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Satz 8. Es sei B ein kubischer Baum mit n Kanten. Wenn n 9 (mod 12) ist und jeder
Längstweg in B gerade Länge hat, dann ist B nicht rigoros.
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Figur 5

Vermutung 6. Alle anderen kubischen Bäume sind rigoros.
Auch für nicht zusammenhängende oder unendliche Graphen ist die Frage nach ihrer
Rigorosität interessant. Das zweidimensionale Gitter ist nach Figur 5 rigoros. Das
Bildungsgesetz kann man leicht erkennen, wenn man, vier Buntstifte benutzend, die
Kanten mit den Nummern /(mod4) mit dem i-ten Buntstift nachzieht (/ 1,2,3,4).

G. Ringel, Santa Cruz, USA
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Aufgaben

Aufgabe 923. Für die Umfange der Dreiecke mit den Seiten (y + z)/(l + yz), (z + x)/
(1 + zx) und (jc + y)/(l + xy), wobei x tan(_4/4), y tan(B/4), z tan(C/4) und
A + B + C n (vgl. Aufgabe 907, El. Math. 40 (1985)), sind bestmögliche untere und
obere Schranken gesucht.

Hj. Stocker, Wädenswil
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Lösung. Wir zeigen allgemeiner: Sind A,B,C die Winkel eines Dreiecks und

S(X):=Y (tanXB + tanXC)/(l + tanlßtanAC); 0 < X < 1/2

(Summation zyklisch bez. A, B, C), so gilt

3sin(2A7r/3) ^ S(X) < 2tan/br.

Beweis, a) Es ist

S (X) Y sin(A (B + C))/cos(X (B - C))^Y sin(A (B + C))
V sin (Xn — XA).

Wegen der Konkavität von sin in [0,2n] ergibt sich

S(X) ^3sin(Xn-X(A + B + C)/3) 3sin(2A7r/3).

b) Aus

S (X) < Y (tanXB + tan AC) 2^ tanXA,

der Konvexität von tan in [0, n/2] und [1], p. 22, Theorem 1 folgt

S(X) < 2(tan7d + 2tan0) 2tan/l7r.

Die in der Aufgabenstellung verlangte Abschätzung lautet somit

3/2 < 5(1/4) < 2.
W. Janous, Innsbruck, A.

LITERATURVERZEICHNIS

1 D S Mitrinovic, Analytic Inequahties, Berlin 1970

Weitere Lösungen sandten S. Arslanagic (Trebinje, YU), C. Bindschedler (Kusnacht), L.

Kuipers (Sierre), M. Vowe (Therwil).

Aufgabe 924. Für «eN bezeichne a (n) den grossten Teiler von n mit a (n) ^ 0(mod3).
Man zeige, dass

Y OL(n)n'x -x+0(1), (1)
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l a(«)=^2 + 0(x) (2)
n<x ö

L Kuipers, Sierre

Solution Let p be a prime and let cc(n) denote the largest divisor of n with
a(n) =£0(mod/?) ForxeZ,x ^0, put

f(x)= Y a(n)n ] and S(x)= Y a^
X <n<x 1 <n< x

Then

-P—x^f(x)<-P—(x + X)

p + 1 /» + 1

and

P -Ax2<g(x)<-—J—-(x + iy
2(p + l) ^ov ' 2(p + X)

Proof Ifp* is the largest power ofp dividing n, then a (n) n\pk Hence, ifx r {modp)
with 0 ^ r < p, then

/(*) ^(*-r) + r + -/X~r
P P \ P

and

gW ^-(x-r)2+^r(2x-r + l) + gf^^
2p 2 \ />

since eg 14-2+ + mp- (p + 2p + + mp) (p - l)(mp)2/2p

Repeated use of these recurrence relations for a fixed extremal value of r (r 0 or
r p - 1) suggest the given lower and upper bounds for/(x) and g (x) The actual proof,
by induction on x, using the recurrence relations, is easy, only the induction step in the

proofofg(jc) <p(x + l)2/2(p + 1) requires some care Assume x ^ p By the induction
hypothesis 2(p + l)g(x) <(p2-l)p x(x -r)2 + (p + l)r(2x-r + 1) +p x(x-r+p)2

px2 + (p + r + l)x + r + l-(p-r- l)(x-r- l)^p(x + l)2, smce x^p^r + 1

Remark The upper bounds for/(x) and g(x) coincide with the lower bounds for
f(x + l)andg(x + l)

A A Jagers, Enschede, NL
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Weitere Losungen sandten P Bundschuh (Köln, BRD), L Cseh (Cluj, R), W Janous
(Innsbruck, A), H -J Kanold (Braunschweig, BRD), Kee-wai Lau (Hongkong), O P
Lossers (Eindhoven, NL), Chr A Meyer (Bern)

Aufgabe 925. Man zeige, dass fur n ^ 2

nlogn " 1 / 1\
_T<tZi-<tegB+»iQg^i + -j

P Ivädy, Budapest, Ungarn

Losung mit Verschärfung Bekanntlich gilt fur natürliche n

I 1 " 1 1

wobei C die Eulersche Konstante mit dem Zahlenwert 0 577215664 ist (siehe [1],
S 197)
Es gilt folglich fur n ^2

II "11+ logn + 0 5772156 < V-<-+ \ogn + 0 5772157 (2)
2n 8«2 kLjx k 2n

Fur n 2 stellt diese Ungleichung keine, fur n ^ 3 jedoch eine wesentliche Verschärfung
der zu beweisenden Ungleichung dar Denn fuhrt man die Hilfsfunktion

uc \ lo%n
h(n)=

n — 1

ein, so folgt wegen h' (n)< 0 fur n > 3 und h (3) < 0 5772156 sofort

n l02A2 1 1

— -log« h(n)< 0 5772156 < -+0 5772156 fur «^3, (3)
n — l 2n 8«2

andererseits ist

— + 0 5772157 <n\og(l + - =log( 1 + -Y (4)
2n \ nj \ nj

richtig fur n 3, also, weil die Folge n-+( 1 + - J bekanntlich monoton steigend ist,

auch fur alle n ^ 3
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Weitere Losungen sandten S Arslanagic und D Milosevic (Trebinje, YU und Pranjam,
YU), K Bickel (Nürtingen, BRD), E Braune (Linz, A), P Bundschuh (Köln, BRD),
A A Jagers (Enschede, NL), W Janous (Innsbruck, A), L Kuipers (Sierre), Kee-wai
Lau (Hongkong), O P Lossers (Eindhoven, NL), N Mihajlovska (Pranjam, YU), V D
Mascioni (Origlio), I Merenyi (Cluj, R), H -J Seiffert (Berlin-West), N Sivakumar
(Edmonton, CA), Hj Stocker (Wädenswil), M Vowe (Therwil)

Neue Aufgaben

Die Losungen sind getrennt nach den einzelnen Aufgaben in Maschinenschrift erbeten
bis 10 Dezember 1986 an Dr H Kappus Dagegen ist die Einsendung von Losungen zu
den mit Problem A, B bezeichneten Aufgaben an keinen Termin gebunden
Bei Redaktionsschluss dieses Heftes sind noch ungelöst Problem 60IA (Band 25, S 67),
Problem 625B (Band 25, S 68), Problem 645A (Band 26, S 46), Problem 672A (Band 27,
S 68), Aufgabe 680 (Band 27, S 116), Problem 724A (Band 30, S 91), Problem 764A

(Band 31, S 44), Problem 862A (Band 36, S 68), Problem 872A (Band 36, S 175),

Aufgabe 880 (Band 37, S 93)

Aufgabe 941. Prove that

- 3^3/8 < sin(B- C)cos3_4 + sin(C- A)cos'B + sm(A - B)cos3C < 3^3/8

where A,B,C are the angles of a triangle
M S Klamkin, Edmonton, CA

Aufgabe 942. Es sei

"* nk l

Snk Y TTI' n>keN '
l" +/

Man ermittle Sk hm S„ k sowie S hm Sk
n~*ao k~*oo

Bemerkung Bekannt sind S, ln2 and S2 n/2 (Putnam Competition 1961/3)

M Vowe, Therwil

Aufgabe 943. Das Produkt

n 1

JJ [cos(2kn/n) - cos(2a)], n ^ 2, a eR
k i

ist geschlossen auszuwerten
V D Mascioni, Origlio
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