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und zur Förderung des mathematisch-physikalischen Unterrichts

El Math Band 41 Nr 4 Seiten 83-106 Basel, 10 Juli 1986

Elementargeometrische Integrationen von Pascal

Einleitung

Um die Mitte des 17. Jahrhunderts haben sich verschiedene Mathematiker fast gleichzeitig

mit Flächen- und Körperberechnungen beschäftigt und so als Wegbereiter der von
Leibniz und Newton geschaffenen Infinitesimalrechnung gewirkt.
Die verwendeten Methoden basierten einerseits auf einer Fortführung der Exhaustions-
methode von Archimedes und anderseits auf einer mehr oder weniger modifizierten
Indivisiblen-Geometrie nach B. Cavalieri (1598-1647), einem Schüler von Galilei.

Pascal als Wegbereiter von Leibniz

Die Pionierleistungen von Blaise Pascal (1623-1662) in der projektiven Geometrie
(Pascalsche Gerade für Kegelschnitte), Numerik (Rechenmaschine), Wahrscheinlichkeitsrechnung

und Kombinatorik (Pascalsches Dreieck) sind allgemein bekannt.
Etwas in den Hintergrund gedrängt sind seine Arbeiten über Flächen- und Körperberechnungen,

die den Weg zur Infinitesimalrechnung Leibnizscher Prägung geebnet haben.
Unter den zahlreichen Arbeiten wenden wir uns jener über den Viertelskreis zu, die
wissenschaftshistorisch bedeutsam und didaktisch von Interesse ist.

Die Abhandlung über den Viertelskreis
(Traite des sinus du quart de cercle, [1], S. 275ff.)

Die im Jahre 1658 veröffentlichte Abhandlung betrifft eine spezielle Summation oder

Integration über einen Bogen im Viertelskreis BDA (siehe Fig. 1).

Hierbei spielt das nach Leibniz so benannte charakteristische Dreieck EKE eine wichtige
Rolle. EE' oder As wird dabei als infinitesimales Tangentenstück interpretiert. Die beiden

Katheten EK und EK bezeichnen wir heutzutage mit Ax bzw. Ay (siehe Fig. 2).

Leibniz ist - nach seinen eigenen Aussagen - beim Studium der obgenannten Arbeit ein

Licht aufgegangen, das der Autor (Pascal) nicht gesehen habe, «une lumiere que l'auteur
n'avait point vue»1).

1) Zitiert aus einem Brief, den Leibniz im Dezember 1694 an Marquis de l'Hospital richtete
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Vorbereitend vermerkt Pascal das folgende

Lemma. Aufgrund der Ähnlichkeit der beiden rechtwinkligen Dreiecke ODI und EE'Kfolgt
(Fig 1)

DI OD EK EE'

oder

y r Ax As (Fig 2)

df
y As r Ax (i)

Wir werden nun den ersten Satz der Abhandlung uber den Vierteiskreis im originalen
Wortlaut zitieren, dann im Sinne von Pascal beweisen und das Resultat schliesslich in der
Sprache der Integralrechnung formulieren

Satz 1 (Fig 3) La somme des sinus2) d'un arc quelconque est egale a la portion de la base

comprise entre les sinus extremes multiphee par le rayon

Oder Die Summe der Sinus eines beliebigen (Kreis-) Bogens BC ist gleich dem Ab¬

schnitt auf der Basis (Radius OA) der zwischen den extremen Sinus hegt,
multipliziert mit dem Radius

Diese rem verbale Ausdrucksweise vermeidet jegliche Art von Symbolen bzw Formalismus,

obschon er um 1650 durch Vieta (1540-1603) und Descartes (1596-1650) schon
teilweise entwickelt war
Dieser Umstand macht nicht nur die Pascalschen Abhandlungen sehr schwer lesbar,
sondern verwehrt dem Autor den entscheidenden Durchbruch zu einem universellen
Infimtesimalkalkul Dieser krönende Abschluss blieb Leibniz vorenthalten

2) Pascal versteht unter «Smus» die Ordinate Dioder y und nicht das Verhältnis y r
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Bevor wir den Beweis des Satzes durchfuhren, sind noch zwei Prazisierungen notwendig,
die beide von Pascal stammen
a) Im Sinne der modifizierten Indivisiblen-Sprache ist unter «Summe der Sinus» (Y&1)
die Summe von Produkten aus dem Sinus und einem infinitesimalen Bogenelement DD
zu verstehen, also

«Summe der Sinus» £ Z)/ DD

b) Im Falle unendlich vieler Summanden kann man DD durch das infinitesimale
Tangentenstuck EE ersetzen, d h

Ydi dd Ydi EE Yy As

Beweis (siehe Fig 3) Die Durchfuhrung erfolgt nach Pascal, aber des bessern Verständnisses

wegen zum Teil unter Verwendung der heute gebräuchlichen Symbole

AS t i 11 111 i /1 ii AXjSI I I I I l J l I l l l

-y
^

R' I*x R x.A

Figur 3

Figur 4

Der Kreisbogen BC (B und C sind zwei beliebige, aber feste Punkte aufdem Vierteiskreis)
wird von einem Polygon mit sehr vielen infinitesimalen Seiten EE' umhüllt, die jeweils im
Punkt D den Kreis berühren
In beliebig guter Näherung gilt dann

«Summe der Sinus» Y DI EE Y y As X 0Ä RR'

— Y r dx — r Y Ax r (xB — xc)
Xß Xß

Radius Abschnitt zwischen den extremen Sinus

(2)

qed
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Übersetzt man (2) in dem von Pascal intendierten Sinne und benutzt man die von Leibniz
geschaffene Symbolik, so erhält man:

sc xc xc

j yds - | rdx - r • j dx r (xB — xc). (3)
sß xß xß

Mit Hilfe des Winkels cp, den der Berührungsradius OD mit OA einschliesst, folgt:

y r sin cp, ds rdcp und xB r cos cpx bzw. xc r cos $?2.

Aus (3) wird dann:

| (r sin^?) • rdcp r2 • [ sincp dcp r (r coscpx - r coscp2) oder
<PX <Pl

fl
f sin cp dcp= cos ^, — cos #?2. (4)

Selbstverständlich ist uns heutzutage die Beziehung (4) mit Hilfe des Hauptsatzes der
Integralrechnung leicht zugänglich. Pascal ist es aber gelungen, mit der Indivisiblen-Me-
thode und elementargeometrischen Hilfsmitteln allein zum Ziel zu kommen.
Wenn in dieser Beweisführung Strenge im modernen Sinne auch fehlt, so bestechen doch
die Anschaulichkeit und die Unmittelbarkeit der Pascalschen Vorgehensweise.

Mit Hilfe des eben bewiesenen Satzes 1 konnte Pascal die Oberfläche Ok einer Kugelzone
elegant berechnen (Fig. 4):

sc xc
Ok f 2ny • ds= 2n- j r • dx

Sß Xß

2nr • (xc - xB) 2n • rh.

Das Integral j sin2 (pd<p

In der Abhandlung über den Viertelskreis wird, auf die heutige Symbolik umgeschrieben,
allgemein

n
das Integral f sinncpdcp, neN behandelt.

n
Die Aussage im Fall n 2 führt zum Satz 2, der geometrisch leicht interpretierbar ist.

Satz 2 (Formulierung von Pascal). Die Summe der Quadrate dieser Sinus (y) ist gleich der
Summe der Ordinaten im Viertelskreis, die zwischen den extremen Sinus gelegen sind,

multipliziert mit dem Radius.

Die formale Übersetzung führt zu (Fig. 3):

laDPEE^OA-YaDF RR'



EL Math., Vol. 41, 1986 87

oder

SC xc
Y y2' As= - r • Y y' Ax.
Sß Xß

Z-—, Lemma ^- -—,

y2 • As L y (y - As) - L y • (r • Ax) - r • L y • Ax q.e.d.

In der Sprache der Integralrechnung lautet der Satz 2:

J j>2dfc= -r) ydx. (5)
Sß Xß

Nun ist wieder y rsincp und ßfc rcfy?.

Es folgt somit:

n
j (r2sin2cp)rdcp - r • F% wobei (6)
vi

xc

Fl] f ;w/x die Fläche unter dem Viertelskreis bedeutet, begrenzt von den Ordinaten in
Xß

den Grenzpunkten B und C.

Aus Figur 3 lässt sich F™ durch Zusammensetzung einer Sektorfläche mit zwei
rechtwinkligen Dreiecken berechnen, und man erhält:

r2 r2-cos<pxsin(px r2 - cos cp2 sin cp2

f;2=-(^2-cpx) +

Setzt man F^2 in (6) ein und dividiert auf beiden Seiten mit r3, so folgt

(7)
92 i r
J sin2 cpdcp — —\cp— cos cp sin (p

ein Resultat, das uns mit Benützung des Hauptsatzes der Integralrechnung und Anwendung

der partiellen Integration im modernen Sinne zugänglich wäre.
Hinweis: Setzt man in (5) für y r sin cp und x r coscp, so folgt nach Division mit r3

\ sin2 cpdcp - \ sin cpd (cos (p),

d. h. die Aussage von Satz 2 beinhaltet eine Änderung der Integrationsvariablen.

Schlussbetrachtungen

I. Die vorliegende Schrift mit historischem Hintergrund manifestiert die grossen
Schwierigkeiten, die bei der Interpretation von Originalabhandlungen auftreten können. Sie

sind bei Pascal besonders ausgeprägt, da sich dieser, wenn auch elegant, so doch nur rein
verbal ausdrückt.
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Im weitern zeigt die Abhandlung über den Viertelskreis recht eindrücklich, dass sich

grosse Ideen an kleinen, unscheinbaren Problemen entwickeln und fast zur selben Zeit bei
verschiedenen Mathematikern zu allgemeinen und endgültigen Theorien führen können.
Leibniz hat erkannt, dass die Arbeitsweise mit dem charakteristischen Dreieck nicht auf
den Viertelskreis beschränkt sein muss, sondern vielmehr auf allgemeine Kurven
übertragbar ist3). Pascal und viele andere seiner Zeitgenossen haben konkrete Pionierarbeit
geleistet, welche Leibniz und Newton vollendet haben.
II. Im Mathematikunterricht beschränkt man sich bei der Ermittlung von Flächeninhalten

(bestimmte Integrale) in der Regel auf Potenzfunktionen.
Die heuristische Indivisiblen-Methode von Pascal zeigt einen elementargeometrischen,
anschaulich erlebbaren Weg zur Bestimmung einfacher Integrale trigonometrischer
Funktionen.

H. Loeffel
Hochschule St. Gallen
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Eine Familie von geschlossenen gleichflächigen
Polyedern, die fast beweglich sind

I. Das Vierhorn

§1. Seit Cauchy (1812) weiss man, dass ein konvexes Polyeder mit unveränderlichen
Seitenflächen bei gelenkigen Verbindungen längs der Kanten starr erscheint, weil seine

Gestalt eindeutig bestimmt ist. Eine kleine Lücke im Beweisgang wurde später von
Steinitz [6] ausgefüllt.
Nach Verzicht auf die Forderung der Konvexität kann die Eindeutigkeit der Form
verlorengehen. Es lassen sich leicht nichtkonvexe Polyeder vom topologischen Typus der
Sphäre angeben, die einen sprunghaften («kippenden») Übergang zwischen zwei
existierenden Gestalten erlauben [6,8]. Rücken zwei solche Nachbarformen zusammen, so
entsteht ein infinitesimal bewegliches «Wackelpolyeder» mit am Modell deutlich merkbarer

Instabilität. Das erste Beispiel gab Blaschke [1] mit seinen Wackeloktaedern;
weitere Beispiele finden sich bei Goldberg [4] und beim ersten Autor dieser Mitteilung [9].

Wackeligkeit bleibt bei konvexen Polyedern noch ausgeschlossen [3], während sie sieh bei

3) Darüber äussert sich Leibniz sehr klar und eindeutig in einem Brief an seinen Freund v Tschimhaus (1651-1708)
vom Dezember 1679
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