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Satz 8. Es sei B ein kubischer Baum mit n Kanten. Wenn n = 9(mod 12) ist und jeder
Lingstweg in B gerade Ldinge hat, dann ist B nicht rigoros.
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Figur 5

Vermutung 6. Alle anderen kubischen Bdume sind rigoros.

Auch fiir nicht zusammenhidngende oder unendliche Graphen ist die Frage nach ihrer

Rigorositit interessant. Das zweidimensionale Gitter ist nach Figur 5 rigoros. Das

Bildungsgesetz kann man leicht erkennen, wenn man, vier Buntstifte benutzend, die

Kanten mit den Nummern = i (mod 4) mit dem i-ten Buntstift nachzieht (i = 1,2, 3,4).
G. Ringel, Santa Cruz, USA
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Aufgaben

Aufgabe 923. Fiir die Umfédnge der Dreiecke mit den Seiten (y + z)/(1 + yz), (z + x)/
(1+zx) und (x + y)/(1 + xy), wobei x = tan(4/4), y = tan(B/4), z = tan(C/4) und
A + B + C = = (vgl. Aufgabe 907, El. Math. 40 (1985)), sind bestmdgliche untere und
obere Schranken gesucht.

Hj. Stocker, Widenswil
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Loésung. Wir zeigen allgemeiner: Sind A4, B, C die Winkel eines Dreiecks und

S(A):=) (taniB + tanAC)/(1 + tanAB taniC); 0<1 <1/2
(Summation zyklisch bez. 4, B, C), so gilt

3sin(2An/3) < S (A1) < 2taniz.

Beweis. a) Es ist

S(A) =2 sin(4(B + C))fcos (4 (B~ C)) = Y sin(A (B + C))
=Y sin(in — i4).

Wegen der Konkavitdt von sin in [0, 277] ergibt sich
S(A)=3sin(An — A (4 + B + C)/3) = 3sin(24n/3).

b) Aus
S(2) <) (taniB + taniC) =2) tan A,

der Konvexitit von tan in [0, 7z/2] und [1], p. 22, Theorem 1 folgt
S(4)<2(tannd + 2tan0) = 2tanAx.

Die in der Aufgabenstellung verlangte Abschitzung lautet somit

32< 85(1/4) < 2.
W. Janous, Innsbruck, A.
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Weitere Losungen sandten S. Arslanagi¢ (Trebinje, YU), C. Bindschedler (Kisnacht), L.
Kuipers (Sierre), M. Vowe (Therwil).

Aufgabe 924. Fiir neN bezeichne « (1) den grossten Teiler von n mit a (n) F 0(mod 3).
Man zeige, dass

D a(n)n"=%x+0(1), (1)
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3
D oc(n)=§x2+0(x). )

L. Kuipers, Sierre

Solution: Let p be a prime and let a(n) denote the largest divisor of n with
o (n) £ 0(modp). ForxeZ,x >0, put

fx)= Y a(mn~' and g(x)= Y a(n).

1<n<x I<n<g
Then
P 14
< x +1
P A O R JCRRY
and
S <—L _(x+1y
2o+ SEW <ot

Proof: If p* is the largest power of p dividing », then a (n) = n/p*. Hence, if x = r (mod p)
with 0 <r < p, then

f(x)=”'1<x—r>+r+1f<x"’)
p p p

and

p

g(x)= 2;1 (x—ry+ -;-r(2x—r+ 1)+g<x;r),

sincee.g. 14+2+ ---+mp—(p+2p+---+mp)=(p— 1)(mp)*/2p.

Repeated use of these recurrence relations for a fixed extremal value of r(r =0 or
r = p — 1) suggest the given lower and upper bounds for f (x) and g (x). The actual proof,
by induction on x, using the recurrence relations, is easy; only the induction step in the
proof of g (x) < p(x + 1)*/2(p + 1) requires some care: Assume x > p. By the induction
hypothesis 2(p + g (x) < (@P*=Dp '(x=r)P+ @+ H)r2x—r+1)+p~'(x—r+p)
=px’+@+r+Dx+r+l—(@-r—Dx-r=1D)<px+1)y2sincex=p=>r+1.

Remark: The upper bounds for f(x) and g(x) coincide with the lower bounds for
f(x+1)and g(x + 1).
A.A. Jagers, Enschede, NL
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Weitere Losungen sandten P. Bundschuh (K6ln, BRD), L. Cseh (Cluj, R), W. Janous
(Innsbruck, A), H.-J. Kanold (Braunschweig, BRD), Kee-wai Lau (Hongkong), O.P.
Lossers (Eindhoven, NL), Chr. A. Meyer (Bern).

Aufgabe 925. Man zeige, dass fiirn > 2

nlogn "1 1
<Y ~ <logn+nlog( 1+~
— kzlk ogn +n og( n)

P. Ivady, Budapest, Ungarn

Losung mit Verschiarfung: Bekanntlich gilt fiir natiirliche n

1
—logn — C < —, (1)
2n

x| -

1 1 "
— - —<
2n  8n? kzl

wobei C die Eulersche Konstante mit dem Zahlenwert 0.577215664... ist (siche [1],
S.197).

Es gilt folglich fiirn > 2

1 1 7o 1
— == = ] + 0.5772156 < — o = ] + 0.5772157. 2
m  gn2 B! ,Zl k" 2n OB @)

Fir n = 2 stellt diese Ungleichung keine, fiir n > 3 jedoch eine wesentliche Verschirfung
der zu beweisenden Ungleichung dar. Denn fiihrt man die Hilfsfunktion

1
h(n) = ogn

n—1
ein, so folgt wegen 4’ (n) < 0 fiir n = 3 und A4 (3) < 0.5772156 sofort

nlogn

1 1
—logn = h(n) < 0.5772156 < — — — +0.5772156 fir n>3;  (3)
n—1 2n  8n?

andererseits ist

| 1 1\"
— +0.5772157 < nlog(l + —) = log(] + _) @
2n n %

1y : : .
richtig fiir n = 3, also, weil die Folge n —+(1 + —) bekanntlich monoton steigend ist,
n

auch fur alle n > 3.

LITERATURVERZEICHNIS

1 G. Polya und G. Szegd: Aufgaben und Lehrsitze aus der Analysis 1. Berlin 1970.

J. Rédei, Bremen, BRD



78 El. Math., Vol.41, 1986

Weitere Losungen sandten S. Arslanagi¢ und D. Milosevi¢ (Trebinje, YU und Pranjani,
YU), K. Bickel (Niirtingen, BRD), E. Braune (Linz, A), P. Bundschuh (Ko6ln, BRD),
A.A. Jagers (Enschede, NL), W. Janous (Innsbruck, A), L. Kuipers (Sierre), Kee-wai
Lau (Hongkong), O.P. Lossers (Eindhoven, NL), N. Mihajlovska (Pranjani, YU), V.D.
Mascioni (Origlio), I. Merenyi (Cluj, R), H.-J. Seiffert (Berlin-West), N. Sivakumar
(Edmonton, CA), Hj. Stocker (Wéadenswil), M. Vowe (Therwil).

Neue Aufgaben

Die Losungen sind getrennt nach den einzelnen Aufgaben in Maschinenschrift erbeten
bis 10. Dezember 1986 an Dr. H. Kappus. Dagegen ist die Einsendung von Losungen zu
den mit Problem ... A, B bezeichneten Aufgaben an keinen Termin gebunden.

Bei Redaktionsschluss dieses Heftes sind noch ungel6st: Problem 601A (Band 25, S. 67),
Problem 625B (Band 25, S. 68), Problem 645A (Band 26, S. 46), Problem 672A (Band 27,
S.68), Aufgabe 680 (Band 27, S.116), Problem 724A (Band 30, S.91), Problem 764A
(Band 31, S.44), Problem 862A (Band 36, S.68), Problem 872A (Band 36, S.175),
Aufgabe 880 (Band 37, S.93).

Aufgabe 941. Prove that
- 3\/3/8 <sin(B— C)cos’4 + sin(C — A)cos* B + sin(4 — B)cos’C < 3\/5/8

where A, B, C are the angles of a triangle.
M. S. Klamkin, Edmonton, CA

Aufgabe 942. Es sei

nk nk—l

S,,_k:= Z m, n,keN.‘

=1

Man ermittle S,:= lim S, , sowie S:= lim S,.

n-» 00 k— o0

Bemerkung: Bekannt sind S, = In2 and S, = /2 (Putnam Competition 1961/3).

M. Vowe, Therwil

Aufgabe 943. Das Produkt

n—1

] [cos (2kn/n) — cos (2a)], n>=2, xeR

ist geschlossen auszuwerten.
V.D. Mascioni, Origlio
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