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Aus (5.4) folgt schliesslich unter Beachtung von (8.1) fiir die Abhingigkeit p —q die
explizite Darstellung

(@’ —p)(acota—p)
(b* — p*sin’w)(a — p sinw)

q =f(p)=2asin’w (8.3)

Bei dem in §7 gefundenen wackeligen Sechshorn, gekennzeichnet durch 2a = w = 60°
und a:b=1: \/5, wird die Mittelstellung — in Einklang mit (6.2) — fiir p,= g,
=2r,= (\/3 — 1)a eingenommen.
Die 2n-HOrner mit n > 3 erweisen sich hingegen unter der Annahme (8.1) als nicht
wackelig, wie der Verlauf der Diagrammkurven g = f(p) und p = f(g) lehrt, die einander
im Punkt p, = ¢, nicht beriihren, sondern unter einem nichtverschwindenden Winkel
schneiden.

W. Wunderlich, Wien, und C. Schwabe, Ziirich
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Zur Abschitzung des Brocardschen Winkels

Im Inneren des Dreiecks 4, 4,4, mit Winkeln «,,a,,a,, gibt es immer einen Punkt Q
derart, dass < QA4,4,= < QA4,4,= <QA,A,=:w. Der Brocardsche Winkel w ist da-
durch eindeutig bestimmt und geniigt der Gleichung (vgl. [4], S. 58-60)

cotw = Icota,. (1)
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Gegeben positive Zahlen x,, x,, x;, definieren wir, fiir r eR,

Zx5/3)r, r#0
M’(x):z{(ﬂx,.)‘”, r=0.

Die Mittelwertfunktion r — M, (x) ist bekanntlich isoton ([3], 2.14.2). Um Wiederholun-
gen zu vermeiden, sei die Bemerkung vorausgeschickt, dass alle Ungleichungen in dieser
Note strikt mit Ausnahme des gleichseitigen Falles sind.

1963 konnte Yff [1] nur behaupten, dass

M__ (@) <20 < M,(x) = -’35

(M _ () ist der kleinste Winkel des Dreiecks). Er vermutete aber, dass
20 < My(a) = (o, 0,05)"",

und dies ist elf Jahre spidter von Abi-Khuzam in dieser Zeitschrift bewiesen worden [2].
Nach einer nochmaligen Pause von elf Jahren ist es mir gelungen, die Verscharfung

20<M_(a)=3Z1/a;)! 2)
zu beweisen. Weiter bleibt meine Vermutung
M_,(x)L2w

noch unbewiesen (und damit ist natiirlich die Frage nach der besten Abschédtzung noch
ungelost).

Hilfssatz. (2) ist vom gleichschenkligen Dreieck mit Winkeln a,a,m — 2 (0 <a< E)
erfiillt.

Beweis: Sei a € (0, —72z~) Nach (1) gilt
cotw = 2cota + cot(n —2a) = 2/sin(2a) + cot(2a),

und nach der Substitution x:=2a (0 < x < ) wird (2) zu

g(x):= x(n — x)) - arcot(—,—z—- + cotx) >0,

24n/3 —x sin x
mit

() = 3/2 __27z2 4_7t_x ‘2.
& 4cosx + 5 9 3
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g' (x) = 0 ist also dquivalent zu

4 2 4 2
(—; - x) = %(4cosx +5),

was (nach einfachen Konvexitdtsbetrachtungen) genau drei Losungen in (0,7) hat (die
mittlere Losung ist 2 z/3). Die Behauptung folgt somit aus

2
g(O*)=g(~3zz-)=g(n‘)=0

n 3n
1> gy N
g(4) 0, g<4) 0,

was man direkt verifizieren kann.

und

Lemma 1. Fiir 0 < x < = gilt
3sinx —xcosx —2x <0.

Beweis (A. Thom): Fiir alle x > 0 gilt:

x3 5

" X
sSinx < —_— 4 —
AT TR
> 1 2+X4 x°
COS X - e
08 207 4 6l

Es geniigt daher zu zeigen, dass

x*  x* x*  x* xS )
3<x———3—?+§)—x<3—5—!+z—!—a)<0,fur0<xsﬂ,

das heisst, dass

5
%—'(xZ—— 12)<0, fir 0<x<un,
was wegen 72 < 12 tatsdchlich der Fall ist.
sinx

3
Lemma 2. Die Funktion f(x):= (_zc_) cos x ist strikt monoton fallend in [0,7) (f (0):=1).

Beweis: Man hat, fir 0 < x <,

2 2

[3sin(2x) —2xcos(2x) — 4x]=: Tsin'x

S x)= 5 (x).

2sin*x
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Zu zeigen ist, dass s(x) <0 fiir 0 < x <z. Dies folgt aber sofort aus Lemma 1 falls
x €(0,7/2]. Falls x € [n/2,n) ist die Ungleichung trivial.

Beweis von (2): Wir wenden die Methode von Lagrange an die Funktion

1 1
F (o0, 000, 005):= @ (04, 0L, &3) - 2 ” :=arcot(Zcota,) - X o

i i

Die Nebenbedingung X o; = # fiihrt dann zum System

oF X 1/a;)sin?
k k k
o, =7 | ©)

Sei («,, a,, a5, 4) eine Losung von (4) und setze 4 := (Z ——) sin*w, B:=w. Dann nimmt die
Funktion %

1

A B

2

h(x):=—>
sin’x  x

an den Stellen «,, a,, «, denselben Wert an. Lemma 2 impliziert, dass

roy= 2A(B _ (XY
)= x? (A (sinx) cosx)

hochstens eine Nullstelle in (0, 7) besitzt. Dies impliziert aber, dass die Losung o, a,, &,

notwendigerweise gleichschenklig ist. Der Hilfssatz endet somit den Beweis (die Betrach-
tung der «ausgearteten Dreiecke» ist trivial).

V. Mascioni

Mathematik-Departement, ETH Ziirich
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