In der klassischen Integrationstheorie auf lokalkompakten topologischen RAumen
spielen Rdume stetiger Funktionen mit kompaktem Tréger eine entscheidende Rolle.
Besonders wichtig ist dabei ihre Vektorverbandseigenschaft. Die Rdume .# (n) sind
einfache Beispiele, mit denen bereits im elementaren Unterricht auf diese wichtigen
Strukturen hingewiesen werden kann. Es wire moglich, die elementare Theorie der
Integration im Propadeutikum als Theorie der Funktionale auf .# (n) zu entwickeln
([71, [8]). Wir wollen aber einen anderen Weg gehen, der mehr auf der geometrischen
Anschauung aufbaut. Wir werden die im folgenden Beispiel definierten Rdume als
Basis verwenden.

Beispiel 4: Es sei wiederum X = R”. Eine Funktion f auf X heisse stiickweise linear
genau dann, wenn X als Vereinigung endlich vieler Teilmengen G, ..., G, dargestellt
werden kann, so dass f linear ist auf jeder Menge G;. Fiir uns von Interesse sind die
stiickweise linearen Funktionen aus .# (n). Wir nennen diese Funktionen affin. Es be-
zeichne ./(n) die Menge aller affinen Funktionen auf X. Jede affine Funktion ist also
stetig und besitzt beschrinkten Triger. Wir wollen zeigen, dass die Ridume o/ (n)
Vektorverbande sind.

Seien f, g € #/(n). Dann gibt es Systeme G, ..., G, bzw. H,, ..., H,, von Teilmengen
von X, so dass X = U G, = U H;und f linear ist auf allen G; bzw. g linear auf
Isisk I<j<m

allen H;. Fiir beliebige o, f € R ist dann a f+ f g linear auf den Mengen G; N H;
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und es ist X =) (Gin H ). Da wir bereits wissen, dass #(n) ein Vektorverband ist,
konnen wir schlijessen, dass a f+ B g € #/(n). Es sei nun G := {x € X | f(x) = 0}. Dann
ist | f| linear auf jeder Menge G N G; und ebenso auf jeder Menge (X\G) N G;, und
man findet | f| € &/ (n).

Die folgende Figur zeigt ein Beispiel fiir den Graphen einer Funktion aus «#(2).
Von der in dieser Figur angedeuteten Beziehung zwischen den Funktionen aus «/(n)
und den Polyedern aus R"*! werden wir bei der Diskussion des Integralbegriffes
Gebrauch machen.

Die aufgefithrten Beispiele zeigen, dass es sich bei den Vektorverbinden um eine
Struktur handelt, deren Einfiihrung im Propadeutikum durchaus gerechtfertigt ist.

2. Positive lineare Funktionale, Elementarintegrale

Die nidchste Stufe auf dem Weg zum Integralbegriff ist der Begriff des positiven
linearen Funktionals auf einem Vektorverband. Es bezeichne weiterhin X eine Menge.
% sei ein Vektorverband von Funktionen aus R*. Ein positives lineares Funktional
auf .7 ist eine Abbildung /: ¥ — R mit folgenden Eigenschaften:

(1) [/istlinear
(i) I(f)=0 firalle fev, f=20.

Positive lineare Funktionale sind bereits vollstindig bestimmt durch ihre Werte auf
den positiven Funktionen. Zur Vereinfachung der genauen Formulierung dieses Sach-
verhaltes definieren wir fiir beliebige Teilmengen ¢ von R

Sy={fes|f20}.
Es gilt nun der folgende

Hilfssatz. Seil: ¥, - R, eine Abbildung mit folgenden Eigenschaften:

(a) Firallef,ge#,istI(f+g)=1(f)+1(g).
(b) Firalle f € ¥, und alle a € R, ist [(af) = o [(f).

Dann gibt es genau ein positives lineares Funtional / auf ¥ mit der Eigenschaft, dass
I(f)=I(f)furalle fe#,.
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Zum Beweis bemerkt man, dass fiir ein solches Funktional / notwendigerweise / (/)
=1(f.) — I (f.) gelten muss fiir alle f €.#. Es ist aber leicht einzusehen, dass das auf
diese Weise definierte Funktional / positiv und linear ist.

Wir wollen wieder Beispiele betrachten.

Beispiel 1. Sei ¥ (X) der_Vektorverband aus Beispiel 1,1. Es sei g € RX. Definiert
man dann

lyyp F(X)->R, fr 3 HORICE

xe{f+0

so ist /, ein positives lineares Funktional auf .# (X). Dabei wurde fiir alle f € .7 (X)
{f #0}:={x e X|f(x)# 0} gesetzt.

Beispiel 2. Ein wichtiges Beispiel bilden die Stieltjes-Funktionale auf .# (/). Wir haben
nicht die Absicht, an dieser Stelle ndher auf dieses wohlbekannte Beispiel einzugehen.
Es sei jedoch festgehalten, dass auch diese wichtigen Funktionale durchaus in den
hier entwickelten Rahmen passen. Der interessierte Leser sei auf [6] verwiesen.

Beispiel 3. Wir betrachten den Raum .«/(n) der affinen Funktionen auf R”. Sei f eine
positive affine Funktion. Wir betrachten den Graphen

(G, f(0) [ x=(x1,x2,..., x,) € R"}

von f. Diese Hyperflache schliesst zusammen mit der Hyperebene x,,, ;=0 ein n + 1-
dimensionales Polyeder ein, welches wir mit P (f) bezeichnen. Die Situation ist in
Figur |1 angedeutet. Es bezeichne sodann /(f) das n+ l-dimensionale Volumen dieses
Polyeders. Wir behaupten, dass / die Eigenschaften (a) und (b) des obigen Hilfssatzes
besitzt.

Seien f, g € #(n),. Dann gibt es Teilmengen H,,..., H, von R”", so dass sowohl f
als auch g auf allen H; linear sind. Wir konnen annehmen, dass die Teilmengen H,
n-dimensionale Simplexe sind, welche hochstens #» — 1-dimensionale Bereiche gemein-
sam besitzen.

Wir halten nun k fest. P, (f) bezeichne den prismatischen Teil von P (f) iiber H,
und analog definieren wir P (g) sowie P, (f+g). Fiir ein beliebiges i-dimensionales
Polyeder Q bezeichne V;(Q) dessen i-dimensionales Volumen. Bezeichnen wir sodann
mit Xy, X, ..., X, 4+, die Ecken von H,, so erhalten wir

n+1

1
Vet Be(D) = 2 S () Va(HL)

Analoge Beziehungen ergeben sich fiir V, ., (Pir(g)) sowie fir V,,(Pr(f+9)).
Damit erhalt man aber sofort

Va1t (Pe(f+9) = Vas1 (P(f)) + Va1 (Pi(9)) -
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Summieren wir iiber alle k, so finden wir schliesslich mittels der Additivitat des
Polyeder-Inhaltes die gewiinschte Eigenschaft (a). (b) ergibt sich analog.

Der oben formulierte Hilfssatz impliziert nun die Existenz eines eindeutig bestimm-
ten positiven linearen Funktionals /, auf & (n), welches fiir alle f € #(n), den Wert
des Volumens von P (f) annimmt.

Zu diesem Beispiel sind einige Bemerkungen angebracht. Das Funktional /, wird Aus-
gangspunkt sein fiir unsere Behandlung des n-dimensionalen Integrals. Es stellt sich
natiirlich die Frage, wie weit der Student im Propaddeutikum mit den Eigenschaften
des Polyederinhaltes vertraut ist. Dazu ist zu bemerken, dass von der Mittelschule her
eine recht gute Vorstellung vorhanden ist fiir die Dimensionen 2 und 3. Die Verall-
gemeinerung auf beliebige Dimensionen erfolgt meist im propadeutischen Unterricht
in linearer Algebra. Wir mochten jedoch betonen, dass unserer Auffassung nach an
dieser Stelle durchaus auf der Analogie zu den Dimensionen 2 und 3 aufgebaut wer-
den darf. Dies umsomehr, als eigentlich nur die Eigenschaften des Inhaltes von Sim-
plexen vorausgesetzt werden miissen, wie wir kurz zeigen wollen.

Wir haben oben Gebrauch gemacht von der Inhaltsformel fiir einen prismatischen
Korper iiber einen Simplex als Grundbereich. Bezeichnet H ein n-dimensionales Sim-
plex mit den Ecken X, X5, ..., X, 41, und wird der prismatische Korper P iiber H
durch den Graphen der linearen Funktion f erzeugt, so ist

n+1

> S (X)) Vi (H).

n+1 m=1

Var1(P)=

Es ist nicht schwer, diese Formel anschaulich zu begriinden. Aufgrund der dem Stu-
denten bekannten Resultate fiir »=1 und n=2 ist es naheliegend, V,.;(P)
anzusetzen als Produkt des Inhaltes der Grundfliche H mit einer linearen Funktion
der Kantenldngen f(X,). Da sich die Reihenfolge der Bezeichnung der Ecken des
Simplexes nicht auf den Inhalt von P auswirken darf, muss die lineare Funktion der
Kantenldngen symmetrisch sein. Der Faktor 1/(n + 1) schliesslich ergibt sich daraus,
dass die Formel fiir den Spezialfall eines #n+ 1-dimensionalen Quaders P dessen
wohlbekanntes Volumen ergeben muss. Es sei noch erwihnt, dass die Formel in der
einfachen Form

Vas1(P)=f(S) Va(H)

geschrieben werden kann, wenn wir mit S den Schwerpunkt von H bezeichnen.

Die durch affine Funktionen erzeugten Polyeder sind Vereinigungen von prismati-
schen Korpern iiber Simplexen. Wir konnen den Inhalt eines solchen Polyeders als
Summe der Inhalte der prismatischen Teilkorper definieren, wenn wir uns von der
Unabhingigkeit dieser Zahl von der Wahl der Zerlegung des Polyeders in Prismen
iberzeugen. Unter Verwendung obiger Notationen geniigt es zu zeigen, dass bei einer
Zerlegung von H in Teilsimplexe H, mit Schwerpunkt S; die Formel

F(S) Vu(H) = ;f(Sk) Vu(Hy)



El. Math,, Vol. 41, 1986 115

gilt. Bezeichnen wir fiir einen Punkt X mit X dessen Ortsvektor in Bezug auf ein fest-
gelegtes Koordinatensystem, so folgt aus den Eigenschaften des Schwerpunktes

Vn(H)3'=;Vn(Hk)§k,

und man erhilt die gesuchte Formel unter Verwendung der Linearitét von f.

Es ist also durchaus moglich, fiir Polyeder, die durch affine Funktionen erzeugt wer-
den, einen Inhaltsbegriff auf der Basis des Inhaltes von Simplexen zu entwickeln.
Ueber die allgemeinen Grundlagen des Inhaltes von Polyedern vergleiche man [9],
[10].

Die in den drei Beispielen behandelten Funktionale haben alle eine wichtige Eigen-
schaft, namlich die Nullstetigkeit. Ein positives lineares Funktional / auf einem
Vektorverband % heisst nulistetig genau dann, wenn fiir jede fallende Folge (f,),en

aus ¥ mit A f,=0 die Beziehung inf /(f,) =0 besteht. Die Nullstetigkeit ist
neN neN

dquivalent zu jeder der folgenden Eigenschaften:

(c) Fiir alle wachsenden Folgen (f,), ¢« n aus ¥ mit

V fa=fes gilt I(f)=supl(fy).
neN neN

(d) Fiirjede fallende Folge (f,), e N aus.¥ mit

A f,=fes gilt I(f)=infI(f,).
neN neN

Der Beweis der Nullstetigkeit fiir die Funktionale /, beruht auf dem im Propéddeuti-
kum bewiesenen Satz von Dini, wonach fiir fallende Folgen (f,),en aus # (n)

mit /A f,=0stets die Beziehung
neN

inf (supf,, (x))= 0
neN\xex

besteht. Ist (f,,), < n €ine solche Folge aus .« (n), so gilt

So=Vfa Vin<VH Vi

Die Folge (J/f,)n e n ist selbst von dieser Art und es gibt demnach zu jeder Zahl ¢ > 0
eine Zahl n(e) € N, so dass }f,,(x) < ¢ fiir alle m > n und alle x € X. Damit ist aber
fm < ey fiir alle m = n(c) und es ergibt sich /,(f,,) < el,(Jf)) fiir alle solchen m.
Hieraus folgt die Nullstetigkeit von /,,.

Selbstverstindlich ergibt sich auf diese Weise die Nullstetigkeit fiir beliebige positive
lineare Funktionale auf Vektorverbinden % < .¥ (n). Im Hintergrund steht die
Theorie der positiven linearen Funktionale auf Vektorverbénden von stetigen Funk-
tionen mit kompaktem Triger auf einem lokalkompakten topologischen Raum.
Damit ist wieder ein Anschluss an ein wichtiges Thema der hoheren Analysis herge-
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stellt. Beispiel 1 gehort ebenfalls in diesen Rahmen. Man hat nur X mit der diskreten
Topologie zu versehen. Die Funktionale /; sind also ebenfalls alle nullstetig.

Die positiven linearen Funktionale /, und /, treten auf natiirliche Weise im propéddeu-
tischen Unterricht in Erscheinung. Im allgemeinen wird aber ‘dort leider auf die
Gemeinsamkeiten kein Gewicht gelegt. Strukturell gehoren sie jedoch in denselben
Rahmen. Dementsprechend zeigen sich grosse Analogien hinsichtlich der mit ihnen
verbundenen Problemstellungen. Mit einem fundamentalen Problem, ndmlich der
Erweiterung solcher Funktionale befassen wir uns im zweiten Teil dieser Arbeit.

K. Weber, Mathematik-Departement ETH-Ziirich
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Ein Kettenkomplex auf geordneten Tupeln

Einleitung

Ein Kettenkomplex C (n), dessen g-te Kettengruppe von allen angeordneten g-Tupeln
(i1,02,...,0g) mit ;€ {1,2,...,n} und i;* iy fir j+ k frei abelsch erzeugt wird, wird
definiert. Dann wird gezeigt, dass der Komplex azyklisch bis zur Dimension # ist.

In Gruppentheorie und Kombinatorik wurde seit einigen Jahren ein Kettenkomplex
betrachtet, dessen formale Definition sich von derjenigen des n-Simplex nur darin
unterscheidet, dass man statt (ungeordneten) Teilmengen der Menge {1,2,...,n} nun
(geordnete) Tupel nimmt. Die einzige uns bekannte schriftlich niedergelegte Defini-
tion (einer mod-2-Version) dieses Kettenkomplexes befindet sich in einem Manuskript
von W. Mielants [1], Seite 39ff.; der Kettenkomplex wurde aber auch von H. Hiller
und L. Scott betrachtet. Da die Definition des Komplexes dem n-Simplex analog ist,
eine elementare Betrachtung der Eulercharakteristik aber sofort zeigt, dass der Kom-
plex nicht azyklisch sein kann, wird man sofort zu der Vermutung gefiihrt, dass der
Komplex «sphérisch» ist, d.h. nur die héchste Homologiegruppe nicht verschwindet.
Diese Vermutung von L. Smith, H. Hiller und L. Scott wird im folgenden (mit voll-
stindig elementaren Mitteln) gezeigt. Wir danken L. Smith mehr fiir die Mitteilung
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