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Bemerkung zur kleinen Mitteilung von H. Alzer in El. Math. Vol. 40 (1985), p. 22-24

In unabhingigen Zuschriften an die Redaktion haben der Autor H. Alzer (Waldbrél) und
H.J. Seiffert (Berlin) darauf hingewiesen, dass die fiir 5 > a > 0 bewiesene Ungleichung

. Eaéb a+b\e-a .
vare< () (o) <(5) g

auch als Spezialfall der Ungleichung

b- )M< f( )dx<(b—a)f< b), fallsf: [a,b]>R

streng konkav

erhalten werden kann. Setzt man darin f(x) = Inx, so ergibt sich fast unmittelbar die
Ungleichung (*). Die Redaktion

Aufgaben
Aufgabe 920. In der kubischen Gleichung
x3—ex?+éx—1=0
ist der Koeffizient ¢ eine komplexe Zahl und ¢ die konjugiert komplexe. Man finde die
Menge der Zahlen c, fiir welche die Wurzeln der Gleichung den Betrag 1 haben.
A. Pfluger, Ziirich

Solution: The problem is clearly to investigate for which values of ¢ there exist two real
numbers ¢ and y such that

23—c?+éz—1=(EZ—e")z—eY)(z—e '),
in other words, we have to analyze the set V' defined by

V:

{e"” + e + e l(¢+w)|¢ l//ER}
= {e*+2e” 2‘"’608(!// +30)lo, v R}
= {e®+se” 2""lq)eR -2<s5<2}.

Apparently V is the union of certain line segments of length 4.
Now consider the hypocycloid H defined in parametric form by

H:w(p)=e*+2e % (peR)

. 1 . 1
For arbitrary g, the points w (g,) = e + 2e “2%0 and w (¢, + 271) = e™0 — 2e " 2% are the
end points of such a line segment /, whereas
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w(—2¢,) =e?+ 2e% |
= e" + (e + e ~2%0) = 0 + 2 ¢ ~ 2% cos (3 py)

is an intermediate point, in which

L,
W, (¢)qz= —2«;:0 = 2€ ~ Sln(—;.goO)a

so that /is tangent to H in the point w ( — 2 ¢,).
Summarizing we find that V is the hypocycloid H together with its interior.
O.P. Lossers, Eindhoven, NL

Weitere Losungen sandten C. Bindschedler (Kiisnacht), J. Binz (Bolligen), P. Bundschuh
(Koln, BRD), A.A. Jagers (Enschede, NL), W. Janous (Innsbruck, A), L. Kuipers
(Sierre), Kee-wai Lau (Hong Kong), F. Sigrist (Neuchatel), P. Streckeisen (Ziirich),
Hj. Stocker (Widenswil, 2 Losungen), M. Vowe (Therwil), H. Walser (Frauenfeld), K.
Warnecke (Vechta, BRD), R. Wyss (Flumenthal). Eine Lésung war falsch.

Aufgabe 921. Mit den tliblichen Bezeichnungen fiir das ebene Dreieck (siche O. Bottema et
al., Geometric Inequalities, Groningen 1969) zeige man:

o
AL | R a"cos—i + b"cos—";: + c"cos%

3 1/2
<[§s(a2”"+b2"“+c2"“‘)} , n>1.

Wann genau gilt Gleichheit?
D.M. Milosevic, Pranjani, YU

Losung: Zur Vereinfachung verabreden wir fiir eine beliebige Funktion f die Schreibweise

Y f(a,b,c;0,B,y)=f(a,b,c;aBy) + f(b,c,a;B,p,a) + f(c,a,b;p,a,p).

Wir beweisen folgende Verschéarfung:

n-1 1
3”@) s"< a"cos%slzs(l+%>~ az"":l/z, n>1.

r 1
(Dies ist eine Verschiarfung wegen der bekannten Beziehungen 3’?r < s und R < -2-> .

Sein > 1. Wenden wir die Tschebyscheffsche Ungleichung (nach unten) und die Schwarz-
sche Ungleichung (nach oben) auf den mittleren Term an, so ergibt sich

1 -1 x x & 2n~1 72
™) (3 a)( a COSE)S a"cos-i s[( acos§>( a )] .
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Aus der ersten Ungleichung und durch vollstindige Induktion ergibt sich sofort

A 2\" o . o
3/<§) s g(-?;)s 'ZCOSESZ" cos -

Betrachten wir jetzt die zweite Ungleichung von (*). Es gilt

yaba) s (@ so (e b @

Zacos szz b2 = Z( +b+c> 22(b+a ab)
+ b? — ¢? r
——z ——s-Zcoscx—s(l+—E),

und daraus folgt sofort die Behauptung. Es ist klar, dass alle Ungleichungen in dieser
Losung genau dann Gleichheiten werden, wenn das Dreieck gleichseitig ist.
V.D. Mascioni, Origlio

Weitere Losungen sandten S. Arslanagic (Trebinje, YU), P. Bundschuh (K6ln, BRD), W.
Janous (Innsbruck, A), M. S. Klamkin (Edmonton, CD), M. Vowe (Therwil).

Aufgabe 922. Es secien m,n gegebene natiirliche Zahlen. Man beweise oder widerlege
folgende Aussage: Fiir unendlich viele Primzahlen p gilt

(%))

Losung: Die Aussage ist wahr.
Einem bekannten Satz von Dirichlet zufolge gibt es unendliche viele Primzahlen p der
Form

L. Kuipers, Sierre

p=Am!'!n +1 (AeN).
Fir solche Zahlen hat
pmpm—1)...(pm—m + 1)

die Form Cm !n + m!, (CeN)

und deshalb ist (’;’:’) —Cn+1.

O.P. Lossers Jr., Eindhoven, NL

Weitere Losungen sandten G. Behrendt (Tiibingen, BRD), P. Bundschuh (K6ln, BRD),
Chr. A. Meyer (Ittigen), F. Sigrist (Neuchatel).
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Neue Aufgaben

Die Losungen sind getrennt nach den einzelnen Aufgaben in Maschinenschrift erbeten
bis 10. Oktober 1986 an Dr. H. Kappus. Dagegen ist die Einsendung von Losungen zu den
mit Problem ... A, B bezeichneten Aufgaben an keinen Termin gebunden.

Bei Redaktionsschluss dieses Heftes sind noch ungel6st: Problem 601A (Band 25, S.67),
Problem 625B (Band 25, S. 68), Problem 645A (Band 26, S. 46), Problem 672A (Band 27,
S.68), Aufgabe 680 (Band 27, S.116), Problem 724A (Band 30, S.91), Problem 764A
(Band 31, S.44), Problem 862A (Band 36, S. 68).

Aufgabe 938. Die folgenden Summen:

" 2n+ 1\ 2n+m—ys
S,(m,n):=
o= 55N )

" 2n+2\[2n+1+m—s
S, (m,n)= A\ZO(ZS N 1)( v 1 >, m,neN

sind geschlossen auszuwerten.
J. Binz, Bolligen

Aufgabe 939. Man bestimme den geometrischen Ort der Lotfusspunkte aus einem Pol O
auf den Verbindungsgeraden der Schnittpunkte, welche die Schenkel eines variablen
Winkels mit Scheitel O von fester Grésse mit zwei gegebenen nicht durch O verlaufenden
Geraden besitzen.

G. Unger, Dornach

Aufgabe 940. Bezogen auf ein Kkartesisches Koordinatensystem seien A4 = (a,0),

B = (0,b), C= (¢,0), D = (0,d) mit a # ¢, b # d und abcd > 0 die Grundpunkte eines

Kegelschnittbiischels, und es bezeichne k das Achsenverhdiltnis einer beliebigen Ellipse
des Bischels, £ > 1. Man ermittle das Minimum von k.

C. Bindschedler, Kiisnacht

H. Kappus, Rodersdorf

Literaturtiiberschau

R. Narasimhan: Complex Analysis in One Variable, XVI und 266 Seiten, Fr.84.—. Birkhduser, Boston, Basel,
Stuttgart 198S.

Dieses Buch behandelt die klassische Theorie der Funktionen einer komplexen Variablen im Zusammenhang mit
anderen Gebieten der Mathematik. Ein kurzes Kapitel ist den Funktionen von mehreren komplexen Variablen
gewidmet. Methoden der reellen Analysis werden beim Beweis des Corona-Theorems verwendet. Jedes der
insgesamt elf Kapitel schliesst mit interessanten historischen Anmerkungen und einem niitzlichen Literaturver-
zeichnis.

Das Werk kann von fortgeschrittenen Studenten als Lehrbuch der Funktionentheorie benutzt werden. Es enthélt
zahlreiche moderne Resultate, welche man in den iiblichen Einfiihrungen vergeblich sucht. C.A. Meyer
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