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Im weitern zeigt die Abhandlung iiber den Viertelskreis recht eindriicklich, dass sich
grosse Ideen an kleinen, unscheinbaren Problemen entwickeln und fast zur selben Zeit bei
verschiedenen Mathematikern zu allgemeinen und endgiiltigen Theorien fiihren konnen.
Leibniz hat erkannt, dass die Arbeitsweise mit dem charakteristischen Dreieck nicht auf
den Viertelskreis beschriankt sein muss, sondern vielmehr auf allgemeine Kurven iiber-
tragbar ist’). Pascal und viele andere seiner Zeitgenossen haben konkrete Pionierarbeit
geleistet, welche Leibniz und Newton vollendet haben.
I1. Im Mathematikunterricht beschrinkt man sich bei der Ermittlung von Fldcheninhal-
ten (bestimmte Integrale) in der Regel auf Potenzfunktionen.
Die heuristische Indivisiblen-Methode von Pascal zeigt einen elementargeometrischen,
anschaulich erlebbaren Weg zur Bestimmung einfacher Integrale trigonometrischer
Funktionen.
H. Loeffel
Hochschule St. Gallen

LITERATURVERZEICHNIS
1 Pascal: (Euvres complétes. Edition J. Chevalier, Bibliothéque de la Pléiade, Paris 1954.
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Eine Familie von geschlossenen gleichflachigen
Polyedern, die fast beweglich sind

I. Das Vierhorn

§1. Seit Cauchy (1812) weiss man, dass ein konvexes Polyeder mit unverianderlichen
Seitenfldchen bei gelenkigen Verbindungen lings der Kanten starr erscheint, weil seine
Gestalt eindeutig bestimmt ist. Eine kleine Liicke im Beweisgang wurde spiter von
Steinitz [6] ausgefiillt.

Nach Verzicht auf die Forderung der Konvexitidt kann die Eindeutigkeit der Form
verlorengehen. Es lassen sich leicht nichtkonvexe Polyeder vom topologischen Typus der
Sphire angeben, die einen sprunghaften («kippenden») Ubergang zwischen zwei existie-
renden Gestalten erlauben [6,8]. Riicken zwei solche Nachbarformen zusammen, so
entsteht ein infinitesimal bewegliches « Wackelpolyeder» mit am Modell deutlich merk-
barer Instabilitit. Das erste Beispiel gab Blaschke [1] mit seinen Wackeloktaedern;
weitere Beispiele finden sich bei Goldberg [4] und beim ersten Autor dieser Mitteilung [9].
Wackeligkeit bleibt bei konvexen Polyedern noch ausgeschlossen [3], wihrend sie sich bei

3) Dartiber dussert sich Leibniz sehr klar und eindeutig in einem Brief an seinen Freund v. Tschirnhaus (1651-1708)
vom Dezember 1679.
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nichtkovexen sogar als projektiv invariant erweist [5,7,10], d. h. bei affinen oder kolli-
nearen Transformationen des Polyeders erhalten bleibt.

Eine stetige Formidnderung endlichen Ausmasses wurde jedoch, auf praktische Erfahrun-
gen gestiitzt, bei einem geschlossenen Gelenkpolyeder die lingste Zeit fiir unmdglich
gehalten, bis Connelly [2] sein sensationelles Gegenbeispiel bekanntmachte. Sein 18-
Flach wurde dann von Steffen durch ein einfacheres 14-Flach noch verbessert [2].

Auf der Suche nach weiteren einschldgigen Beispielen entdeckte der zweite Verfasser der
vorliegenden Note 1981 sein verbliiffendes «Vierhorn», ein 16-Flach, das sogar zwei
vollkommen platte Grenzformen annehmen kann. Als er das Modell auf der faszinieren-
den «Phinomena»-Ausstellung in Ziirich 1984 zur Schau stellte, war er sich gewisser
geringer Unstimmigkeiten bereits wohl bewusst. Der Beitrag des ersten Autors besteht
nun in der quantitativen Analyse der vorhandenen Abweichungen.

§2. Sei ABS ein gleichschenkliges Dreieck mit dem Basiswinkel o und der Schenkelldnge
AB = AS = a. Die Basis BS hat dann die Linge

b= 2acosa <2a. 2.1

Fiigt man vier solche Dreiecke zu einem Vierkant SABCD mit der Spitze S zusammen
(SA = 8SC=a,SB= SD =Db), so ist dieses doppelt symmetrische, kurz als «<Horn» be-
zeichnete Gebilde zwangliufig verformbar (Freiheitsgrad 1). Seine Offnung ist berandet
von einem windschiefen Rhombus 4 BCD mit der Seitenldnge a.

Wird dieses Horn mit seinem Spiegelbild beziiglich der Ebene BAD vereinigt, so erhilt
man ein «Zweihorn», das noch immer zwangldufig beweglich ist und ebenfalls einen
windschiefen Rhombus BCDC mit der Seitenlinge a als Offnungsrand aufweist (Fig. 1).
Dessen jeweilige Gestalt ist im Hinblick auf die bekannte Seitenldnge a durch die ortho-
gonal-windschiefen Diagonalen BD = 2pund CC = 24 bestimmt. Die Parameter p und g
sind allerdings nicht unabhéngig voneinander, sondern durch eine noch zu ermittelnde
Relation F (p,q) = 0 verkniipft.

§3. Unter Verwendung eines dem Zweihorn geméss Figur 1 angepassten kartesischen

Koordinatensystems (4 ; x, y,z) konnen die nachstehenden Eckpunkte angesetzt werden
durch

1

4(0,0,0), B(p,0,u), C(0,9yv), D(-pO0u), SOrw). (3.1

Die iibrigen Ecken sind wegen der bestehenden Symmetrie beziiglich der Ebene y =0
mitbestimmt.

Aufgrund der bekannten Kantenlingen geniigen die eingefiihrten sechs Parameter
p.q,r,u,v,w insgesamt fiinf Bedingungen, was dem Freiheitsgrad 1 entspricht. Zufolge
AB = AS = a gilt zunéchst

pPtut=r’+w?=a’. (3.2)

Aus BS = b und BC = CS = a folgen ferner mit Bedacht auf (3.2) die Gleichungen
2uw= 2a’— b2, g>+ v:=2uv = 2(gr + vw). (3.3)
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a=1, b=V3 p=06
«=30%c=\V3/2 |, q=06%2

Abb. 1: Zweihorn Abb. 2: Vierhorn in Mittelstellung

Hieraus gewinnt man noch die niitzliche Beziehung
b*—p)g=2ru(u—w). (3.4)

Durch Elimination von r,u,v,w aus den Gleichungen (3.2—4) erhilt man schliesslich die
erwiahnte Koppelung zwischen den Grossen p und g in der Form

F(p,q)=(a*— p)(b*— p)q’ — a*(b*— 2p*)(c* —p) =0 (3.5)
mitb = 2acosa, ¢c=bsina=asin 2a.

Damit ergibt sich die explizite Darstellung

bZ —_ 2p2 CZ — p2
q=ab2—p2*’a2—p2’ (3.6)
die fiir jedes gewihlte p das zugehdrige q liefert. Aus Realititsriicksichten ist dabei p auf

das Intervall 0 < p < ¢ zu beschrinken. Die noch fehlenden Formparameter des Zwei-
horns ergeben sich dann aus (3.2-4) der Reihe nach mit

2 2__b2
u=—/a’—p*, W"—‘—azu—, r’=./a*—w?, v = qrw_ 3.7
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§4. Die Idee zur Bildung eines geschlossenen Polyeders besteht nun darin — dhnlich wie
bei Goldbergs «siamesischer Zwillingsdoppelpyramide» [4] —, die viereckige Offnung des
ersten Zweihorns durch ein zweites Exemplar zu schliessen, welches auf den Kopf gestellt

und um 90° verdreht ist. Damit ein so entstehendes «Vierhorn» mdglich ist, muss
offenbar

F(p,q)=F(q,p)=0 4.1)

gelten; dann sind ndmlich die beiden Offnungsrinder kongruent und passen aufeinander.
Derartige vertauschbare Wertepaare (p, q) gibt es tatsdchlich. Da ist einmal das Werte-
paar p, = q,, dessen Ermittlung auf eine Gleichung 4. Grades in ¢ = pj hinauslduft. In der
dadurch bestimmten «Mittelstellung» sind die beiden Zweihorne kongruent. Eine Vor-
stellung von einem solchen Vierhorn gibt Figur 2. — Ferner existieren mit p, =0, ¢, = ¢

und p, = ¢, q, = 0 zwei vollstindig platte Grenzformen, die ebenfalls realisierbar sind
(Fig. 3).

S S
A
o= 30°
c C
B B8
a b
(04
20
p):l, q’=c pP,=c, q2:0

Abb. 3: Platte Grenzformen des Vierhorns

Wie die Situation in der durch p und ¢ beschriebenen Parameterebene aussieht, zeigt
Figur 4: Die beiden durch numerische Auswertung der Formel (3.6) zu gewinnenden
Diagrammkurven F(p,q) =0 und F(q,p) = 0 sind Spiegelbilder beziiglich der Achse
p = ¢q und unterscheiden sich bei nicht allzugrossem Winkel o« nur wenig voneinander.
Wairen sie vollkommen identisch — was im Hinblick auf (3.5) gewiss nicht der Fall ist —, so
wire das Vierhorn sogar stetig deformierbar. In Wahrheit kann es aber bloss die drei
vorhin erwidhnten Formen annehmen, zwischen denen nur ein unstetiger Ubergang
moglich ist. Wegen der Nachgiebigkeit des Modellmaterials geht dieser Kippvorgang
praktisch fast ohne Widerstand vor sich, sofern a < 30°.
Fiir den Zeichner seien noch die Scheitelkriimmungen x, und x, der Diagrammkurve
(8.0Ordnung) F(p,q) =0 in den Punkten p, = 0 und p, = ¢ vermerkt. Mittels einfacher
Potenzreihenentwicklungen findet man die Formeln
2¢ . C . 4 . 4 4
cx,=1+—5—2—-—;—2=cosoc+3sm o, cK, = cos‘a, 4.2)

aus welchen k, > k, zu entnehmen ist.
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Abb. 4: Deformationsdiagramm eines Vierhorns Abb. 5: Netz eines Vierhorns

Eine vorteilhafte Anordnung des Netzes zur Anfertigung eines Kartonmodells zeigt
Figur 5, gleichbezifferte Kanten sind dabei zu vereinigen.

Zur quantitativen Beurteilung der vorhandenen Diskrepanzen berechne man mittels
Formel (3.6) fiir eine hinreichende Anzahl von p-Werten aus dem Intervall 0 < p < p, die
zugehorigen Werte g = f(p), ferner aus p = f(§) die abweichenden Werte § > ¢g. Aus
einem Diagramm nach dem Muster Figur 6, das die Abhdngigkeit der Differenz
4 = § — q von p darstellt, ldsst sich schliesslich die maximale Abweichung 4* samt der
Stelle p*, an der sie auftritt, entnehmen. Der relative Fehler 6 * = 4*/¢* mag als Mass fiir
die Diskrepanz dienen. Der Gang von ¢* in Abhdngigkeit von dem das Vierhorn kenn-
zeichnenden Winkel « ist aus Figur 7 ersichtlich. Einen rohen Anhalt (in Prozenten)
liefert in dem interessierenden Bereich die empirische Faustformel 6 ~ 0,018 - (a/10)*,
wobei a in Altgraden einzusetzen ist.

Fiir die in den Figuren 1-4 und 6 verwendete Annahme o =30° (a: b = 1:\/5) betragt
die Diskrepanz 6 * ~ 1,38 %, was die sprunghafte Deformation am Modell noch deutlich
spiiren ldsst. Dem in der Ausstellung prasentierten Blechmodell mit Scharnieren lag die
Annahme a = 22,5° zugrunde (a*: b>=1:2 + \/—2_, vgl. Fig. 5); die Originalabmessungen

14
0,012 1,2 /
0,010 / 1 1%
0,008 08 [
() .‘ 016
N /
4 0,004 0,4
a=30° /
0,002 02 /
4 *» |\p ! 4
< £ LYo
0 o' 02 03 04 05 06 07 o.Y 10° 20° 30°

P —a

Abb. 6: Fehlerdiagramm

o=

Abb. 7: Diagramm fiir die Maximalabweichung
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betrugen a = 324,7 mm und b = 600 mm. Die Diskrepanz 6* ~ 0,47% war praktisch
nicht merkbar, doch wurde in einer Seitenflidche ein Ventil vorgesehen, um durch Aufbla-
sen des Modells den Start aus den (wackeligen) platten Grenzformen zu erleichtern. Ein
kleines, mit @ = 15° angefertigtes Kartonmodell (a*: 6> =1:2 + \/§) ist sehr schlank und
funktioniert dank é* =~ 0,09 % verbliiffend glatt.

11. Das Sechshorn

§5. Eine naheliegende Verallgemeinerung des Vierhorns stellt sich ein, wenn man das den
Ausgang bildende einfache Horn aus §2 nicht bloss verdoppelt, sondern in Form eines
drehsymmetrischen Kranzes aus n > 2 Exemplaren wiederholt. Auf jedes einzelne Glied
entfdllt dann ein Winkel vom Betrag 2 w = 27/n. Damit die Bildung des Kranzes in reeller
und nichtausgearteter Weise tiberhaupt moglich ist — man beachte die sattelartige Umge-
bung der Ecke 4 in Figur 8 —, muss 2n (z — 2a) > 27 gelten, also

-1
a<”2n 7 (5.1)

Abb. 8: Sechshorn II. Typs

angenommen werden. Fiir n = 3 verlangt dies « < 60°, mithin b > a; fiir n = 4 hat man
hingegen o < 67,5°, also b/a > 0,765.

Die Offnung des solcherart gewonnenen n-Horns ist berandet von einem gleichseitigen,
gezackten 2n-Eck der Seitenlidnge a, dessen Ecken abwechselnd auf zwei koaxiale Kreise
verteilt sind. Werden die Radien dieser beiden Kreise mit p und g bezeichnet (vgl. Fig. 8),
so konnen die Ecken des Ausgangselementes ABCDS angesetzt werden mit

A (0,0,0), B (psinw,pcosw,u), Cc,q,v),

D(—psinw,pcosw,u), S(,r,w), wobei w=m/n. (5.2)

Aufgrund der bekannten Kantenlingen AB = AS = a gelten wieder die Gleichungen
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(3.2), wihrend die auf BS = b und BC = CS = a beruhenden Bedingungen (3.3) jetzt die
allgemeinere Form

2prcosw + 2uw = 2a’— b?,

q>+v>=2(pgcosw + uv) = 2(gr + vw) (5-3)
erhalten. An die Stelle von (3.4) tritt die Beziechung
(b*— p*sinw)g = 2(w — u)(pw cosw — ru). (5.9

Die zur Ermittlung der Abhéngigkeit F (p,q) = 0 notige Elimination von r, u, v, w aus den
fiinf Gleichungen (3.2) und (5.3) gestaltete sich nun etwas umsténdlicher. Zu angenom-
menem p hat man zunéchst u = — ,/a® — p* Aus der ersten Gleichung (5.3) entnimmt
man ferner

1
W= (2a*— b*>—2prcosw), (5.5)
u

was nach Eintragung in r’ + w? = a? auf die nachstehende quadratische Gleichung fiir »
fihrt:

1
r’(a®>— p*sin*w) — rp (2a* — bY)cosw + (a*p* — a’b* + 3 bH=0. (5.6)

Deren Losung lautet, mit Beachtung von (2.1):

ap cos2a cosw + uQ
a’— p*sin’w

r=—a (5.7

mit
Q%= c*—p*sin’w, wobei c=bsina=asin2a. (5.8)
Damit ldsst sich nun w aus (5.5) berechnen, und weiterhin ¢ aus (5.4). Der geschilderte

Algorithmus p -»u —r —»w —q ist zur numerischen Auswertung der Abhéngigkeit p —¢q
durchaus geeignet. Uberdies gelangt man so iiber die Zwischenergebnisse

pQ cosw — aucosa
a’>— p*sin‘fw

, pwcosw — ru= aQ (5.9)

mit Beniitzung von (5.4) zu dem gewiinschten Eliminationsresultat:

F(p,q) =[(a* — psin*w)(b* — p*sin*w)q — 2a’p (c* — p*sin*w)cos w]? 510

—a*(a®>— p)(b* — 2p*sin’w)*(c* — p*sin*w) = 0. (3.10)
Fiir n = 2(w = 90°) reduziert sich diese Relation auf die fiir das Vierhorn massgebende
Gleichung (3.5).
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§6. Das entstandene offene n-Horn mit seinen ¢ = 3n + 1 Ecken und k = 7n Kanten
besitzt an und fiir sich den Deformationsfreiheitsgrad 3¢ — k — 6 = 2n — 3; dieser redu-
ziert sich jedoch bei Erhaltung der Drehsymmetrie auf 1. Die Gestalt des Randpolygons
ist dann mit Riicksicht auf die bekannte Seitenldnge a durch die beiden der Bedingung
(5.10) genitigenden Kreisradien p und g bestimmt. Die Ergidnzung zu einem geschlossenen
2n-Horn durch ein zweites Exemplar des n-Horns ist offenbar nur in einer solchen
Position moglich, die durch ein vertauschbares Wertepaar (p, ¢) gekennzeichnet ist, also
wieder durch die Bedingung (4.1).

Brauchbar ist sicherlich das zur Mittelstellung gehorige Wertepaar p, = ¢q,, dessen Be-
stimmung im allgemeinen auf eine Gleichung 5. Grades in ¢ = pJ hinauslduft. Daneben
mag es aber noch weitere vertauschbare Wertepaare (p, q) geben, die im (p, ¢)-Diagramm
als gemeinsame Punkte der Kurve 10.Ordnung F(p,q) =0 und ihres Spiegelbildes
F (p,q) =0 aufscheinen. Ein solches Vorkommnis wurde beispielsweise im Falle des
Sechshorns (n = 3, w = 60°) fiir die Annahme a = 1, b = 1,7 festgestelt.

Im tibrigen ldsst sich fiir das Sechshorn die Mittelstellung elementar bestimmen. Driickt
man nidmlich in der entscheidenden, mit ¢ = p angeschriebenen Gleichung (5.4) die
Kantenlinge b = BS gemiss dem Ansatz (5.2) aus, so erhidlt man die Bedingung

(p— 2r)(p*>— 2pr + 4u> — duw) = 0. (6.1)

Demgemass sind also zwei Félle zu unterscheiden.

TypI: p, = g, = 2r,. Eintragung in die Grundformeln (5.3) und (3.2) fithrt dann auf v, = 0
und die Bestimmungsgleichung

1278 — 43> + b r2 + (4a* — b2)b* =0, (6.2)

nach deren Auflosung sich alle iibrigen Formparameter leicht berechnen lassen. Diese
Mittelstellung des Sechshorns ist dadurch charakterisiert, dass die Symmetrieachsen aller
sechs Teilhorner parallel (zur z-Achse) verlaufen.

Type I1: Das Verschwinden des zweiten Klammerfaktors in (6.1) ist mit Riicksicht auf die
erste Gleichung (5.3) gleichbedeutend mit

P +4ul=4a>+ 257, (6.3)

Wegen p? + u*> = a* hat man also
2 1
pi= sz, ui= 3 (3a*—2b%. (6.4)

Aus der zweiten Gleichung (5.3) ist v, = 2u, zu entnehmen; dies bedeutet, dass das
Viereck ABCD ein ebener Rhombus ist (Fig.8). Die noch fehlenden Parameter sind
unschwer zu ermitteln; r, etwa ergibt sich aus der quadratischen Gleichung

b2(4a’—3b) _
6(2a* - b?)

2 —
ry—npr

0. (6.5)
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Das in Figur 8 im Aufriss dargestelite Sechshorn II. Typs beruht auf der Annahme
a:b =5:6. Ein angefertigtes Kartonmodell weist trotz theoretischer Starrheit praktisch
eine beachtliche Deformabilitdt auf, wobei sich die beiden (kongruenten) Hilften im
gleichen Sinn verdndern. Im Gegensatz dazu schliesst sich bei einem Sechshorn I. Typs die
eine Halfte, wihrend sich die andere offnet.

§7. Im folgenden soll noch iiberpriift werden, ob bei einem Sechshorn I. Typs in der
Mittelstellung Wackeligkeit im Sinne von §1 auftreten kann. Die beiden Diagrammkur-
ven F(p,q) = 0 und F (gq,p) = 0 miissten einander dann im Punkt p, = g, berithren — aus
Symmetriegriinden sogar oskulieren, was eine Wackeligkeit hoherer Ordnung bedeuten
wiirde.

H —-j‘§ \
09 | Tt
e | IN{ | |
(] \ K _ _
Po=90 =131
07
o =30° .
0,6 \"'x__
. o
t 0,5 9\\0
0,4 \
q ‘ |\
0,3
ol | a=1 p=flg)4 \
) ; w=60°
01 1— ;
l

0 0! 02 03 04 05 06 07 0,8 09 1

p———’

Abb. 9: Deformationsdiagramm des wackeligen Sechshorns 1. Typs

Fiir die Inkremente dp,dg, ... der Formparameter bei der infinitesimalen Deformation
des oberen Dreihorns gelten die durch Ableitung der (mit w = 60° angeschriebenen)
Grundgleichungen (3.2) und (5.3) zu gewinnenden linearen Bezichungen

p-dptu-du=r-dr+w-dw =0,

r-dp+p-dr+2w-du+2u-dw =0, (7.1
: .
q-dg+v-do=—(q-dp+p-dg)+v-du+tu-do

=r-dg+q-dr+w-dv+v-dw.

In der betrachteten Mittelstellung (§6/I) ist nun p = g = 2r, und v = 0. Das Gleichungs-
system besitzt daher die Gestalt

2ry-dp +uy-du=ry-dr + wy-dw =0,
ro-dp +2r,-dr +2w,-du +2u,-dw =0, (7.2)
ro-dg=ry-dp +uy-dv =2r,-dr + w,- dv.
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Nach Elimination von du und dw bleibt:
wo(uy — 4wp) - dp + 2uy(wy — uy) - dr =0,
ro:dp —ry-dg +uy-dv =0, (7.3)
ro-dg —2ry-dr —wy-dv =0.

Aus diesem linear-homogenen Gleichungssystem findet man (unter Ausschluss von
rou, = 0):

dp:dg = (wy— u,)*: — 3wg. (7.4
Die die Beriihrung der Diagrammkurven (vgl. Fig. 9) kennzeichnende Bedingung

dp +dg =0 (7.5)
verlangt infolgedessen

ud — 2uywy— 2wi=0. (7.6)

Diese Forderung ist, wie man anhand der mit p = ¢ = 2r angeschriebenen Grundglei-
chungen (3.2) und (5.3) feststellt, nur fiir

b? =3a? 1.7)

erfiillt. Dies bedeutet: Das aus kongruenten gleichschenkligen Dreiecken mit dem Basis-
winkel « = 30° aufgebaute Sechshorn ist wackelig (sogar von 2. Ordnung). Figur 9 besta-
tigt den gewiinschten Verlauf der Diagrammkurven.

Fiir die die infinitesimale Deformation (bei festgehaltenem Achsenkreuz) anzeigenden
Inkremente findet man — im Einklang mit (7.2) — die Verhaltnisse

dp:dgq:dr:du:dv:dw=1: —-1: —1,866:1,075: 1,075: 0,734. (7.8)

§8. Die in Figur 9 wiedergegebene Diagrammkurve F (p,q) = 0 mit o = 30° ist tibrigens
nicht von 10. Ordnung, wie aus (5.10) zu schliessen wire, sondern bloss von 4. Ordnung.
Dies ist schon durch den Umstand

20=w 8.1

bedingt, weil dann gemass (5.8) Q = — u sinw wird. Durchlduft man unter der Annahme
(8.1) nochmals den in § 5 beschriebenen Eliminationsprozess, so erhilt man anstelle von
(5.7) und (5.9) die rationalen Ausdriicke

_ Tacso (8.2)
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Aus (5.4) folgt schliesslich unter Beachtung von (8.1) fiir die Abhingigkeit p —q die
explizite Darstellung

(@’ —p)(acota—p)
(b* — p*sin’w)(a — p sinw)

q =f(p)=2asin’w (8.3)

Bei dem in §7 gefundenen wackeligen Sechshorn, gekennzeichnet durch 2a = w = 60°
und a:b=1: \/5, wird die Mittelstellung — in Einklang mit (6.2) — fiir p,= g,
=2r,= (\/3 — 1)a eingenommen.
Die 2n-HOrner mit n > 3 erweisen sich hingegen unter der Annahme (8.1) als nicht
wackelig, wie der Verlauf der Diagrammkurven g = f(p) und p = f(g) lehrt, die einander
im Punkt p, = ¢, nicht beriihren, sondern unter einem nichtverschwindenden Winkel
schneiden.

W. Wunderlich, Wien, und C. Schwabe, Ziirich

LITERATURVERZEICHNIS

W. Blaschke: Wackelige Achtflache. Math. Z. 6, 85-93 (1920).

R. Connelly: A flexible sphere. Math. Intelligencer 3, 130-131 (1978).

M. Dehn: Uber die Starrheit konvexer Polyeder. Math. Ann. 77, 466-473 (1916).

M. Goldberg: Unstable polyhedral structures. Math. Mag. 51, 165-170 (1978).

H. Liebmann: Ausnahmefachwerke und ihre Determinante. Sber. bayer. Akad. Wiss. 1920, 197-227.

E. Steinitz und H. Rademacher: Vorlesungen iiber die Theorie der Polyeder. Berlin 1934.

B. Wegner: On the projective invariance of shaky structures in euclidean space. Acta mech. 53, 163-171
(1984).

8 W. Wunderlich: Starre, kippende, wackelige und bewegliche Achtflache. Elem. Math. 20, 25-32 (1965). —
Snapping und shaky antiprisms. Math. Mag. 52, 235-236 (1979). — Kipp-Ikosaeder 1, II. Elem. Math. 36,
153-158 (1981); 37, 84-89 (1982).

9 W. Wunderlich: Neue Wackelikosaeder. Anz. 6st. Akad. Wiss. 117, 28-33 (1980). — Wackelige Doppelpyrami-
den. Anz. 6st. Akad. Wiss. 117, 82-87 (1980). — Wackelikosaeder. Geom. Dedicata 11, 137-146 (1981). —
Wackeldodekaeder. Elem. Math. 37, 153-163 (1982).

10 W. Wunderlich: Zur projektiven Invarianz von Wackelstrukturen. Z. angew. Math. Mech. 60, 703-708
(1980). — Projective invariance of shaky structures. Acta mech. 42, 171-181 (1982).

NN B W N -

© 1986 Birkhduser Verlag, Basel 0013-6018/86/060088-11$1.50 + 0.20/0

Zur Abschitzung des Brocardschen Winkels

Im Inneren des Dreiecks 4, 4,4, mit Winkeln «,,a,,a,, gibt es immer einen Punkt Q
derart, dass < QA4,4,= < QA4,4,= <QA,A,=:w. Der Brocardsche Winkel w ist da-
durch eindeutig bestimmt und geniigt der Gleichung (vgl. [4], S. 58-60)

cotw = Icota,. (1)
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