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Kleine Mitteilungen
Die Einfachheit der Gruppe A,

Der folgende Beweis der Einfachheit der Gruppe A4 bendtigt ausser dem Satz von
Lagrange nur simpelste Kombinatorik und folgendes unmittelbare Korollar aus dem
Isomorphiesatz:

(*) G Gruppe, NG, xeG, (0(x),|G:N|)=1=xeN.

A, sei als Kern des Signumshomomorphismus eingefiihrt (eine elegante Darstellung dazu
findet sich in [1,2.1.3]). Dann enthilt 4, alle Doppeltranspositionen, wegen |S: 4| = 2
aber nach (*) auch alle Elemente ungerader Ordnung von S, also mindestens

5
20=2- 3 Permutationen der Form (ijk) (Ordnung 3),

24 = 4! Permutationen der Form (jjk/m) (Ordnung 5),
3
15=5- ( 2) Permutationen der Form (if) (k/) (Ordnung 2).

Wegen |A4,| = 60 schopfen diese mit dem Einselement ganz A4; aus.

Sei nun 1 < N<14; und a:=|4;: N| =+ 1. Es gilt: [N||60. Falls 34a, so folgt aus (*):
21 £ |N|, also |N| = 30, damit S*a und wiederum mit (*) der Widerspruch 30 = |N| = 45.
Also gilt 3|a, und genauso 5|a. Daher folgt |N||4. Die Méglichkeit |[N| = 4 fiihrt, wieder
nach (*), zu dem Widerspruch 4 = |N| 2 16. Also ist |[N|=2, d.h. N = {id, (ij) (k)}
aufgrund der Vollstindigkeit der obigen Elementliste. Aber dann ist

N (jk) = {(k), kD)} # {(ijk), Glk)} = (k)N ,

endgiiltig mit Widerspruch.
Hartmut Laue, Math. Seminar, Universitit Kiel
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Ein einfacher Beweis des Umkehrsatzes der Differentialrechnung

Bei der Vorbereitung auf die Priiffung fiir die Grundvorlesung Analysis entdeckte ich,
dass es mir nicht méglich war, einen der beiden Beweise, mit denen ich mich ein halbes
Jahr friiher eingehend beschiftigt hatte, zu reproduzieren. Da mir die Aussage geome-
trisch plausibel erscheint, andererseits die mir vorgefiihrten Beweise verwirrend erschie-
nen, habe ich mir einen eigenen Beweis zurechtgelegt. Im folgenden findet man die Teile
des Beweises, die von den Standard-Methoden abweichen.

Ich danke Herrn Doz. P. Michor, der mir beim Verfassen der Arbeit geholfen hat.

Im folgenden ist der R mit der euklidischen Metrik ||.|| versehen.

Satz. Es sei U offen im R" und f: U —»R" eine differenzierbare Abbildung, so dass fiir x,e U
die Jacobi-Matrix df (x,) invertierbar ist und df stetig ist bei x,. Dann gibt es eine ¢-Umge-
bung U, (x,) von x,, so dass f injektiv ist auf U, (x,). Fiir jede Umgebung V von x, ist
ausserdem f (V) eine Umgebung von f(x,).

Beweis: Wir beweisen zunichst die erste Aussage indirekt: Falls es keine Umgebung von
x, gibt, auf der f injektiv ist, gibt es fir jedes keN Punkte x,y.eU,,(x,) mit
f(x)=f(. Sind f=(f',...,f) die Komponentenfunktionen, so ist diec Funktion
g..():=f'(x, + t (y, — x,)) differenzierbar auf [0, 1] und erfiillt g, (0) = g, ,(1). Nach dem
Satz von Rolle existiert also ein 0 < ¢;, < 1, so dass

0=g () =df O+ 1, (v — x) X (0 — X))

Wir betrachten nun die Matrix

!dfl (% + tl,k(yk - X))
M, = '

dfn (e + 1,0 — X)) /

Dann ist M,(y,— x,) =0, also ist detM, = 0. Aber weil df stetig ist bei x, und
X Xo, Vi X, ist im M, = df (x,), also detdf(x,) = limdet M, = 0 ein Widerspruch zu
df (x,) invertierbar.

Nun beweisen wir die zweite Aussage. Jede Umgebung V von x, enthdlt eine abgeschlos-
sene e-Umgebung W = U, (x,) fiir ¢ > 0, so dass df (x) invertierbar ist fiir alle xe Wund f
injektiv ist auf W (nach der 1. Aussage). Falls f (W) keine Umgebung von f (x,) ist, gibt es
fiir jedes k ein z,eR™\f(W) mit |z, — f (x|l <'/i- Nun sei b (x):=|f(x) - z|’>,xeU.
Dann ist h, differenzierbar auf U, also stetig, also hat /, ein Minimum auf der kompakten
Menge W, bei x, € W etwa. Wir behaupten, dass x, ein Randpunkt von Wist. Wenn nicht,
dann ist dh,(x,) =0, aber aus dh,(x,) 'y = 2{f(x) = z,,df (x,) - y> =0 fiir alle yeR"
folgt der Widerspruch f(x,) = z,, weil df (x,) invertierbar ist. Daher ist jedes x, im Rand
OW enthalten. Weil 0W kompakt ist, hat die Folge (x,) einen Haufungspunkt xedW.
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Aber ||f (x) — zll < IIf (xo) — zell < 1/k, weil h, minimal bei x, ist, also ist ||f (x,) — f(x,)|l
< W) = zell + llze — f (I < 2/k.
Weil f'stetig ist, folgt f (x,) = f(X), | x, — X || = &, im Widerspruch zur Injektivitit von fauf
w.
Damit ist der Satz vollstandig bewiesen.

Paul Sinclair, Universitdt Wien
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Berichte

XI. Osterreichischer Mathematikerkongress 1985

In Graz wurde vom 16. bis 20. September 1985 der XI. Osterreichische Mathematiker-
kongress durchgefiihrt, veranstaltet von der Osterreichischen Mathematischen Gesell-
schaft, in ausgezeichneter Weise organisiert vom Institut fiir Mathematik der Karl-Fran-
zens-Universitdt Graz. Der Kongressfiihrer verzeichnet 668 Teilnehmer, die Mehrzahl
selbstverstindlich aus Osterreich und Deutschland — die Deutsche Mathematiker-Verei-
nigung fiihrte gleichzeitig ihre Mitgliederversammlung durch —, aber auch aus der
Schweiz, aus Frankreich, Jugoslawien, Ungarn, Grossbritannien, aus dem Nahen Osten
und aus Ubersee. — Der Kongress begann mit einer feierlichen Eroffnung: Willkommens-
gruss der Tagungsleitung, Grussworte der Vertreter der Behorden, des Rektors der
Universitit, des Prisidenten der Deutschen Mathematiker-Vereinigung (Prof. A. Dold),
Ansprache des Vorsitzenden der Osterreichischen Mathematischen Gesellschaft (Prof. C.
Christian). — Die jeweils einstiindigen Hauptvortrage wurden gehalten von J. Moser,
Ziirich (Uber den Stabilititsbegriff bei Hamiltonschen Systemen), B. H. Matzat, Karls-
ruhe (Uber das Umkehrproblem der Galoistheorie), R. Schneider, Karlsruhe (Zufalls-
geometrie), W.K. Hayman, London (Schlichte Funktionen); den Abschluss bildete ein
Vortrag von K. Strubecker, Karlsruhe (Wilhelm Blaschkes mathematisches Werk). Da-
zwischen wurden wie iiblich in 12 verschiedenen Sektionen eine ansehnliche Zahl von
halbstiindigen Sektionsvortragen durchgefiihrt; eine sehr reichhaltige Buchausstellung
stiess auf grosses Interesse. — Der Kongress bot zahlreiche Moglichkeiten zur Kontakt-
nahme unter Kollegen, was ja immer eine besonders angenehme Seite solcher Veranstal-
tungen darstellt. Zudem verwohnten die Organisatoren in ihrer echt Gsterreichischen
Gastfreundschaft die Teilnehmer mit Empfingen, mit einem Konzert, mit dem Angebot
von verschiedenen Ausfliigen und einem gediegenen Damenprogramm. Dafiir und fiir
alle ihre Bemiihungen bei der Vorbereitung und Durchfiihrung des Kongresses gebiihrt
ihnen der herzliche Dank aller Teilnehmer. Robert Ineichen, Fribourg
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