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Vermutungen über numerierbare Graphen

1. Einleitung

Es gibt viele Aufgaben, bei denen man die Ecken oder (und) die Kanten eines Graphen
mit Nummern derart versehen soll, dass gewisse Eigenschaften erfüllt sind. Falls hierbei
innerhalb der verwendeten Menge der Nummern keinerlei Struktur eine Rolle spielt, so
nennen wir diese Aufgabe ein Färbungsproblem, denn dann könnte man die Nummern
auch durch Farben ersetzen.
Wenn jedoch mit den Nummern gerechnet, z. B. addiert wird, so ist das Wort Numerierung

besser am Platze. In einer Tagung in Smolenice 1963 äusserte der Autor eine

Aufgabe, die auf folgendes Numerierungsproblem hinausläuft.
Ein Baum ist ein zusammenhängender Graph, der keine geschlossenen Wege (Kreise)
enthält. Ein Baum B mit n Ecken hat stets genau n — l Kanten. Wenn es in B möglich ist,
die Ecken mit 1,2,...,« und die Kanten mit 1,2,...,« — 1 derart durchzunumerieren,
dass die Nummer in jeder Kante k gleich der Differenz der Nummern der beiden mit k
inzidierenden Ecken ist, so heisst der Baum B graziös (graceful). Figur 1 zeigt das Beispiel
eines graziösen Baumes. Es wird vermutet, dass jeder Baum graziös ist. Nur für sehr

spezielle Klassen von Bäumen wurde dies bisher bewiesen.

V
Figur 1

In dieser Note wollen wir ein anderes Numerierungsproblem für Graphen studieren. Es
werden nur Graphen ohne mehrfache Kanten und ohne Schlingen betrachtet. Eine Kante
in einem Graphen heisse gerichtet, wenn eine der beiden möglichen Richtungen (durch
einen Pfeil) ausgewählt wurde. Eine Kante k mit den beiden Ecken A,B kann also

' 3

Figur 2
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entweder von A nach B oder von B nach A gerichtet werden Wir machen aufmerksam,
dass alle folgenden Satze und Vermutungen sich auf ungerichtete Graphen beziehen Wir
machen lediglich von der Möglichkeit Gebrauch, die Graphen zu richten
Ein Graph G mit n Kanten heisse rigoros, wenn die Kanten so gerichtet und numeriert
werden können, dass die Eigenschaften E1, E2 erfüllt sind

El) Jede der Nummern 1,2, n kommt genau einmal vor
E2) In jeder Ecke E vom Grade > 2 ist die Summe der Nummern der nach E gerichteten
Kanten gleich der Summe der von E gerichteten Kanten (Kirchhoffsches Gesetz)

Figur 2 zeigt vier Beispiele von rigorosen Graphen Auch der Dodekaeder-Graph ist

rigoros Die Numerierung nach Figur 3 wurde durch Computer ermittelt

Figur 3

Im zweiten Buch [3] des Autors sind viele Beispiele von rigorosen Graphen angegeben, sie

heissen dort «current graphs» Sie dienen einem bestimmten Zweck und haben alle die

Form einer Leiter, wie z B der Graph in Figur 2 oben Er hat vier Sprossen (vertikale
Kanten), er lasst sich leicht auf n Sprossen verallgemeinern Dieser «current graph» spielt

in der Losung des Heawoodschen Farbungsproblems auf Flachen höheren Geschlechts

eine wichtige Rolle, jedenfalls in einem der zwölf Falle im Beweis [3] Neuerdings war
dieser Graph die entscheidende Hilfe bei der Losung des Headwoodschen Impenumpro-
blems [2]

Figur 4

Hier wollen wir die Frage stellen, welche Graphen die Rolle eines «current graph» spielen

können, oder kurz, welche Graphen rigoros sind Wie aus dem folgenden hervorgehen

wird, sind der Baum in Figur 1 und der Graph in Figur 4 links z B nicht rigoros
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Der Graph, der aus n Ecken und allen I I Verbindungskanten zwischen den Ecken

besteht, heisst der vollständige Graph Kn. Der Graph, der aus n roten Ecken und m blauen
Ecken und allen nm Kanten, die je eine rote Ecke mit je einer blauen Ecke verbinden,
besteht, heisst der vollständige paare Graph Knnx.

2. Hamiltonsche Kreise

Ein Kreis in einem Graphen, der jede Ecke enthält, heisst ein Hamiltonscher Kreis. Ein
Graph, bei dem jede Ecke denselben Grad r hat, heisst regulär vom Grade r. Wenn man in
einen Graphen G genau / Hamiltonsche Kreise derart finden kann, dass jede Kante von G

in genau einem dieser Hamiltonschen Kreise liegt, so sagen wir, G lässt sich in / Hamiltonsche

Kreise zerlegen. Natürlich ist dann G regulär vom Grade 2t. Der K5 z. B. lässt sich in
zwei Hamiltonsche Kreise zerlegen.

Satz 1. Es sei G ein Graph mit n Ecken, der sich in t Hamiltonsche Kreise zerlegen lässt
(t ^ 1). Falls das Produkt t (n - 1) eine gerade Zahl ist, so ist G rigoros.

Beweis: Es sei G ein Graph mit n Ecken, der sich in / Hamiltonsche Kreise Hx,H2,...,Ht
zerlegen lässt. Da jeder Kreis Hx aus n Kanten besteht, besitzt G genau tn Kanten. Wir
wählen in jedem Hx eine Durchlaufungsrichtung und geben dann jeder Kante in Hx genau
diese Richtung (/ 1,2,...,/). Damit sind alle Kanten in G gerichtet. Bei der Verteilung
der Nummern wollen wir einige Fälle unterscheiden; es wird uns in jedem Fall gelingen,
die Kanten von Hx mit Nummern / (mod/) zu versehen. Es sei in G eine Ecke E fest

gewählt.
A) Es sei / 2. Wir durchlaufen Hx in der gewählten Richtung, beginnend mit E, und
geben dabei den Kanten der Reihe nach die Nummern 1,3,5,. ..,2n — 1. Ebenso durchlaufen

wir H2, beginnend mit E, und geben den Kanten der Reihe nach die Nummern 2 n,
2n— 2,..., 6,4,2. Dann ist leicht zu sehen, dass die Eigenschaften E1 und E2 erfüllt sind.
Diese Methode lässt sich leicht verallgemeinern für gerade Zahlen /.

B) Es sei / eine gerade Zahl. Wir durchlaufen jeden Kreis Hx, beginnend mit E in der
gewählten Richtung, und geben den Kanten von Hx die Nummern nach folgendem
Schema:

1,

3,

t + 1,2/ + 1,

/ + 3,2/ + 3,

(n - 1)/ + 1

(n - l)/ + 3

(Hx)

/ -
(n

(n

1,2/- 1,3/- 1,

-l)/+2,
-l)/+4,

nt - 1

2/ +2,/ +2,2
2/ + 4, / + 4,4

(Ht^
(H2)

(H4)

nt, 3t, 2t, t (H)

Man beachte, dass die Nummern in den Ht für ungerades /jedesmal um / zunehmen und
für gerades /jedesmal um / abnehmen. Genau das garantiert Eigenschaft E2 für alle
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Ecken # E Es ist leicht, Eigenschaft E2 auch fur die Ecke E zu verifizieren, aber es ist
eigentlich nicht notig Denn wenn fur alle anderen Ecken in G kein positiver oder
negativer Uberschuss vorhanden ist, dann muss auch in E der Uberschuss gleich Null
sein

C) Es sei / 3 Dann ist nach Voraussetzung n ungerade Wir wählen in den Hamilton-
schen Kreisen H die folgende Numerierung, beginnend in der Ecke E

3n, 15,9,3, 3n -3, 18,12,6 (H3)
1,4,7, 3k + l,3k+4, 3n-2 (Hx)
3j + 2, 3n -1,2,5,8, 3/- 1 (H2)

Die Endecke von der Kante mit der Nummer 3 wollen wir mit F bezeichnen In F lassen

wir dann die Nummern fur H2 mit 2,5,8, beginnen
In den Ecken ^ Eund .F nehmen die Nummern in _¥3 jedesmal um 6 ab, wahrend sie in Hx
und H2 jedesmal um 3 zunehmen, also ist hier E2 erfüllt Fur E oder F muss die

Eigenschaft E 2 gesondert geprüft werden, etwa fur F Es laufen die Nummern 3, 3 k + 1,

3n - 1 nach Fund die Nummern 3n -3, 3A: + 4, 2 von F Hier ist also E2 erfüllt und
daher auch fur die Ecke E
D) Jetzt sei / ungerade und ^ 3 Die Losung wird den obigen Fall C einschliessen Wir
kombinieren die Idee von B mit der von C Wieder ist n ungerade Wir wählen die

Numerierung wie folgt

nt, ,5t,3t,t,nt- /, ,6/,4/,2/ (Ht)
1,/ + 1,2/ + 1, ,nt-t + 1 (//,)

nt-t + 2,2,/ +2,2/ + 2, (H2)

Die übrige Numerierung wird genau wie unter B fur H3, H5, mit jeweils um / zunehmenden

Nummern, und fur H4,H6, mit jeweils um / abnehmenden Nummern gewählt
Auch hier beginnen wir in der Ecke E und mit der Nummer i im Kreise

H(i 3,4,5, ,/ - 1) Die Eigenschaften El und E2 sind dann leicht zu verifizieren

3. Spezielle Graphen

Fur einige spezielle Graphenklassen sind Zerlegungen in Hamiltonsche Kreise bekannt
Das gibt uns Gelegenheit, Satz 1 anzuwenden

Satz 2. Wenn n ungerade undn ^ 5 ist so ist der vollständige Graph Kn rigoros

Beweis Es ist bekannt, dass fur ungerade n der Kn sich in / (n - l)/2 Hamiltonsche
Kreise zerlegen lasst [1,4] Dan - l gerade ist, ist Satz 1 direkt anwendbar Es ist auch

leicht zu sehen, dass K4 rigoros ist

Vermutung 1. Auch fur gerades n ist K„ rigoros

Ein paarer Graph ist ein Graph, bei dem jeder Kreis eine gerade Anzahl von Kanten hat
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Lemma 1. Wenn in einem paaren Graphen Hjede Ecke einen geraden Grad hat, so ist in H
die Anzahl der Kanten gerade

Beweis Es ist bekannt, dass die Ecken in einem paaren Graphen mit zwei Farben, etwa
Rot und Blau, derart gefärbt werden können, dass jede Kante mit einer blauen und mit
einer roten Ecke inzidiert Es sei H so gefärbt Dann ist die Anzahl der Kanten in H gleich
der Summe der Grade aller roten Ecken, die ja alle gerade sind

Satz 3. Wenn n gerade ist, so lasst sich der Graph Kn ninn/2 Hamiltonsche Linien zerlegen

Dieser Satz ist sicher irgendwo in der Literatur bewiesen Er lasst sich auch so formulieren

Es ist möglich, n Damen und n Herren an n /2 Abenden um einen runden Tisch mit 2 n
Platzen so zu plazieren, dass am Ende jeder Herr neben jeder Dame gesessen hat Hier ist
die Losung Die Namen der Herren seien 1,2, ,n, und die der Damen seien 1,2, n
Dann gibt das folgende Schema die gewünschten Sitzordnungen Jede Zeile entspricht
einem Abend und ist zyklisch zu lesen

1,1,2,2,3,3, n,n
3,1,4,2,5,3, 2,/i
5,1,6,2,7,3, 4,n

1,/,«,2,1,5, n -2,n

Satz 4. Wenn n + 1 ungerade ist, so ist der Graph Kn n nicht rigoros Wenn n =0 (mod 4), so

ist K„ „ rigoros

Vermutung 2. Auch fur n 2 (mod 4) ist Kn „ rigoros
Beweis zu Satz 4 Wir nehmen an, n sei ungerade und Kn n rigoros Es sei H der Teilgraph,
der aus allen Kanten von Kn n erzeugt wird, die eine ungerade Nummer tragen Der Grad
jeder Ecke in H ist dann gerade Nach Lemma 1 hat H eine gerade Anzahl von Kanten
Unter den Nummern 1 bis n2 ist aber eine ungerade Anzahl ungerader Nummern, daher
kann K„ n nicht rigoros sein - Wenn n 0(mod4), so ist nach Satz 3 und Satz 1 der Kn n

rigoros
Mit Hilfe von Lemma 1 kann man genauso auch zeigen, dass Km n nicht rigoros ist, falls
mn 1 (mod 4) ist
Auch der reguläre vollständige tnpartite Graph Kn „ „ ist wahrscheinlich in n Hamiltonsche

Kreise zerlegbar fur jedes n ^ 3 und wäre somit nach Satz 1 rigoros Der Verfasser
konnte dies jedoch bis jetzt nur beweisen, wenn n eine Primzahl ist Übrigens, der
Oktaeder-Graph ist isomorph zu K222 und lasst sich nicht in zwei Hamiltonsche Kreise
zerlegen, er ist aber trotzdem rigoros wie Figur 4 rechts zeigt Der 3dimensionale Wurfel-
graph ö3 ist rigoros, wie man durch Probieren feststellen kann Es empfiehlt sich hierbei,
zuerst zu überlegen, wo die ungeraden Nummern stehen sollen Die Kanten mit den

ungeraden Nummern müssen namhch ein Sechseck bilden Beim Ikosaeder-Graph wissen

wir noch nicht, ob er ngoros ist, ein Kandidat fur den Computer
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Es ist bekannt, dass der «-dimensionale Wurfelgraph Qn sich in lauter Hamiltonsche
Kreise zerlegen lasst [4], wenn n eine Zweierpotenz ist Die Anzahl der Ecken in Qn ist 2"
Als Anwendung von Satz 1 ergibt sich dann

Satz 5. Wenn n eine Zweierpotenz und n ^4 ist so ist der n-dimensionale Wurfelgraph
rigoros

Vermutung 3. Auch fur alle anderen n ^2 ist Qn rigoros

4. Planare Graphen

Ein Graph heisst planar, wenn er sich ohne Überschneidung der Kanten in die Ebene
oder Kugel einbetten lasst Er heisst planar gesattigt, wenn es nicht möglich ist, zwei
Ecken durch eine neue Kante zu verbinden, ohne die Planantat zu zerstören Ein planar
gesättigter Graph zerlegt die Kugel in lauter Dreiecke Ein Beispiel ist der Graph links
unten in Figur 2

Vermutung 4. Ein planar gesättigter Graph mit mehr als drei Ecken ist rigoros
Eine Ecke vom Grade 1 in einem Graphen wollen wir Endecke nennen Ein Baum z B

hat mindestens zwei Endecken Ein Weg in einem Baum, der zwei Endecken verbindet,
heisst ein Langstweg, weil er nicht mehr verlängert werden kann

Satz 6. Es sei B ein Baum mit n Kanten ohne Ecken vom Grade 2, undjeder Langstweg in B
hat gerade Lange Wenn n 1 oder 2(mod4J ist so ist B nicht rigoros

Beweis Angenommen, ein solcher Baum B sei rigoros Es sei H der Teilgraph, der nur aus
den Kanten erzeugt wird, die eine ungerade Nummer erhalten haben In H ist dann jede
Ecke vom Grade 1 oder eine gerade Zahl H lasst sich in lauter Langstwege zerlegen
Daher hat H eine gerade Zahl von Kanten Jedoch ist die Zahl der zu verbrauchenden

ungeraden Nummern von 1 bis n nicht gerade, sondern ungerade
Der Graph Kx „ wird auch der «-Stern genannt

Satz7. Der n-Stern Kx n ist dann undnur dann rigoros wennn 0 oder 3 (mod 4) ist (n =j= 1)

Beweis In Kx _ ist jeder Langstweg von der Lange 2, also ist er nach Satz 6 nicht rigoros,
wenn n 1 oder 2 (mod 4) ist Der Rest des Beweises sei dem Leser überlassen

Vermutung 5. Es sei B ein Baum mit n Kanten und ohne Ecken vom Grade 2 Wenn n 0

oder 3 (mod4) ist so ist B rigoros Wenn n 1 oder 2(mod4) ist und in B existiert ein

ungerader Langstweg so ist B rigoros
Ein kubischer Baum ist ein Baum mit nur Ecken vom Grade 1 oder 3 Die Anzahl n der

Kanten in einem kubischen Baum B ist immer ungerade Wenn jeder Langstweg in B

gerade Lange hat, so ist n 3 (mod 6) Daher bekommen Satz 6 und Vermutung 5 fur
kubische Baume die folgende einfache Form
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Satz 8. Es sei B ein kubischer Baum mit n Kanten. Wenn n 9 (mod 12) ist und jeder
Längstweg in B gerade Länge hat, dann ist B nicht rigoros.

65 r
38; 20
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53
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39

98
68

Figur 5

Vermutung 6. Alle anderen kubischen Bäume sind rigoros.
Auch für nicht zusammenhängende oder unendliche Graphen ist die Frage nach ihrer
Rigorosität interessant. Das zweidimensionale Gitter ist nach Figur 5 rigoros. Das
Bildungsgesetz kann man leicht erkennen, wenn man, vier Buntstifte benutzend, die
Kanten mit den Nummern /(mod4) mit dem i-ten Buntstift nachzieht (/ 1,2,3,4).

G. Ringel, Santa Cruz, USA
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Aufgaben

Aufgabe 923. Für die Umfange der Dreiecke mit den Seiten (y + z)/(l + yz), (z + x)/
(1 + zx) und (jc + y)/(l + xy), wobei x tan(_4/4), y tan(B/4), z tan(C/4) und
A + B + C n (vgl. Aufgabe 907, El. Math. 40 (1985)), sind bestmögliche untere und
obere Schranken gesucht.

Hj. Stocker, Wädenswil
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