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Vermutungen iiber numerierbare Graphen

1. Einleitung

Es gibt viele Aufgaben, bei denen man die Ecken oder (und) die Kanten eines Graphen
mit Nummern derart versehen soll, dass gewisse Eigenschaften erfiillt sind. Falls hierbei
innerhalb der verwendeten Menge der Nummern keinerlei Struktur eine Rolle spielt, so
nennen wir diese Aufgabe ein Farbungsproblem, denn dann kénnte man die Nummern
auch durch Farben ersetzen.

Wenn jedoch mit den Nummern gerechnet, z. B. addiert wird, so ist das Wort Numerie-
rung besser am Platze. In einer Tagung in Smolenice 1963 &dusserte der Autor eine
Aufgabe, die auf folgendes Numerierungsproblem hinauslauft.

Ein Baum ist ein zusammenhdngender Graph, der keine geschlossenen Wege (Kreise)
enthélt. Ein Baum B mit n Ecken hat stets genau » — 1 Kanten. Wenn es in B mdglich ist,
die Ecken mit 1,2,...,n und die Kanten mit 1,2,...,n — 1 derart durchzunumerieren,
dass die Nummer in jeder Kante k gleich der Differenz der Nummern der beiden mit k&
inzidierenden Ecken ist, so heisst der Baum B grazids (graceful). Figur 1 zeigt das Beispiel
eines graziosen Baumes. Es wird vermutet, dass jeder Baum grazios ist. Nur fiir sehr
spezielle Klassen von Biumen wurde dies bisher bewiesen.

Figur 1

In dieser Note wollen wir ein anderes Numerierungsproblem fiir Graphen studieren. Es
werden nur Graphen ohne mehrfache Kanten und ohne Schlingen betrachtet. Eine Kante
in einem Graphen heisse gerichtet, wenn eine der beiden mdéglichen Richtungen (durch
einen Pfeil) ausgewdhlt wurde. Eine Kante k£ mit den beiden Ecken A4, B kann also
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entweder von 4 nach B oder von B nach A gerichtet werden. Wir machen aufmerksam,
dass alle folgenden Sétze und Vermutungen sich auf ungerichtete Graphen beziehen. Wir
machen lediglich von der Mglichkeit Gebrauch, die Graphen zu richten.

Ein Graph G mit » Kanten heisse rigoros, wenn die Kanten so gerichtet und numeriert
werden konnen, dass die Eigenschaften E 1, E2 erfiillt sind.

E 1) Jede der Nummern 1,2,...,n kommt genau einmal vor.

E2) In jeder Ecke E vom Grade > 2 ist die Summe der Nummern der nach E gerichteten
Kanten gleich der Summe der von E gerichteten Kanten (Kirchhoffsches Gesetz).

Figur 2 zeigt vier Beispiele von rigorosen Graphen. Auch der Dodekaeder-Graph ist
rigoros. Die Numerierung nach Figur 3 wurde durch Computer ermittelt.

6

Figur 3

Im zweiten Buch [3] des Autors sind viele Beispiele von rigorosen Graphen angegeben, sie
heissen dort «current graphs». Sie dienen einem bestimmten Zweck und haben alle die
Form einer Leiter, wie z. B. der Graph in Figur 2 oben. Er hat vier Sprossen (vertikale
Kanten); er ldsst sich leicht auf n Sprossen verallgemeinern. Dieser «current graph» spielt
in der Lésung des Heawoodschen Firbungsproblems auf Fldchen hoheren Geschlechts
eine wichtige Rolle, jedenfalls in einem der zwolf Fille im Beweis [3]. Neuerdings war
dieser Graph die entscheidende Hilfe bei der Losung des Headwoodschen Imperiumpro-
blems [2].

Figur 4

Hier wollen wir die Frage stellen, welche Graphen die Rolle eines «current graph» spielen
konnen, oder kurz, welche Graphen rigoros sind. Wie aus dem folgenden hervorgehen
wird, sind der Baum in Figur 1 und der Graph in Figur 4 links z. B. nicht rigoros.
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Der Graph, der aus n Ecken und allen ; Verbindungskanten zwischen den Ecken

besteht, heisst der vollstdndige Graph K,. Der Graph, der aus n roten Ecken und m blauen
Ecken und allen nm Kanten, die je eine rote Ecke mit je einer blauen Ecke verbinden,
besteht, heisst der vollstindige paare Graph K, ,,.

2. Hamiltonsche Kreise

Ein Kreis in einem Graphen, der jede Ecke enthilt, heisst ein Hamiltonscher Kreis. Ein
Graph, bei dem jede Ecke denselben Grad r hat, heisst reguldar vom Grade r. Wenn man in
einen Graphen G genau ¢t Hamiltonsche Kreise derart finden kann, dass jede Kante von G
in genau einem dieser Hamiltonschen Kreise liegt, so sagen wir, G lasst sich in t Hamilton-
sche Kreise zerlegen. Natiirlich ist dann G reguldr vom Grade 2¢. Der K z. B. ldsst sich in
zwei Hamiltonsche Kreise zerlegen.

Satz 1. Es sei G ein Graph mit n Ecken, der sich in t Hamiltonsche Kreise zerlegen ldsst
(t # 1). Falls das Produkt t (n — 1) eine gerade Zahl ist, so ist G rigoros.

Beweis: Es sei G ein Graph mit n Ecken, der sich in ¢ Hamiltonsche Kreise H,, H,,..., H,
zerlegen ldsst. Da jeder Kreis H, aus n Kanten besteht, besitzt G genau tn Kanten. Wir
wihlen in jedem H, eine Durchlaufungsrichtung und geben dann jeder Kante in H, genau
diese Richtung (i = 1,2,...,¢). Damit sind alle Kanten in G gerichtet. Bei der Verteilung
der Nummern wollen wir einige Félle unterscheiden; es wird uns in jedem Fall gelingen,
die Kanten von H, mit Nummern = i (mod?) zu versehen. Es sei in G eine Ecke E fest
gewdhlt.

A) Es sei t = 2. Wir durchlaufen H, in der gewdhlten Richtung, beginnend mit E, und
geben dabei den Kanten der Reihe nach die Nummern 1,3,5,...,27n — 1. Ebenso durch-
laufen wir H,, beginnend mit E, und geben den Kanten der Reihe nach die Nummern 2#,
2n—2,...,6,4,2. Dann ist leicht zu sehen, dass die Eigenschaften E 1 und E2 erfiillt sind.
Diese Methode lasst sich leicht verallgemeinern fiir gerade Zahlen ¢.

B) Es sei ¢ eine gerade Zahl. Wir durchlaufen jeden Kreis H, beginnend mit E in der
gewdhlten Richtung, und geben den Kanten von H, die Nummern nach folgendem
Schema:

I,  t+12t+1, ... (n—1e+1 (H)
3,  t432t43, ... (n—1t+3 (H)

t— 1,2t —1,3t—1, ... nt—1 (H,_)

mn—-—Dt+2, . L2t 2,1+ 2,2 (Hy

n—1Dt+4, . Lo 2t+4,t+44 (HY
nt, . oo 3t 21t (H)

Man beachte, dass die Nummern in den H, fiir ungerades i jedesmal um ¢ zunehmen und
fiir gerades i jedesmal um ¢ abnehmen. Genau das garantiert Eigenschaft E2 fiir alle
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Ecken # E. Es ist leicht, Eigenschaft E 2 auch fiir die Ecke E zu verifizieren; aber es ist
eigentlich nicht notig. Denn wenn fiir alle anderen Ecken in G kein positiver oder
negativer Uberschuss vorhanden ist, dann muss auch in E der Uberschuss gleich Null
sein.

C) Es sei ¢t = 3. Dann ist nach Voraussetzung n ungerade. Wir wihlen in den Hamilton-
schen Kreisen H, die folgende Numerierung, beginnend in der Ecke E:

3n,...15,9,3; 3n—3,..18,12,6 (H,)
1,4,7,.. 3k+1;3k+4,.. .. 3n—2 (H,)
3j42,...3n—1;258,... 3j—1 (H)

Die Endecke von der Kante mit der Nummer 3 wollen wir mit F bezeichnen. In F lassen
wir dann die Nummern fir H, mit 2,5,8, ... beginnen.

In den Ecken # E und F nehmen die Nummern in H, jedesmal um 6 ab, wihrend sie in H,
und H, jedesmal um 3 zunehmen, also ist hier E2 erfiillt. Fiir £ oder F muss die
Eigenschaft E 2 gesondert gepriift werden, etwa fiir F: Es laufen die Nummern 3, 3k + 1,
3n — 1 nach Fund die Nummern 3n — 3, 3k + 4, 2 von F. Hier ist also E2 erfiillt und
daher auch fiir die Ecke E.

D) Jetzt sei ¢ ungerade und > 3. Die Losung wird den obigen Fall C einschliessen. Wir
kombinieren die Idee von B mit der von C. Wieder ist n ungerade. Wir wihlen die
Numerierung wie folgt:

nt,...,5t,3t,t;nt—t,...,6t,4¢t,2t (H)
Le+1,2¢+1,............. wt—t+1 (H)
........ nt—t+2;2,t+2,2t+2,..... (H,)

Die iibrige Numerierung wird genau wie unter B fiir H,, H,, ... mit jeweils um ¢ zunehmen-
den Nummern, und fiir H,, H,... mit jeweils um ¢ abnehmenden Nummern gewihit.
Auch hier beginnen wir in der Ecke E und mit der Nummer i/ im Kreise
H (i =3,4,5,...,t — 1). Die Eigenschaften E1 und E2 sind dann leicht zu verifizieren.

3. Spezielle Graphen

Fiir einige spezielle Graphenklassen sind Zerlegungen in Hamiltonsche Kreise bekannt.
Das gibt uns Gelegenheit, Satz 1 anzuwenden.

Satz 2. Wenn n ungerade und n = 5 ist, so ist der vollstdndige Graph K, rigoros.

Beweis: Es ist bekannt, dass fiir ungerade n der K, sich in ¢t = (n — 1)/2 Hamiltonsche
Kreise zerlegen lisst [1,4]. Da n — 1 gerade ist, ist Satz | direkt anwendbar. Es ist auch
leicht zu sehen, dass K| rigoros ist.

Vermutung 1. Auch fiir gerades n ist K, rigoros.

Ein paarer Graph ist ein Graph, bei dem jeder Kreis eine gerade Anzahl von Kanten hat.
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Lemma 1. Wenn in einem paaren Graphen H jede Ecke einen geraden Grad hat, so ist in H
die Anzahl der Kanten gerade.

Beweis: Es ist bekannt, dass die Ecken in einem paaren Graphen mit zwei Farben, etwa
Rot und Blau, derart gefarbt werden konnen, dass jede Kante mit einer blauen und mit
einer roten Ecke inzidiert. Es sei H so gefdrbt. Dann ist die Anzahl der Kanten in H gleich
der Summe der Grade aller roten Ecken, die ja alle gerade sind.

Satz 3. Wenn n gerade ist, so ldsst sich der Graph K, , in n/2 Hamiltonsche Linien zerlegen.

Dieser Satz ist sicher irgendwo in der Literatur bewiesen. Er ldsst sich auch so formulie-
ren: Es ist moglich, » Damen und » Herren an n/2 Abenden um einen runden Tisch mit 2»
Plitzen so zu plazieren, dass am Ende jeder Herr neben jeder Dame gesessen hat. Hier ist
die Losung: Die Namen der Herren seien 1,2,...,n, und die der Damen seien 1,2,...n.
Dann gibt das folgende Schema die gewlinschten Sitzordnungen. Jede Zeile entspricht
einem Abend und ist zyklisch zu lesen.

1,1,2,2,3,3,..... nn
3,1,4,2,5,3,..... 2,n
51,6,2,7,3,..... 4,n

...........

Satz 4. Wenn n % | ungerade ist, so ist der Graph K, , nicht rigoros. Wenn n = 0(mod4), so
ist K, , rigoros.

Vermutung 2. Auch fiir n = 2(mod4) ist K, , rigoros.

Beweis zu Satz 4: Wir nehmen an, n sei ungerade und X, , rigoros. Es sei H der Teilgraph,
der aus allen Kanten von K, , erzeugt wird, die eine ungerade Nummer tragen. Der Grad
jeder Ecke in H ist dann gerade. Nach Lemma 1 hat H eine gerade Anzahl von Kanten.
Unter den Nummern 1 bis n? ist aber eine ungerade Anzahl ungerader Nummern, daher
kann K, , nicht rigoros sein. - Wenn n = 0(mod 4), so ist nach Satz 3 und Satz 1 der X, ,
rigoros.

Mit Hilfe von Lemma 1 kann man genauso auch zeigen, dass K,, , nicht rigoros ist, falls
mn = 1 (mod4) ist.

Auch der regulére vollstandige tripartite Graph K, , , ist wahrscheinlich in » Hamilton-
sche Kreise zerlegbar fiir jedes n > 3 und wére somit nach Satz 1 rigoros. Der Verfasser
konnte dies jedoch bis jetzt nur beweisen, wenn n eine Primzahl ist. Ubrigens, der
Oktaeder-Graph ist isomorph zu K, ,, und ldsst sich nicht in zwei Hamiltonsche Kreise
zerlegen; er ist aber trotzdem rigoros wie Figur 4 rechts zeigt. Der 3dimensionale Wiirfel-
graph Q, ist rigoros, wie man durch Probieren feststellen kann. Es empfiehlt sich hierbei,
zuerst zu iiberlegen, wo die ungeraden Nummern stehen sollen. Die Kanten mit den
ungeraden Nummern miissen ndmlich ein Sechseck bilden. Beim Ikosaeder-Graph wis-
sen wir noch nicht, ob er rigoros ist; ein Kandidat fiir den Computer.
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Es ist bekannt, dass der n-dimensionale Wiirfelgraph Q, sich in lauter Hamiltonsche

Kreise zerlegen ldsst [4], wenn 7 eine Zweierpotenz ist. Die Anzahl der Ecken in Q, ist 2.
Als Anwendung von Satz 1 ergibt sich dann

Satz 5. Wenn n eine Zweierpotenz und n > 4 ist, so ist der n-dimensionale Wiirfelgraph
rigoros.

Vermutung 3. Auch fiir alle anderen n +# 2 ist Q, rigoros.

4. Planare Graphen

Ein Graph heisst planar, wenn er sich ohne Uberschneidung der Kanten in die Ebene
oder Kugel einbetten ldsst. Er heisst planar gesittigt, wenn es nicht moglich ist, zwei
Ecken durch eine neue Kante zu verbinden, ohne die Planaritit zu zerstéren. Ein planar
gesattigter Graph zerlegt die Kugel in lauter Dreiecke. Ein Beispiel ist der Graph links
unten in Figur 2.

Vermutung 4. Ein planar gesdttigter Graph mit mehr als drei Ecken ist rigoros.

Eine Ecke vom Grade 1 in einem Graphen wollen wir Endecke nennen. Ein Baum z. B.
hat mindestens zwei Endecken. Ein Weg in einem Baum, der zwei Endecken verbindet,
heisst ein Langstweg, weil er nicht mehr verldngert werden kann.

Satz 6. Es sei B ein Baum mit n Kanten ohne Ecken vom Grade 2, und jeder Lingstweg in B
hat gerade Linge. Wenn n = 1 oder 2(mod 4) ist, so ist B nicht rigoros.

Beweis: Angenommen, ein solcher Baum B sei rigoros. Es sei H der Teilgraph, der nur aus
den Kanten erzeugt wird, die eine ungerade Nummer erhalten haben. In H ist dann jede
Ecke vom Grade 1 oder eine gerade Zahl. H ldsst sich in lauter Lingstwege zerlegen.
Daher hat H eine gerade Zahl von Kanten. Jedoch ist die Zahl der zu verbrauchenden
ungeraden Nummern von 1 bis n nicht gerade, sondern ungerade.

Der Graph K, , wird auch der n-Stern genannt.

Satz 7. Der n-Stern K, ,, ist dann und nur dann rigoros, wennn = 0 oder 3(mod 4) ist (n + 1).

Beweis: In K|, ist jeder Léngstweg von der Lénge 2, also ist er nach Satz 6 nicht rigoros,
wenn n = 1 oder 2(mod4) ist. Der Rest des Beweises sei dem Leser iiberlassen.

Vermutung 5. Es sei B ein Baum mit n Kanten und ohne Ecken vom Grade 2. Wennn =0
oder 3(mod4) ist, so ist B rigoros. Wenn n =1 oder 2(mod4) ist und in B existiert ein
ungerader Lingstweg, so ist B rigoros.

Ein kubischer Baum ist ein Baum mit nur Ecken vom Grade 1 oder 3. Die Anzahl n der
Kanten in einem kubischen Baum B ist immer ungerade. Wenn jeder Lingstweg in B
gerade Linge hat, so ist n = 3(mod 6). Daher bekommen Satz 6 und Vermutung 5 fiir
kubische Baume die folgende einfache Form:
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Satz 8. Es sei B ein kubischer Baum mit n Kanten. Wenn n = 9(mod 12) ist und jeder
Lingstweg in B gerade Ldinge hat, dann ist B nicht rigoros.

97|

93 | 66
8oy 62 70
85 | 58 | 40 | 7a
sl 54h 36 44 |78
77 | so | 32 [ 19 | 48 [ 82
73| 46l 28] 15 23 As2 |86
69 | a2 | 24 | 1| 5 | 27 | s6 | 90
s/ 384 20 74 1 he 31 leo [oa
61 | 34 | 16| 3 2133 | 35 | 64 | 98
s7y 30 12y 4 6 M7 (39 fes
55 | 26 ] 8 | 10 21 | a3 | 72
a9} 22 14 b5 a7 76
a5 | 8 | 20| 51 | 80
41y 33 {55 184
37 | 59 | 88
63 1oz
Figur 5

Vermutung 6. Alle anderen kubischen Bdume sind rigoros.

Auch fiir nicht zusammenhidngende oder unendliche Graphen ist die Frage nach ihrer

Rigorositit interessant. Das zweidimensionale Gitter ist nach Figur 5 rigoros. Das

Bildungsgesetz kann man leicht erkennen, wenn man, vier Buntstifte benutzend, die

Kanten mit den Nummern = i (mod 4) mit dem i-ten Buntstift nachzieht (i = 1,2, 3,4).
G. Ringel, Santa Cruz, USA
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Aufgaben

Aufgabe 923. Fiir die Umfédnge der Dreiecke mit den Seiten (y + z)/(1 + yz), (z + x)/
(1+zx) und (x + y)/(1 + xy), wobei x = tan(4/4), y = tan(B/4), z = tan(C/4) und
A + B + C = = (vgl. Aufgabe 907, El. Math. 40 (1985)), sind bestmdgliche untere und
obere Schranken gesucht.

Hj. Stocker, Widenswil
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