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El. Math. Band 41 Nr. 4 Seiten 83-106 Basel, 10. Juli 1986

Elementargeometrische Integrationen von Pascal

Einleitung

Um die Mitte des 17.Jahrhunderts haben sich verschiedene Mathematiker fast gleichzei-
tig mit Flachen- und Korperberechnungen beschiftigt und so als Wegbereiter der von
Leibniz und Newton geschaffenen Infinitesimalrechnung gewirkt.

Die verwendeten Methoden basierten einerseits auf einer Fortfithrung der Exhaustions-
methode von Archimedes und anderseits auf einer mehr oder weniger modifizierten
Indivisiblen-Geometrie nach B. Cavalieri (1598-1647), einem Schiiler von Galilei.

Pascal als Wegbereiter von Leibniz

Die Pionierleistungen von Blaise Pascal (1623-1662) in der projektiven Geometrie (Pas-
calsche Gerade fiir Kegelschnitte), Numerik (Rechenmaschine), Wahrscheinlichkeits-
rechnung und Kombinatorik (Pascalsches Dreieck) sind allgemein bekannt.

Etwas in den Hintergrund gedringt sind seine Arbeiten iiber Flichen- und Korperberech-
nungen, die den Weg zur Infinitesimalrechnung Leibnizscher Pragung geebnet haben.
Unter den zahlreichen Arbeiten wenden wir uns jener iiber den Viertelskreis zu, die
wissenschaftshistorisch bedeutsam und didaktisch von Interesse ist.

Die Abhandlung iiber den Viertelskreis
(Traité des sinus du quart de cercle, [1], S. 275ff.)

Die im Jahre 1658 veroffentlichte Abhandlung betrifft eine spezielle Summation oder
Integration tiber einen Bogen im Viertelskreis BDA (siehe Fig. 1).

Hierbei spielt das nach Leibniz so benannte charakteristische Dreieck EKE' eine wichtige
Rolle. EE’ oder 4s wird dabei als infinitesimales Tangentenstiick interpretiert. Die beiden
Katheten EK und E'K bezeichnen wir heutzutage mit 4x bzw. 4y (siche Fig.2).

Leibniz ist — nach seinen eigenen Aussagen — beim Studium der obgenannten Arbeit ein
Licht aufgegangen, das der Autor (Pascal) nicht gesehen habe, «une lumicre que 'auteur
n’avait point vue»').

1) Zitiert aus einem Brief, den Leibniz im Dezember 1694 an Marquis de ’'Hospital richtete.
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Vorbereitend vermerkt Pascal das folgende

Lemma. Aufgrund der Ahnlichkeit der beiden rechtwinkligen Dreiecke ODI und EE'K folgt
(Fig.1):

DI: OD = EK: EFE'
oder

y:r=d4x: 4s (Fig.2)
af.

y-Ads=r- 4dx. 6))
Wir werden nun den ersten Satz der Abhandlung tiber den Viertelskreis im originalen

Wortlaut zitieren, dann im Sinne von Pascal beweisen und das Resultat schliesslich in der
Sprache der Integralrechnung formulieren.

Satz 1 (Fig. 3). La somme des sinus?) d’'un arc quelconque est égale a la portion de la base
comprise entre les sinus extrémes multipliée par le rayon.

Oder: | Die Summe der Sinus eines beliebigen (Kreis-)Bogens BC ist gleich dem Ab-
schnitt auf der Basis (Radius OA), der zwischen den extremen Sinus liegt,
multipliziert mit dem Radius.

Diese rein verbale Ausdrucksweise vermeidet jegliche Art von Symbolen bzw. Formalis-
mus, obschon er um 1650 durch Vieta (1540-1603) und Descartes (1596-1650) schon
teilweise entwickelt war.

Dieser Umstand macht nicht nur die Pascalschen Abhandlungen sehr schwer lesbar,
sondern verwehrt dem Autor den entscheidenden Durchbruch zu einem universellen
Infinitesimalkalkiil. Dieser kronende Abschluss blieb Leibniz vorenthalten.

2) Pascal versteht unter «Sinus» die Ordinate DI oder y und nicht das Verhdltnis y :r.
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Bevor wir den Beweis des Satzes durchfiihren, sind noch zwei Préizisierungen notwendig,
die beide von Pascal stammen:

a) Im Sinne der modifizierten Indivisiblen-Sprache ist unter «Summe der Sinus» (Z DI)
die Summe von Produkten aus dem Sinus und einem infinitesimalen Bogenelement DD
zu verstehen, also

«Summe der Sinus» = z DI - 1/)—1\)

b) Im Falle unendlich vieler Summanden kann man DD durch das infinitesimale Tangen-
tenstiick EE’ ersetzen, d. h.

Y DI-DD=) DI-EE =Y y- ds.

Beweis (siehe Fig. 3): Die Durchfithrung erfolgt nach Pascal, aber des bessern Verstind-
nisses wegen zum Teil unter Verwendung der heute gebrauchlichen Symbole.
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Der Kreisbogen BC (B und C sind zwei beliebige, aber feste Punkte auf dem Viertelskreis)
wird von einem Polygon mit sehr vielen infinitesimalen Seiten EE’ umhiillt, die jeweils im
Punkt D den Kreis beriihren.

In beliebig guter Ndherung gilt dann:

Lemma

«Summe der Sinus» = ), DI - EE' = Z yd4s = ) OA-RR'
xC xC

== Y rdx=—r) Ax=r(x;— Xc) ()
XB xB

= Radius - Abschnitt zwischen den extremen Sinus. q.e.d.
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Ubersetzt man (2) in dem von Pascal intendierten Sinne und benutzt man die von Leibniz
geschaffene Symbolik, so erhdlt man:

sC xC xC
[ yds= — [rdx=—r- [dx=r(x;—xc). 3)
sB XB

XB

Mit Hilfe des Winkels ¢, den der Berithrungsradius OD mit O A4 einschliesst, folgt:
y=rsing, ds=rdp und x,=rcosg, bzw. x.=rcosg,.

Aus (3) wird dann:

92 92
[ (rsing) - rdp=r*- [ singdy=r(rcosp, —rcosg,) oder
(2]

?1

92
j sing dp = cosp, — Cosp,. 4)
1

Selbstverstidndlich ist uns heutzutage die Beziehung (4) mit Hilfe des Hauptsatzes der
Integralrechnung leicht zugdnglich. Pascal ist es aber gelungen, mit der Indivisiblen-Me-
thode und elementargeometrischen Hilfsmitteln allein zum Ziel zu kommen.

Wenn in dieser Beweisfithrung Strenge im modernen Sinne auch fehlt, so bestechen doch
die Anschaulichkeit und die Unmittelbarkeit der Pascalschen Vorgehensweise.

Mit Hilfe des eben bewiesenen Satzes 1 konnte Pascal die Oberflache O, einer Kugelzone
elegant berechnen (Fig. 4):

O,= szny-ds=2n-xfCr'dx
sB xB

=2nr- (xc— xp) =2m - rh.

”2
Das Integral | sin’ pdyp

[4]

In der Abhandlung liber den Viertelskreis wird, auf die heutige Symbolik umgeschrieben,
allgemein

92
das Integral j sin"pdp, neN behandelt.
Die Aussagewilm Fall n = 2 fiihrt zum Satz 2, der geometrisch leicht interpretierbar ist.
Satz 2 (Formulierung von Pascal). Die Summe der Quadrate dieser Sinus (y) ist gleich der
Summe der Ordinaten im Viertelskreis, die zwischen den extremen Sinus gelegen sind,
multipliziert mit dem Radius.

Die formale Ubersetzung fiihrt zu (Fig. 3):

2.DI* EE' =0A- 2, DI- RR’
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oder
sC xC
Y yreds=—r- Y y-dx.
SB XB

Lemm

Beweis: Zyz-As=Zy(y'As) =a——2y-(r-dx)= ~r-2y-Ax g.e.d.

In der Sprache der Integralrechnung lautet der Satz 2:

sC xc
[ yids= —r [ ydx. (5)
xB

SB

Nun ist wieder y = r sing und ds = rdgp.
Es folgt somit:

wobel (6)

(A0

92
f (r*sin’@)rdp = —r- F?
?1

xC
Fg= j ydx die Fliche unter dem Viertelskreis bedeutet, begrenzt von den Ordinaten in
den G;fenzpunkten Bund C.

Aus Figur 3 lasst sich F?? durch Zusammensetzung einer Sektorfliche mit zwei recht-
winkligen Dreiecken berechnen, und man erhdlt:

2

F72 = r_((p — o)+ "Z'COS¢1 singol _ r2'COS(o2 singoz'
?1 2 2 1

2 2

Setzt man F?? in (6) ein und dividiert auf beiden Seiten mit r*, so folgt

92

, )

?1

2 . 1
[ sin*pdp = —~| ¢ — cosg sing
(4] 2

ein Resultat, das uns mit Beniitzung des Hauptsatzes der Integralrechnung und Anwen-
dung der partiellen Integration im modernen Sinne zuganglich wére.
Hinweis: Setzt man in (5) fiirr y = r sing und x = r cos ¢, so folgt nach Division mit r*

jsinqud(p = — f sinpd (cos¢),

d.h. die Aussage von Satz 2 beinhaltet eine Anderung der Integrationsvariablen.

Schlussbetrachtungen

1. Die vorliegende Schrift mit historischem Hintergrund manifestiert die grossen Schwie-
rigkeiten, die bei der Interpretation von Originalabhandlungen auftreten kénnen. Sie
sind bei Pascal besonders ausgeprigt, da sich dieser, wenn auch elegant, so doch nur rein
verbal ausdriickt.



88 El. Math,, Vol.41, 1986

Im weitern zeigt die Abhandlung iiber den Viertelskreis recht eindriicklich, dass sich
grosse Ideen an kleinen, unscheinbaren Problemen entwickeln und fast zur selben Zeit bei
verschiedenen Mathematikern zu allgemeinen und endgiiltigen Theorien fiihren konnen.
Leibniz hat erkannt, dass die Arbeitsweise mit dem charakteristischen Dreieck nicht auf
den Viertelskreis beschriankt sein muss, sondern vielmehr auf allgemeine Kurven iiber-
tragbar ist’). Pascal und viele andere seiner Zeitgenossen haben konkrete Pionierarbeit
geleistet, welche Leibniz und Newton vollendet haben.
I1. Im Mathematikunterricht beschrinkt man sich bei der Ermittlung von Fldcheninhal-
ten (bestimmte Integrale) in der Regel auf Potenzfunktionen.
Die heuristische Indivisiblen-Methode von Pascal zeigt einen elementargeometrischen,
anschaulich erlebbaren Weg zur Bestimmung einfacher Integrale trigonometrischer
Funktionen.
H. Loeffel
Hochschule St. Gallen
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Eine Familie von geschlossenen gleichflachigen
Polyedern, die fast beweglich sind

I. Das Vierhorn

§1. Seit Cauchy (1812) weiss man, dass ein konvexes Polyeder mit unverianderlichen
Seitenfldchen bei gelenkigen Verbindungen lings der Kanten starr erscheint, weil seine
Gestalt eindeutig bestimmt ist. Eine kleine Liicke im Beweisgang wurde spiter von
Steinitz [6] ausgefiillt.

Nach Verzicht auf die Forderung der Konvexitidt kann die Eindeutigkeit der Form
verlorengehen. Es lassen sich leicht nichtkonvexe Polyeder vom topologischen Typus der
Sphire angeben, die einen sprunghaften («kippenden») Ubergang zwischen zwei existie-
renden Gestalten erlauben [6,8]. Riicken zwei solche Nachbarformen zusammen, so
entsteht ein infinitesimal bewegliches « Wackelpolyeder» mit am Modell deutlich merk-
barer Instabilitit. Das erste Beispiel gab Blaschke [1] mit seinen Wackeloktaedern;
weitere Beispiele finden sich bei Goldberg [4] und beim ersten Autor dieser Mitteilung [9].
Wackeligkeit bleibt bei konvexen Polyedern noch ausgeschlossen [3], wihrend sie sich bei

3) Dartiber dussert sich Leibniz sehr klar und eindeutig in einem Brief an seinen Freund v. Tschirnhaus (1651-1708)
vom Dezember 1679.
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