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Im weitern zeigt die Abhandlung über den Viertelskreis recht eindrücklich, dass sich

grosse Ideen an kleinen, unscheinbaren Problemen entwickeln und fast zur selben Zeit bei
verschiedenen Mathematikern zu allgemeinen und endgültigen Theorien führen können.
Leibniz hat erkannt, dass die Arbeitsweise mit dem charakteristischen Dreieck nicht auf
den Viertelskreis beschränkt sein muss, sondern vielmehr auf allgemeine Kurven
übertragbar ist3). Pascal und viele andere seiner Zeitgenossen haben konkrete Pionierarbeit
geleistet, welche Leibniz und Newton vollendet haben.
II. Im Mathematikunterricht beschränkt man sich bei der Ermittlung von Flächeninhalten

(bestimmte Integrale) in der Regel auf Potenzfunktionen.
Die heuristische Indivisiblen-Methode von Pascal zeigt einen elementargeometrischen,
anschaulich erlebbaren Weg zur Bestimmung einfacher Integrale trigonometrischer
Funktionen.

H. Loeffel
Hochschule St. Gallen
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1 Pascal (Euvres completes Edition J Chevalier, Bibhotheque de la Pleiade, Paris 1954
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Eine Familie von geschlossenen gleichflächigen
Polyedern, die fast beweglich sind

I. Das Vierhorn

§1. Seit Cauchy (1812) weiss man, dass ein konvexes Polyeder mit unveränderlichen
Seitenflächen bei gelenkigen Verbindungen längs der Kanten starr erscheint, weil seine

Gestalt eindeutig bestimmt ist. Eine kleine Lücke im Beweisgang wurde später von
Steinitz [6] ausgefüllt.
Nach Verzicht auf die Forderung der Konvexität kann die Eindeutigkeit der Form
verlorengehen. Es lassen sich leicht nichtkonvexe Polyeder vom topologischen Typus der
Sphäre angeben, die einen sprunghaften («kippenden») Übergang zwischen zwei
existierenden Gestalten erlauben [6,8]. Rücken zwei solche Nachbarformen zusammen, so
entsteht ein infinitesimal bewegliches «Wackelpolyeder» mit am Modell deutlich merkbarer

Instabilität. Das erste Beispiel gab Blaschke [1] mit seinen Wackeloktaedern;
weitere Beispiele finden sich bei Goldberg [4] und beim ersten Autor dieser Mitteilung [9].

Wackeligkeit bleibt bei konvexen Polyedern noch ausgeschlossen [3], während sie sieh bei

3) Darüber äussert sich Leibniz sehr klar und eindeutig in einem Brief an seinen Freund v Tschimhaus (1651-1708)
vom Dezember 1679
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nichtkovexen sogar als projektiv invariant erweist [5,7,10], d.h. bei affinen oder
kollinearen Transformationen des Polyeders erhalten bleibt.
Eine stetige Formänderung endlichen Ausmasses wurde jedoch, aufpraktische Erfahrungen

gestützt, bei einem geschlossenen Gelenkpolyeder die längste Zeit für unmöglich
gehalten, bis Connelly [2] sein sensationelles Gegenbeispiel bekanntmachte. Sein 18-

Flach wurde dann von Steffen durch ein einfacheres 14-Flach noch verbessert [2].
Auf der Suche nach weiteren einschlägigen Beispielen entdeckte der zweite Verfasser der
vorliegenden Note 1981 sein verblüffendes «Vierhorn», ein 16-Flach, das sogar zwei
vollkommen platte Grenzformen annehmen kann. Als er das Modell auf der faszinierenden

«Phänomena»-Ausstellung in Zürich 1984 zur Schau stellte, war er sich gewisser
geringer Unstimmigkeiten bereits wohl bewusst. Der Beitrag des ersten Autors besteht

nun in der quantitativen Analyse der vorhandenen Abweichungen.

§2. Sei ABS ein gleichschenkliges Dreieck mit dem Basiswinkel a und der Schenkellänge
AB AS a. Die Basis BS hat dann die Länge

b= 2a cosa <2a. (2.1)

Fügt man vier solche Dreiecke zu einem Vierkant SABCD mit der Spitze S zusammen
(SA SC a,SB= SD b), so ist dieses doppelt symmetrische, kurz als «Hörn»
bezeichnete Gebilde zwangläufig verformbar (Freiheitsgrad 1). Seine Öffnung ist berandet
von einem windschiefen Rhombus ABCD mit der Seitenlänge a.
Wird dieses Hörn mit seinem Spiegelbild bezüglich der Ebene BAD vereinigt, so erhält
man ein «Zweihorn», das noch immer zwangläufig beweglich ist und ebenfalls einen
windschiefen Rhombus BCDC mit der Seitenlänge a als Öffnungsrand aufweist (Fig. 1).

Dessen jeweilige Gestalt ist im Hinblick auf die bekannte Seitenlänge a durch die
orthogonal-windschiefen Diagonalen BD 2p und CC 2q bestimmt. Die Parameter p und q
sind allerdings nicht unabhängig voneinander, sondern durch eine noch zu ermittelnde
Relation F(p,q) 0 verknüpft.

§3. Unter Verwendung eines dem Zweihorn gemäss Figur 1 angepassten kartesischen

Koordinatensystems (A;x,y,z) können die nachstehenden Eckpunkte angesetzt werden
durch

,4(0,0,0), B(p,0,u), C(0,q,v), D(-p,0,u), S(0,r,w). (3.1)

Die übrigen Ecken sind wegen der bestehenden Symmetrie bezüglich der Ebene y 0

mitbestimmt.
Aufgrund der bekannten Kantenlängen genügen die eingeführten sechs Parameter

p,q,r,u,v,w insgesamt fünf Bedingungen, was dem Freiheitsgrad 1 entspricht. Zufolge
AB AS a gilt zunächst

p* + u2 r2 + w2 a2. (3.2)

Aus BS b und BC CS a folgen ferner mit Bedacht auf (3.2) die Gleichungen

2uw= 2a2-b2, q2 + v2 2uv= 2(qr + vw). (3.3)
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Abb 2 Vierhorn in Mittelstellung

Hieraus gewinnt man noch die nützliche Beziehung

(b2 -p2)q 2ru(u— vv). (3.4)

Durch Elimination von r9u,v,w aus den Gleichungen (3.2-4) erhält man schliesslich die
erwähnte Koppelung zwischen den Grössen p und q in der Form

F(p,q) (a2 - p2)(b2 - p2)2q2 - a2(b2 - 2p2)2(c2 - p2) 0

mit b—2a cos oc, c - b sin a a sin 2a.

Damit ergibt sich die explizite Darstellung

(3.5)

lp2
(3.6)

die für jedes gewählte p das zugehörige q liefert. Aus Realitätsrücksichten ist dabei/? auf
das Intervall 0 S P __.

c zu beschränken. Die noch fehlenden Formparameter des Zwei-
horns ergeben sich dann aus (3.2-4) der Reihe nach mit

m= - ja2-p29 w
2a2-b2

2u ^^ u — w
(3.7)
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§4 Die Idee zur Bildung eines geschlossenen Polyeders besteht nun dann - ahnlich wie
bei Goldbergs «siamesischer Zwillingsdoppelpyramide» [4] -, die viereckige Öffnung des

ersten Zweihorns durch ein zweites Exemplar zu schhessen, welches auf den Kopf gestellt
und um 90° verdreht ist Damit ein so entstehendes «Vierhorn» möglich ist, muss
offenbar

F(p,q) F(q,p) 0 (4 1)

gelten, dann sind namhch die beiden Öffnungsrander kongruent und passen aufeinander
Derartige vertauschbare Wertepaare (p,q) gibt es tatsächlich Da ist einmal das Wertepaar

p0 q0, dessen Ermittlung auf eine Gleichung 4 Grades in t pl hinauslauft In der
dadurch bestimmten «Mittelstellung» sind die beiden Zweihorne kongruent Eine
Vorstellung von einem solchen Vierhorn gibt Figur 2 - Ferner existieren mit px 0, qx c

und p2 c, q2 0 zwei vollständig platte Grenzformen, die ebenfalls realisierbar sind

(Fig 3)

a 30°

2a

o=h q c p2 c, q2 0

Abb 3 Platte Grenzformen des Vierhorns

Wie die Situation in der durch p und q beschriebenen Parameterebene aussieht, zeigt
Figur 4 Die beiden durch numerische Auswertung der Formel (3 6) zu gewinnenden
Diagrammkurven F(p,q) 0 und F(q,p) 0 sind Spiegelbilder bezüglich der Achse

p- q und unterscheiden sich bei nicht allzugrossem Winkel a nur wenig voneinander
Waren sie vollkommen identisch - was im Hinblick auf (3 5) gewiss nicht der Fall ist -, so

wäre das Vierhorn sogar stetig deformierbar In Wahrheit kann es aber bloss die drei
vorhin erwähnten Formen annehmen, zwischen denen nur ein unstetiger Übergang
möglich ist Wegen der Nachgiebigkeit des Modellmaterials geht dieser Kippvorgang
praktisch fast ohne Widerstand vor sich, sofern a 30°

Fur den Zeichner seien noch die Scheitelkrummungen kx und k2 der Diagrammkurve
(8 Ordnung) F(p,q) 0 in den Punkten px 0 und p2 c vermerkt Mittels einfacher

Potenzreihenentwicklungen findet man die Formeln

CKX=1 + — cos4a + 3sin4a, ck2 cos4a, (4 2)

aus welchen kx > k2 zu entnehmen ist
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Abb 5 Netz eines Vierhorns

Eine vorteilhafte Anordnung des Netzes zur Anfertigung eines Kartonmodells zeigt
Figur 5; gleichbezifferte Kanten sind dabei zu vereinigen.
Zur quantitativen Beurteilung der vorhandenen Diskrepanzen berechne man mittels
Formel (3.6) für eine hinreichende Anzahl von/?-Werten aus dem Intervall 0 ^ /? p0 die

zugehörigen Werte q =/(/?), ferner aus p =f(q) die abweichenden Werte q > q. Aus
einem Diagramm nach dem Muster Figur 6, das die Abhängigkeit der Differenz
A — q — q von p darstellt, lässt sich schliesslich die maximale Abweichung A * samt der
Stelle/?*, an der sie auftritt, entnehmen. Der relative Fehler ö* A*/q* mag als Mass für
die Diskrepanz dienen. Der Gang von S* in Abhängigkeit von dem das Vierhorn
kennzeichnenden Winkel a ist aus Figur 7 ersichtlich. Einen rohen Anhalt (in Prozenten)
liefert in dem interessierenden Bereich die empirische Faustformel S « 0,018 • (a/10)4,
wobei a in Altgraden einzusetzen ist.
Für die in den Figuren 1-4 und 6 verwendete Annahme a 30° (a : b 1: J3) beträgt
die Diskrepanz ö* « 1,38%, was die sprunghafte Deformation am Modell noch deutlich
spüren lässt. Dem in der Ausstellung präsentierten Blechmodell mit Scharnieren lag die
Annahme a 22,5° zugrunde (a2:b2= 1:2 + J2, vgl. Fig. 5); die Originalabmessungen
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0,010

10,0080,006
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Abb 6 Fehlerdiagramm
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Abb 7 Diagramm fur die Maximalabweichung
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betrugen a 324,7 mm und b — 600 mm. Die Diskrepanz ö* « 0,47% war praktisch
nicht merkbar, doch wurde in einer Seitenfläche ein Ventil vorgesehen, um durch Aufblasen

des Modells den Start aus den (wackeligen) platten Grenzformen zu erleichtern. Ein
kleines, mit a 15° angefertigtes Kartonmodell (a2: b2 1:2 + y/3) ist sehr schlank und
funktioniert dank ö* « 0,09% verblüffend glatt.

II. Das Sechshorn

§5. Eine naheliegende Verallgemeinerung des Vierhorns stellt sich ein, wenn man das den
Ausgang bildende einfache Hörn aus §2 nicht bloss verdoppelt, sondern in Form eines

drehsymmetrischen Kranzes aus n > 2 Exemplaren wiederholt. Auf jedes einzelne Glied
entfallt dann ein Winkel vom Betrag 2co 2n/n. Damit die Bildung des Kranzes in reeller
und nichtausgearteter Weise überhaupt möglich ist - man beachte die sattelartige Umgebung

der Ecke A in Figur 8 -, muss 2n(n- 2<x)>2n gelten, also

OL <
1

2n
(5.1)

Ä

X

Abb. 8: Sechshorn II. Typs

angenommen werden. Für n 3 verlangt dies a < 60°, mithin b > a; für n 4 hat man
hingegen a < 67,5°, also b/a > 0,765.
Die Öffnung des solcherart gewonnenen «-Horns ist berandet von einem gleichseitigen,
gezackten 2«-Eck der Seitenlänge a, dessen Ecken abwechselnd auf zwei koaxiale Kreise
verteilt sind. Werden die Radien dieser beiden Kreise mit/? und q bezeichnet (vgl. Fig. 8),
so können die Ecken des Ausgangselementes ABCDS angesetzt werden mit

A (0,0,0), B(psinco,pcosco,u), C(0,q,v),
D(- psinco,pcosco,u), S(0,r9w), wobei co n/n.

(5.2)

Aufgrund der bekannten Kantenlängen AB AS a gelten wieder die Gleichungen
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(3.2), während die auf BS b und BC CS a beruhenden Bedingungen (3.3) jetzt die
allgemeinere Form

2pr cosco + 2uw= 2a2 — b2,

q2 + v2 — 2(pq cosco + uv) 2(qr + vw)2_„ _....._-,„._. ^ (5-3)

erhalten. An die Stelle von (3.4) tritt die Beziehung

(62-/?2sin2ft?)# 2(w — u)(pwcosco- ru). (5.4)

Die zur Ermittlung der Abhängigkeit F(p,q) 0 nötige Elimination von r, u, v, w aus den
fünf Gleichungen (3.2) und (5.3) gestaltete sich nun etwas umständlicher. Zu angenommenem

/? hat man zunächst u - ja2 - p2. Aus der ersten Gleichung (5.3) entnimmt
man ferner

vv — (2a2 - b2 - 2pr cosco), (5.5)
2w

was nach Eintragung in r2 + w2 a2 auf die nachstehende quadratische Gleichung für r
führt:

r2(a2 -p2sin2co) - rp (2a2 - b2)cosco + (a2p2 - a2b2 + ^b4) 0. (5.6)

Deren Lösung lautet, mit Beachtung von (2.1):

ö/?cos2a cosco + uQ
r= -a j-r^ (5.7)

a2 - p snvco

mit

Q2 c2 — p2sin2co, wobei c bsino: asin2a. (5.8)

Damit lässt sich nun vv aus (5.5) berechnen, und weiterhin q aus (5.4). Der geschilderte
Algorithmus p-*u->r-+w->q ist zur numerischen Auswertung der Abhängigkeit p-*q
durchaus geeignet. Überdies gelangt man so über die Zwischenergebnisse

pQ cosco- au cos2a ^ ,_ _.
w a : r—; pw cosco - ru aQ (5.9)

al — plsmlco

mit Benützung von (5.4) zu dem gewünschten Eliminationsresultat:

F(p,q) se [(a2 — p2sin2co)(b2 — p2sin2co)q — 2a2p (c2 -p2sin2co)cosco]2

- a2(a2-p2)(b2 - 2p2sin2co)2(c2-p2sin2co) 0. (5.10)

Für n 2(co 90°) reduziert sich diese Relation auf die für das Vierhorn massgebende

Gleichung (3.5).
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§6. Das entstandene offene «-Hörn mit seinen e 3n + 1 Ecken und k ln Kanten
besitzt an und für sich den Deformationsfreiheitsgrad 3e — k— 6 2n — 3; dieser reduziert

sich jedoch bei Erhaltung der Drehsymmetrie auf 1. Die Gestalt des Randpolygons
ist dann mit Rücksicht auf die bekannte Seitenlänge a durch die beiden der Bedingung
(5.10) genügenden Kreisradien p und q bestimmt. Die Ergänzung zu einem geschlossenen
2«-Hörn durch ein zweites Exemplar des «-Horns ist offenbar nur in einer solchen
Position möglich, die durch ein vertauschbares Wertepaar (p,q) gekennzeichnet ist, also
wieder durch die Bedingung (4.1).
Brauchbar ist sicherlich das zur Mittelstellung gehörige Wertepaar /?0 q0, dessen

Bestimmung im allgemeinen auf eine Gleichung 5. Grades in t p20 hinausläuft. Daneben

mag es aber noch weitere vertauschbare Wertepaare (p,q) geben, die im (/?, ^r)-Diagramm
als gemeinsame Punkte der Kurve 10. Ordnung F(p,q) 0 und ihres Spiegelbildes
F(p,q) — 0 aufscheinen. Ein solches Vorkommnis wurde beispielsweise im Falle des

Sechshorns (n 3, co 60°) für die Annahme a 1, b 1,7 festgestellt.
Im übrigen lässt sich für das Sechshorn die Mittelstellung elementar bestimmen. Drückt
man nämlich in der entscheidenden, mit q p angeschriebenen Gleichung (5.4) die

Kantenlänge b — BS gemäss dem Ansatz (5.2) aus, so erhält man die Bedingung

(p - 2r)(p2 - 2pr + 4u2 - 4uw) 0. (6.1)

Demgemäss sind also zwei Fälle zu unterscheiden.

Typ I:/?0 q0 2r0. Eintragung in die Grundformeln (5.3) und (3.2) führt dann auf v0 0

und die Bestimmungsgleichung

12r4 - 4(3a2 + b2)r2 + (4a2 - b2)b2 0, (6.2)

nach deren Auflösung sich alle übrigen Formparameter leicht berechnen lassen. Diese

Mittelstellung des Sechshorns ist dadurch charakterisiert, dass die Symmetrieachsen aller
sechs Teilhörner parallel (zur z-Achse) verlaufen.

Type II: Das Verschwinden des zweiten Klammerfaktors in (6.1) ist mit Rücksicht aufdie
erste Gleichung (5.3) gleichbedeutend mit

p2 + 4u2 4a2 + 2b2. (6.3)

Wegen/?2 + u2 a2 hat man also

p*=\bl> u2=l-(3a2-2b2). (6.4)

Aus der zweiten Gleichung (5.3) ist Vj 2ux zu entnehmen; dies bedeutet, dass das

Viereck ABCD ein ebener Rhombus ist (Fig. 8). Die noch fehlenden Parameter sind
unschwer zu ermitteln; r, etwa ergibt sich aus der quadratischen Gleichung

b2(4a2-3b2) nr\-pxrx —; r1 =0. (6.5)1 Vx l

6(2a2-b2)
V '
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Das in Figur 8 im Aufriss dargestellte Sechshorn IL Typs beruht auf der Annahme
a : b 5: 6. Ein angefertigtes Kartonmodell weist trotz theoretischer Starrheit praktisch
eine beachtliche Deformabilität auf, wobei sich die beiden (kongruenten) Hälften im
gleichen Sinn verändern. Im Gegensatz dazu schliesst sich bei einem Sechshorn I. Typs die
eine Hälfte, während sich die andere öffnet.

§7. Im folgenden soll noch überprüft werden, ob bei einem Sechshorn I.Typs in der
Mittelstellung Wackeligkeit im Sinne von § 1 auftreten kann. Die beiden Diagrammkurven

F(p,q) 0 und F(q,p) 0 müssten einander dann im Punkt/?0 q0 berühren - aus
Symmetriegründen sogar oskuheren, was eine Wackeligkeit höherer Ordnung bedeuten
würde.

;
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Abb 9 Deformationsdiagramm des wackeligen Sechshorns I Typs

Für die Inkremente dp,dq,... der Formparameter bei der infinitesimalen Deformation
des oberen Dreihorns gelten die durch Ableitung der (mit co 60° angeschriebenen)

Grundgleichungen (3.2) und (5.3) zu gewinnenden linearen Beziehungen

"¦*¦"•¦*-' '*—
—-*,«n_ \ /

{sin jj q fW^n\ //
v'P<r g0=i/3

<x 30° / V?

/ \ i

/ ^
/ l\

// 0 1

(t)=60°
P f(q)~

1 \
I \

// j

i i

/ /
/

/? • dp + u • du r • dr + vv • dw 0,
r - dp +/?• dr + 2w du + 2u • dw 0,

q - dq + v - dv - - (q • dp + p • dq) + v - du + u - dv

r - dq + q - dr + w • dv + v - dw.

(7.1)

In der betrachteten Mittelstellung (§6/1) ist nun/? q 2r0 und v 0. Das Gleichungssystem

besitzt daher die Gestalt

2r0 • dp + uQ - du r0 • dr + w0 • dw 0,
r0 • dp + 2r0 • dr + 2w0 • dw + 2u0 • dw 0,
rQ - dq r0 - dp + u0 • dv 2r0 - dr + w0 - dv.

(7.2)
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Nach Elimination von du und dw bleibt:

w0(u0 - 4w0) • dp + 2u0(w0 - Mo) • dr 0,
r0- dp — r0- dq + u0- dv =0, (7.3)
r0 - dq — 2r0 - dr — wQ • dv 0.

Aus diesem linear-homogenen Gleichungssystem findet man (unter Ausschluss von
r0w0 0):

dp:dq (w0-u0)2: -3w2. (7.4)

Die die Berührung der Diagrammkurven (vgl. Fig. 9) kennzeichnende Bedingung

dp + dq 0 (7.5)

verlangt infolgedessen

w2-2w0w0-2w2 0. (7.6)

Diese Forderung ist, wie man anhand der mit /? q= 2r angeschriebenen Grundgleichungen

(3.2) und (5.3) feststellt, nur für

b2 3a2 (1.1)

erfüllt. Dies bedeutet: Das aus kongruenten gleichschenkligen Dreiecken mit dem
Basiswinkel ol 30° aufgebaute Sechshorn ist wackelig (sogar von 2. Ordnung). Figur 9 bestätigt

den gewünschten Verlauf der Diagrammkurven.
Für die die infinitesimale Deformation (bei festgehaltenem Achsenkreuz) anzeigenden
Inkremente findet man - im Einklang mit (7.2) - die Verhältnisse

d/?:d?:dr:dw:dt;:dw= 1: -1: -1,866:1,075:1,075:0,734. (7.8)

§8. Die in Figur 9 wiedergegebene Diagrammkurve F(p,q) 0 mit a 30° ist übrigens
nicht von 10. Ordnung, wie aus (5.10) zu schhessen wäre, sondern bloss von 4. Ordnung.
Dies ist schon durch den Umstand

2a co (8.1)

bedingt, weil dann gemäss (5.8) Q - u sinco wird. Durchläuft man unter der Annahme

(8.1) nochmals den in §5 beschriebenen Eliminationsprozess, so erhält man anstelle von
(5.7) und (5.9) die rationalen Ausdrücke

r a sinco — p w - acosco ^_ .— f
__ — (8,2)

a a-p sinco u a-psmco
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Aus (5.4) folgt schliesslich unter Beachtung von (8.1) für die Abhängigkeit p-*q die
explizite Darstellung

sr \ -> -2 (fl2-/?2)(flcota-/?)
q =f(p) 2a sin2co — w : • (8.3)

(Z?2-/?2sin2co)(a-/? sinco)

Bei dem in §7 gefundenen wackeligen Sechshorn, gekennzeichnet durch 2 a co 60°

und a: b 1: J39 wird die Mittelstellung - in Einklang mit (6.2) - für p0 qQ

2r0 (^/j - l)a eingenommen.
Die 2«-Hörner mit n > 3 erweisen sich hingegen unter der Annahme (8.1) als nicht
wackelig, wie der Verlauf der Diagrammkurven q =/(/?) und/? =f(q) lehrt, die einander
im Punkt p0 q0 nicht berühren, sondern unter einem nichtverschwindenden Winkel
schneiden.

W. Wunderlich, Wien, und C. Schwabe, Zürich
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Zur Abschätzung des Brocardschen Winkels

Im Inneren des Dreiecks AXA2A% mit Winkeln a„a2,a3, gibt es immer einen Punkt Q
derart, dass < QAXA2 < QA2A3 < QA3Ax :co. Der Brocardsche Winkel co ist
dadurch eindeutig bestimmt und genügt der Gleichung (vgl. [4], S. 58-60)

cotco Ecota,. (1)


	Eine Familie von geschlossenen gleichflächigen Polyedern, die fast beweglich sind

