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Construction of a line through a given point to divide a
triangle into two parts with areas in a given ratio

1. Introduction

A ruler and compass construction for a line through a given point dividing a triangle into
two parts with areas in a given ratio seems not to be readily available although it must
surely be well known: it is mentioned, for example, on pages 76-77 of a report on the
Teaching of Geometry [1] prepared for the Mathematical Association. The construction
set out in this paper serves as a prelude to a discussion of whether it is possible to
construct the required line through a particular point and, when it is possible to do so, of
the number of such lines.

Suppose the problem is to cut off triangle CPQ from triangle ABC by a line O PQ through
O in such a way that the area of CPQ is n times that of ABC. In figure 1, let D, E divide
BC, CA respectively so that CD : CB= CE: CA = n : 1. Then the set of points { P} of the
interval AE can be put into one-to-one correspondence with the set of points {Q} of the
interval DB in such a way that the line PQ in each case divides the triangle so that
ACPQ : AABC = n :1. The pencils of rays O {P},0 {Q} are similarly in one-to-one
correspondence and the problem is to find the particular rays O P, OQ which coincide and
so give the line O PQ which has both the required properties of passing through O and of
dividing triangle 4 BC in the required ratio.

In fact there is a projectivity between the pencils O {P}, O {Q} so the standard method of
finding the self-corresponding members of these two pencils can be used to identify the
required ray OPQ. This method is described, for example, in [3] where, in a set of
problems following the construction of the double points of two projective ranges on the
same line, there appears a problem equivalent to the problem under discussion, namely
the construction of a line through a given point to include with two given lines a triangle
of given area.

It is now possible to examine the question of how many of the required transversals can
be drawn through given points in the plane and indeed whether any such transversals can
be drawn. In the case n = 1/2 when the triangle is bisected it turns out that it is always
possible to draw at least one transversal through a given point; from points on three arcs
of hyperbolas joining the mid-points of the medians of the triangle and tangential to
those medians, it is possible to draw two such transversals; and from all points inside the
‘triangle’ formed by these arcs, three transversals can be drawn. Similar but more
complex results are obtained when the triangle is divided into two parts of unequal area in
the ratio n : (1 — n) and it becomes necessary to allow for the triangular portion to have
area of either n times or (1 — n) times that of triangle ABC. In particular, it will be shown
that for certain values of n there are points through which no transversal can be drawn
while for other values of n there are points through which as many as six transversals can
be drawn.

This part of the investigation overlaps with results described by Derek Ball [4]. He shows,
for example, that what he calls the ‘halving envelope’ of an equilateral triangle i.e. the
envelope of lines in the plane which bisect the triangle is ‘a concave “triangle” made up of
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the arcs of three hyperbolae; the vertices of this triangle lie at the mid-points of the
medians. This is the locus of points from which two bisectors can be drawn and separates
the inner region from which three bisectors can be drawn from the outer region from
which one bisector can be drawn through each point. Ball also gives the envelope of the
transversals which divide the triangle in an arbitrary ratio as a combination of six
hyperbolic arcs which form various patterns as the ratio varies. These arcs enter the
discussion of the general problem in the same way as the hyperbolic ‘triangle’ enters the
bisection problem.

2. Construction based on finding self-corresponding rays of two projective pencils

By way of example, consider the problem of finding a line through a given point O which
cuts the sides CA,CB in P, respectively so that ACPQ : AABC=n:1. If D,E on
CB, CA respectively are chosen sothat CD : CB= CE : CA=n:1,itisclear that 4D and
BE are two lines which divide the triangle in the required way, each of the triangles
CAD, CBE having area equal to n times the area of triangle ABC (fig. 2). Moreover if P is
any point of the interval AF and Q is the point of the interval BD such that AQ is parallel
to DP, then PQ also is a line which divides the triangle in the required way: for
ACPQ = ACPD + ADPQ = ACPD + ADPA = ACAD = ndABC. (It may be noted that
Q can equally well be constructed by drawing EQ parallel to BP.)

Figure 1 Figure 2

Thus the points {P} of AE are in one-to-one correspondence with the points {Q } of DB,
with A4 corresponding to D and E to B, in such a way that the line PQ divides the triangle
so that ACPQ = ndABC and all such lines are members of the set {PQ }. Joining the
points of these ranges to the fixed point O gives two pencils of lines O {P},0 {Q} which
are in one-to-one correspondence and it can be seen that the problem will be solved if
these two pencils have a self-corresponding member i.e. if there is a point P on AE which
corresponds to 0 on DB in such a way that OP and OQ coincide (fig. ). In this case there
will be a line PO which passes through O and cuts off triangle CPQ of area equal to n
times that of triangle ABC.



60 El. Math., Vol.41, 1986

The question now arises of whether it is possible, for a given point O, to find such a
self-corresponding member of the pencils O {P},0 {Q} i.e. whether there is a member of
the set { PQ } which passes through O. It is clear that at least one of the lines PQ will pass
through any point O which lies in that portion of the plane which is bounded by the
(infinite) lines 4D and BE and includes the intervals AE and DB. It will be shown later
that in fact there is a unique line PQ through every such point and that there are other
points in the plane through which one and in some cases two of the lines PQ will pass.
Consideration of the six cases in which the transversal cuts off from one of the three
vertices of triangle ABC a triangle of area either #n or (1 — n) times that of triangle ABC
leads to a determination of the number of transversals which can be drawn from any
given point to divide the triangle into two parts with areas in the ration : (1 — n).

First, however, there is the question of finding the self-corresponding line in the pencils
O {P},0 {Q} on the assumption that O is a point for which such a line exists. For this
purpose, it is convenient to consider the problem in the projective plane, introducing a
line at infinity, /.. In this plane (fig.3), the lines 4B and DE, parallel in the Euclidean
plane, intersect at the point C’ on /. The construction of the point Q on DB correspond-
ing to P on AE involves joining DP to cut [, in X and then joining X4 to cut BC in Q
(alternatively, BP can be joined to cut /_ in Y and YE to cut BD in Q). It is now apparent
that the two ranges { P} on AC and {Q} on BC, hitherto described simply as in one-to-one
correspondence, are in fact projective ranges, being linked by the following series of
perspectivities:

{0} £ (x} = (P}

The problem is therefore to find the self-corresponding members of the two projective
pencils O {P},0{Q}, assuming such self-corresponding members do exist. There are at
most two such self-corresponding members and if it is to be possible to draw the required
transversal through the given point O, at least one of these must intersect C4 and CBin
points P and Q which lie in the segments AE and BD respectively.

Figure 3
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There is a standard construction for finding these self-corresponding lines (see, for
example [3], [5]) which requires only that the projectivity be defined by the correspon-
dence between three pairs of lines which are determined by the fixed points of the
problem, namely A4, B,C, D, E,O, and [,. These three pairs of lines are immediately to
hand for (with points on / as defined in figure 3)

>|lo

0 (QBDCA') = O (XC'WB'A')= O (PEAB'C).

Thus for example, O (B,E), O (D,A), O (C, B') are three pairs of corresponding lines, all
defined by the fixed points of the problem.

Figure 4

To construct the self-corresponding rays of the projective pencils O {P},0 {Q}, take
an arbitrary conic (such as a circle) through the point O which cuts the lines
O (B,D,C,E, A, B') in the points b,d, c,e,a,b’ respectively (fig.4). The Pascal line of the
hexagon bdcb'ae i.e. the line through the three points (ab, de),(ac,db’), (ec,bb’) will cut
the conic in two points, touch it at one point or not cut it at all. The self-corresponding
lines of the projectivity between O {P} and O {Q}, when they exist, are obtained by
joining O to the points of intersection of the Pascal line and the conic. If, as in figure 4,
there is one of these points g such that the self-corresponding line O which it determines
cuts BC in a point Q of DB and AC in a point P of AE, then this line will be a transversal
which divides the triangle in the required way. It will follow (and provide a check for the
construction) that if DP cuts /_ in X, then X, 4, @ are collinear.
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It remains now to translate the construction back into the Euclidean plane. To construct
the required line through O, draw an arbitrary circle through O. Let O (B,D, C,E, A) cut
this circle in the points b, d, c, e, a respectively and let the line through O parallel to AC cut
this circle in b’. Proceed exactly as before to construct the self-corresponding line or lines
or to find that there are none. If, as in figure 5, a self-corresponding line cuts the sides
BC,AC in Q and P, points in the segments DB and AE respectively, then OPQ is a
transversal which divides the triangle into two parts with areas in the required ratio. In
this case a check on the construction is provided by the requirement that DP and 40 be
parallel.

ot
.t
»

e e

Figure 5

3. For what points O can the construction be carried out?
How many transversals will pass through a given point O?

It has been noted already that the construction just described will produce a transversal
OP(Q with the required properties whenever O lies in the region bounded by the lines
AD, BE which includes the intervals AE, BD. This follows from the fact that at least one
of the lines PQ which cuts off triangle CPQ of area n times that of triangle 4 BC will pass

through any point in this region. A

Figure 6
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Figure 7

It will be shown in the next section that these lines PQ envelop the arc of a hyperbola with
its centre at C, CA and CB as asymptotes and its points of contact with the two tangents
DA, EB at the mid-points G, H of those intervals (fig. 6). Assuming this result, it can be
seen that discussing whether one or more of the transversals PQ pass through a given
point O is equivalent to considering whether one or more tangents to this hyperbolic arc
pass through O. This leads to the conclusion that through all points O previously
considered, namely all points in the region bounded by AD and BE and including the
intervals AE and BD, and through all points of the hyperbolic arc GH, there is just one
such line; and through interior points of the ‘triangle’ bounded by the arc and its tangents
at G and H (i.e. AD and BE) and the points of its straight line boundaries, there are two
such lines.

This pattern for transversals through O which cut off triangle CPQ of area equal to n
times the area of triangle ABC is shown in figure 7 in which the shading indicates the
number of transversals which can be drawn from a point in each region of the plane. To
obtain the full story for transversals which divide the triangle in the ratio n : (1 — n), it is
convenient to restrict »n so that 0 < n < 1/2 and to consider two cases for each vertex in
which the triangular portion has area n or (1 — »n) times that of triangle 4 BC, except when
n = 1/2 and the two cases are identical. The patterns corresponding to these six cases
(three when n = 1/2) are then superposed to find how many transversals can be drawn
from any point in the plane and how to divide the plane into regions according to the
number of transversals which can be drawn from each point of the region.

The simplest case is the problem in which the triangle is bisected and n = 1/2. If the
mid-points of the sides of triangle ABC are named D, E, F and the mid-points of the sides
of triangle DEF are named G, H,J (fig.8), the regions which must be superposed are
defined by three pairs of lines and their corresponding hyperbolic arcs: BE,CF,HJ;
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CF,AD,JG; AD, BE,GH. Considering the numbers of transversals through each point of
the plane for each of these three cases leads to the result indicated in figure 8 in which
three transversals can be drawn through each interior point of the ‘triangle’ GHJ and one
transversal through each exterior point. (From points on the boundary, two transversals
can be drawn.)

Figure 8

When n lies between 1/2 and 0, there are two transversals through each vertex of the
triangle e.g. AD,, AD, which intersect EF in G,, G, respectively; the corresponding nota-
tion for the other vertices is shown in figure 9 (also 10, 11). In these cases there are six
pairs of lines and associated hyperbolic arcs which can be sufficiently identified by
naming the arcs: H,J,, H,J,; J,G,,J,G,; G,H,,G,H,. Derek Ball [4] has discussed how these

Figure 9
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arcs combine to outline interestingly shaped regions of the plane. As n decreases from 1/2,
there appears first the shape indicated in figure 9 which Ball describes as a double
triangle: there is a central ‘triangular’ region joined across its sides to three ‘quadrila-
terals’. Then, as n decreases further, the central ‘triangle’ reduces to a point and the arcs
form three ‘triangles’ as in figure 10. Finally, as n takes still smaller values, a central

‘triangle’ opens up again and is now joined at its vertices to three other ‘triangles’ as in
figure 11.

Figure 10

When a census is taken of the number of transversals through each point of the plane
arising from each of the six regions associated with a pair of lines such as BE,, CF, and the
arc H,J,, the results are as indicated in figures 9-11. These show a progression from figure
9, which can perhaps be thought of as produced by a double exposure of figure 8 with a
slight move of the subject between shots, through figure 10 to figure 11. It will be
observed that from points of the central region which appears in figure 9 we can draw six
transversals while from the central region which re-appears in figure 11 no transversals at
all can be drawn. In all cases, the number of transversals which can be drawn from the
points of a boundary between two regions is the arithmetic mean of the numbers which
can be drawn from the regions.

4. The envelope of the lines {PQ}

It remains to show that the envelope of the lines {PQ} is indeed a hyperbola with
properties assumed in section 3.

Since the lines {PQ} are the joins of the points of the projective ranges {P} on AC and
{Q} on BC, their envelope is certainly a conic which has AC and BC themselves as
tangents. The points of contact of these lines with the conic are those points of {Q} and
{P} respectively which correspond to the point C. It has already been noted that
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Figure 11

(PEAB'C) — (QBDCA’)

so these points are the points 4" and B’ of the line at infinity. It follows that the conicis a
hyperbola with CA4 and CB as asymptotes.

The part of the hyperbola of interest lies between the points of contact of BE and AD so
these points must be found. For example, the point of contact of BE with the hyperbola is
found by obtaining the range of points on BE which is projective with each of the ranges
{Q} on BC and {P} on AC and then identifying the point of that range which corre-
sponds to B as a point of {Q }.

Figure 12
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To this end, continue as in figure 12 the construction started in figure 3: draw BE to cut /
in V,AA  to cut C'D in F,VF to cut AB in G. If AD and BF meet in J and C'J cuts
BE,BC,AFin K, L, M respectively, it is clear from the quadrangle AFDB that (BLDA") is
a harmonic range and accordingly that the pencil C' (BLDA')is harmonic. Consideration
of the quadrangle BGFE then shows that GE and BF intersect on C'L and hence meet in J.
It can now been seen that

EAB'C = C'A'B = KB

(where? indicates a point which is not labelled). Since it is known that
(BDCA'") — (EAB'C), it follows that (BDCA") — (K?7B) so that K on BE corresponds in
the projectivity to B on BC (and B on BE corresponds to A" on BC). This shows that K is
the point of contact with the hyperbola of the tangent BE (and confirms that BC touches
the hyperbola at C").

Again, because

BDCA' = BC'A? = 7JA4?

and (EAB'C) — (BDCA'"), it follows that (EAB'C) — (7JA?) so that 4 as a point of AC
corresponds to J as a point of 4D (and B’ as a point of AC corresponds to A as a point of
AD). Hence the point of contact with the hyperbola of the tangent AD is the point J (and
B’ is the point of contact of AB).

Considering the intersections of 4D and BE respectively with the harmonic pencil
C’" (BLDA'") shows that the harmonic conjugate of J with respect to A, D is a point on /,
and of K with respect to B, E is the point V' on /. In the Euclidean plane therefore, the
points of contact with the hyperbola of 4D and BE are the mid-points of these intervals.
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