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Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts

El Math Band 41 Nr 2 Seiten 25-48 Basel 10 März 1986

Zur Entwicklung der zentralen Ideen in der
Funktionalanalysis

1. Einleitung

Kurz vor der Jahrhundertwende beginnend, entwickelte sich die Funktionalanalysis aus
recht heterogenen Anfangen innerhalb von 40-45 Jahren zu einem selbständigen und
relativ einheitlichen Gebiet Rein ausserlich dokumentierte sich der Abschluss dieses
Prozesses im Jahre 1932 durch das gleichzeitige Erscheinen dreier Bucher, von Banach [1]
uber die Grundlagen der Theorie der normierten (insbesondere der Banachraume) und
der Frechetraume [1*], von M H Stone [23] uber Hilbertraume (mit Einschluss der

Spektraltheone unbeschrankter linearer Operatoren) und von J v Neumann [20] uber
die Grundlagen der Quantenmechanik im Rahmen der Hilbertraumtheone
In zwei aufeinanderfolgenden Arbeiten betrachten wir Zusammenhange zwischen den

Hauptideen bis 1932, die zu dem genannten Entwicklungsprozess der Funktionalanalysis
gefuhrt haben, und zwar in der ersten Arbeit die Zeit bis kurz nach der Jahrhundertwende
und in der zweiten die Zeit von Frechets Dissertation (1906) und Hilberts Arbeiten zur
Spektraltheone bis 1932 Manches kann dabei aus Platzgrunden nur angedeutet werden
Betreffs weiterer Einzelheiten und Ergänzungen sei auf eine kurzlich gemeinsam mit
Herrn Garrett Birkhoff (Harvard-Universität) durchgeführte Untersuchung [4] verwiesen,

auf der die vorliegenden Arbeiten zum Teil basieren Darüber hinaus hat mir Herr
Birkhoff wertvolle Ratschlage erteilt, die die Gestalt dieser Arbeiten wesentlich beein-
flusst haben, wofür ich ihm auch an dieser Stelle herzlich danken mochte Inhaltlich
schliesse ich mich weitgehend an meine kurzlich auf dem 11 Osterreichischen
Mathematikerkongress (16 -20 9 1985) in Graz gehaltenen Vortrage an
Das steigende Interesse an der Entwicklung der Funktionalanalysis, wohl bedingt durch
die Bedeutung, die diese in Theorie und Anwendung gewonnen hat, wie auch durch ihre

Vielschichtigkeit, die den Gesamtüberblick uber den erreichten Stand erschwert, ersieht

man aus Monographien, wie etwa [5, 8, 18, 19], und aus einer wachsenden Zahl von
Publikationen in Zeitschriften, von denen nur [2, 6, 22, 24] genannt seien [2*]

2. Entwicklungsperioden

Als ersten Schritt unterteilen wir die Gesamtentwicklung zeitlich in verschiedene

aufeinanderfolgende Perioden Dadurch schaffen wir eine gewisse Ordnung in der Vielfalt der
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miteinander verflochtenen Ideen und Erscheinungen Stichwortartig kennzeichnen wir
die Hauptmerkmale und -ereignisse einer jeden dieser Perioden So erhalten wir als erstes

Ergebnis einen groben Gesamtüberblick in der Gestalt der folgenden

Zeittafel.

1684 Erste Veröffentlichung zur Differentialrechnung durch Leibniz [15]
1684-1887 Vorgeschichte
Bedeutsam fur die spatere Funktionalanalysis ist wahrend dieser Zeit vor allem die

Entwicklung des Funktionsbegriffs, des Raumbegriffs, der Founerreihen, der
Variationsrechnung, der Potentialtheorie und der Mengenlehre auf R und im Rn

1887 Geburtsjahr Erste Noten uber Funktionale von Volterra [25, 26]
1887-1906 Übergangsperiode
Kennzeichen Behandlung funktionalanalytischer Probleme mit klassischen Methoden
Relevante Entwicklungen
Integralgleichungen (1896 Volterra, 1900-3 Fredholm, 1904-6 Hilbert)
Wachsende Bedeutung der Axiomatik (1888 Dedekind, 1889 Peano, 1899 Hilbert)
Funktionale (1903 Hadamard)
Mass- und Integrationstheorie (Peano, Jordan, Borel, 1902 Lebesgue)

1906 Einfuhrung metrischer Räume durch Frechet [9]
1906-32 Entwicklung der Funktionalanalysis zu einem eigenen Gebiet
Hauptereignisse und -entwicklungen
Integralgleichungen und Operatoren (1906 Hilbert, 1913, 1916 F Riesz)
Riesz-Fischer-Satz (1907)
Funktionale (1906 Frechet, 1906, 1909, 1910 F Riesz)
Topologischer Raum (1914 Hausdorff, 1924 Alexandroff)
Hilbertraum und Quantenmechanik (Hilbert, 1927-32 v Neumann, M Stone)
Normbegriff (1916 F Riesz, 1920 Banach, 1921 Helly, 1922 Hahn, Wiener)
Banach- und Frechetraum (1920-32 Hahn, Banach, Steinhaus, Mazur)

1932 Monographien von Banach, M Stone und v Neumann Äusserhches Zeichen des

Abschlusses der Entwicklung
1932-85 Vielgestaltige Weiterentwicklung mit vielen neuen Anwendungen
Wird in der vorliegenden Arbeit nicht weiter behandelt Einige dieser neuen Entwicklungen
betreffen die Ergodentheone, Banach- und v Neumann-Algebren, topologische Vektorraume,

insbesondere lokalkonvexe Räume, Operatorentheorie, insbesondere nichtlineare
Operatoren, Distnbutionen, abstrakte harmonische Analyse und Analysis auf
Mannigfaltigkeiten Anwendungsgebiete umfassen die numerische Analysis, Approximationstheorie,

Quantentheorie, partielle Differentialgleichungen usw

3. Die Idee des Funktionsbegriffs

Um der zu behandelnden Materie naherzutreten, stellen wir den Begriff des Funktionenraums

in den Mittelpunkt Dieser Begriff, der sich sehr allgemein auffassen lasst (indem
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man z. B. Räume von Distributionen einbegreift), spielt nicht nur in der Theorie eine
zentrale Rolle, sondern durchdringt auch die Anwendungen auf die Numerik,
Approximationstheorie, Differentialgleichungen und andere Gebiete. Zugrunde liegt die Idee,
Mengen von Funktionen, die gewisse Eigenschaften gemeinsam haben (z. B. alle reellwer-
tig und in demselben Intervall stetig sind), als «Punkte» eines (metrischen oder noch
allgemeineren) «Raumes» aufzufassen. Dies setzt den Funktionsbegriff und den Raumbe-

griffvoraus.
Die Idee des Funktionsbegriffs hat sich langsam, aber folgerichtig und ohne wesentliche

Umwege entwickelt, vor allem im Zusammenhang mit der Differential- und Integralrechnung.

Die erste Veröffentlichung der Differentialrechnung erscheint im Jahre 1684:

Leibniz [15] entschliesst sich erzürnt zu einer raschen und knappen Mitteilung seiner

Theorie, um weiteren Plagiaten durch W. v. Tschirnhaus vorzubeugen, der wesentliche

Ergebnisse von Leibniz 1683 (in Actis eruditorum, 433-37) unter seinem Namen publiziert

hatte. Das Wort «functio» wird 1694 von Leibniz in einem anderen Sinn [3*] und ab
1698 von Joh. Bernoulli und Leibniz etwa in dem heute üblichen Sinne benutzt. Wichtiger
als das Wort aber ist die Sache, nämlich die Idee, die verschiedenartigen Abhängigkeitsverhältnisse,

die Leibniz selbst um transzendente bereichert hatte, unter einem einzigen
Begriff, dem der Funktion, zusammenzufassen, als Grundlage für den neuen «Calculus»,
dessen Kenntnis sich von 1684 an relativ rasch verbreitete.
Euler hat dann mit seiner berühmten «Introductio in analysin infinitorum» (1748) ein

Werk von grossem Einfluss geschaffen, das erstmals den Begriff der Funktion [4*] an die

Spitze stellt und als Einteilungsprinzip benutzt. Dem 19. und beginnenden 20. Jahrhundert

verdanken wir schliesslich drei wichtige Funktionsklassen und zugehörige
Integrationstheorien (auf die sich die Jahreszahlen beziehen), nämlich

die stetigen Funktionen (Cauchy 1821 [7]),
die beschränkten Funktionen (Riemann 1854 [21, S. 227-71]) und
die messbaren Funktionen (Lebesgue 1902 [14]).

Während dieses Zeitraums erscheint 1822 Fouriers «Bibel des theoretischen Physikers»,
wie Sommerfeld das Buch «Theorie analytique de la chaleur» genannt hat. Fourierreihen

00

f(x) l2a0 + V (fl„ cos«x + bn smnx)
«= i

mit

1 n 1 "

an ~ \ f(x) cosnxdx, b„= - \ f(x) sinnxdx
n 1„ n ln

- und ebenso Fourierintegrale; vgl. Birkhoff [3, S. 164-70] - werden damit zum
Allgemeingut weiter mathematischer Kreise und üben wiederholt grossen Einfluss auf die

Entwicklung aus:
1. Der «moderne» Dirichletsche Funktionsbegriff steht in einem Bericht über Fourierreihen

[16] aus dem Jahre 1837.

2. Riemanns Integrationstheorie ist ein Nebenprodukt der Untersuchung über Fourierreihen

(Habilitationsschrift 1854; [21, S. 227-71]), und Lebesgue hat die Kraft seiner

neuen Begriffe und Methoden zuerst in grösserem Umfange an der Theorie der Fourierreihen

erwiesen.
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3. Fourierreihen wurden zum Prototyp und Leitfaden für viele Ideen zur Orthogonalität
in der klassischen Theorie und noch mehr im Hilbertraum, beginnend mit Hilberts
Arbeiten über Integralgleichungen.

4. Die Idee des Raumbegriffs in der Funktionalanalysis

Das zweite Ingrediens des Funktionenraums, der Raumbegriff, ist in seiner Genesis

schwieriger zu erfassen. Denn erstens ist der Begriff als solcher stark von dem mathematischen

Gebiet abhängig, das man betrachten will, und zweitens ist es nicht ganz einfach,
die Grösse des Einflusses verschiedenartiger Faktoren abzuschätzen, die die Idee des

Raumes während der Vorgeschichtsperiode 1684-1887 (und darüber hinaus bis 1906)
entwickeln und schliesslich auch den für die Analysis entscheidenden Schritt von endlicher

zu unendlicher Dimension vorzubereiten halfen. Sicher ist aber, dass sich derartige
Faktoren hauptsächlich auf den folgenden Gebieten ergaben:

1. Mechanik. «Raum» nannte man bis weit in das 19. Jahrhundert hinein nur den
dreidimensionalen euklidischen Raum. Die Idee, über die Dimension 3 hinauszugehen, reicht
aber wenigstens bis ins 16. Jahrhundert zurück; z.B. findet man sie bei M. Stifel (1553).
Segre (Enc. math. Wiss. III, 2.2., S.733) macht einige Andeutungen über Frühentwicklungen,

die aber ohne Folgen geblieben sind. Die Vorstellung eines xyzt-Raumes (t die

Zeit) findet sich bei J. L. Lagrange («Mechanique analitique», 1788; 2. Aufl. «Mecanique
analytique», 1811-15) und bezeichnet wohl den Beginn der systematischen Benutzung
höherdimensionaler Räume. Von hier aus führte der Weg folgerichtig zum 3«-dimensionalen

Konfigurations- und 6n-dimensionalen Phasenraum des «-Körperproblems und
zur «Geometrisierung» der Mechanik unter dem Einfluss der klassischen Variationsprin-
zipe (Hamilton 1834-35, Jacobi 1837).

2. Projektive Geometrie. Die Schöpfungen der grossen Geometer des 19. Jahrhunderts
bilden einen weiteren einflussreichen Faktor bei der Entwicklung des Raumbegriffs. Die
projektive, die sphärische und die Liniengeometrie wären hier zu nennen und als Namen
Poncelet, Chasles, Steiner, Plucker und andere. F. Klein, der mit seinem Erlanger
Programm selbst einen grundlegenden Beitrag leistete, hat in seinem Buch [12] einen guten
Überblick über die Entwicklung dieser Geometrien gegeben.

3. Nichteuklidische Geometrie. Es ist merkwürdig, dass ein Jahrtausende altes Problem
fast gleichzeitig dreimal unabhängig voneinander gelöst wird, durch Gauss, der spätestens

1816 Klarheit über die Lösung des Problems besass, aber, das Geschrei der Böotier
fürchtend, nichts darüber veröffentlichte, durch N. I. Lobatschewski (1829) und schliesslich

durch den jüngeren Bolyai (Jänos, 1832). Diese Arbeiten wurden ziemlich spät
bekannt und haben deshalb erst in der 2. Hälfte des 19. Jahrhunderts zur Idee des

Raumbegriffs beigetragen.

4. Vektorräume traten zuerst um die Mitte des 19. Jahrhunderts auf (Cayley 1844, Grassmann

1844 «Die Wissenschaft der extensiven Grösse oder die Ausdehnungslehre»).
Allerdings blieb Grassmanns Werk auch in der Umarbeitung von 1862 so schwierig, dass
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sein Einfluss gering war. Unendlichdimensionale Vektorräume finden wir dann erstmals
im Jahre 1888, und zwar bei Peano, und bald darauf (1895) auch bei Pincherle.

5. Funktionentheorie. Diese hat durch die Ideen der komplexen Ebene (Wessel 1798,

Argand 1806, Gauss 1799 (unveröffentlicht) und 1831) und der Riemannschen Fläche [5*]
ebenfalls die Entwicklung des Raumbegriffs wesentlich beeinflusst. Riemann (1826-66)
«doit etre considere comme le createur de la topologie, comme de tant d'autres branches
de la mathematique moderne» schreibt Bourbaki [5, S. 175]. Wichtig ist dabei für uns,
dass Riemanns topologischen Ideen (z. B. im Zusammenhang mit Bettizahlen) immer
durch Sachverhalte der Analysis motiviert und auf diese angewendet wurden. Bei
Riemann finden wir nun erstmals die Idee des Funktionenraums, nicht in ausgereifter Form,
aber doch greifbar. In seiner Dissertation von 1851 schreibt Riemann [21, S. 30]:
«Die Gesammtheit der Functionen X bildet ein zusammenhängendes in sich abgeschlossenes

Gebiet, indem jede dieser Functionen stetig in jede andere übergehen... kann.»
In seinem HabilitationsVortrag von 1854, in dem er den Begriff der Mannigfaltigkeit
einführt, sagt er [21, S. 272, 276],
«dass eine mehrfach ausgedehnte Grösse verschiedener Massverhältnisse fähig ist und
der [dreidimensionale euklidische] Raum also nur einen besonderen Fall einer dreifach
ausgedehnten Grösse bildet... Es giebt indess auch Mannigfaltigkeiten, in welchen die

Ortsbestimmung nicht eine endliche Zahl, sondern entweder eine unendliche Reihe oder
eine stetige Mannigfaltigkeit von Grössenbestimmungen erfordert. Solche Mannigfaltigkeiten

bilden z. B. die möglichen Bestimmungen einer Function für ein gegebenes
Gebiet,...».

6. Mengenlehre. Wiewohl Cantors erste einschlägige Arbeit schon 1874 erschien, hat die

Mengenlehre die Entwicklung des Raumbegriffs erst gefördert, seitdem man begann,
auch Räume mit abstrakten Grundmengen zu betrachten, also etwa zu Beginn der
Arbeiten Frechets kurz nach der Jahrhundertwende.

7. Variationsrechnung. Neben den Integralgleichungen hat die Variationsrechnung wohl
den stärksten Einfluss auf die Frühentwicklung der Funktionalanalysis ausgeübt und
diese durch Methoden und Probleme entscheidend bereichert. Im Zusammenhang mit
der Raumidee interessiert uns hier vor allem das Problem, ein Integral (Funktional)

J(y)= jF(x,y,y')dx
a

in einer Funktionsmenge zu minimisieren, etwa in der Menge aller auf [a,b] zweimal

stetig differenzierbaren Funktionen, die in a und b vorgegebene Werte annehmen, und die

Tatsache, dass man diese «zulässigen Funktionen» in der Form

ye(x) y (x) + en (x)

darstellt. Für n fordert man das Verschwinden an den Endpunkten des Intervalles und
hat dann, wenn y das /minimisiert, dJ/de\F=0 0. Hier klingt also die Idee eines Abstandes

zwischen Funktionen an, der durch e gemessen wird. Entsprechend wird die Idee von
Umgebungen einer Funktion y0 in Funktionenräumen durch Bedingungen
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(a) \y (x) - y0(x)\ <k, (b) \y'(x) - yi(x)\ < k

vorbereitet, die «schwache Minima» [(a) und (b)] und «starke Minima» [nur (a), Weierstrass

1879] definieren (A Knesers Terminologie, 1900)
Aber von hier bis zu Frechets metrischem Raum ist es noch ein weiter Weg'

5. Die Geburt der Funktionalanalysis im Jahre 1887

Es ist wohl kein Zufall, dass die Funktionalanalysis in Italien begann, wo Giuho Ascoli
(1843-1896), Uhsse Dim (1845-1918) und Cesare Arzelä (1847-1912) schon angefangen
hatten, das Neuland vorzubereiten (1883-84 Satz von Ascoli und Arzela) Das Jahr 1887

des Erscheinens von 5 Noten [25,26] Volterras uber eine recht allgemeine Klasse von
Funktionalen wird üblicherweise als das Geburtsjahr der Funktionalanalysis angesehen
Vito Volterra (1860-1940), Dinis Schuler, war im Grunde seines Herzens angewandter
Mathematiker, wie sein Lebenswerk zeigt, das 5 stattliche Bande von Arbeiten und einige
Bucher umfasst In der ersten der genannten 5 Noten formuliert er (in Italienisch) sein
Ziel mit den Worten (Opere 1, 294)
«In dieser Note erlaube ich mir, auf einige Betrachtungen hinzuweisen, die dazu dienen,
Begriffe zu klaren, die fur eine Verallgemeinerung der Riemannschen Funktionentheorie

notig sind

§ 1 Funktionen, die von anderen Funktionen abhangen
Die Verallgemeinerung des [Dirichletschen] Funktionsbegriffs, uber die wir hier reden

werden, unterscheidet sich wesentlich von dem üblichen [Begriff] der Funktion einer
anderen Funktion »

Die Funktionale y9 die Volterra einfuhrt, sind auf einer Menge stetig differenzierbarer
Funktionen q> definiert, er sagt «Hangt y von allen Werten einer Funktion <p(x) in
(A B) ab, so schreiben wir

B

y\[<P(x)]\ oder einfach j|b(x)]| »
A

Interessant ist, dass er nun Ideen der Variationsrechnung fur seinen Zweck benutzt und
eine «Variation»

öy y\[<p+0]\-y\[<p]\

sowie eine «Ableitung»

öv "

y'\[<p(x),t]\= hm — mit o=j0(x)dx
max|0|~»O

defimert, 0 hat hierbei konstantes Vorzeichen, und das Teilmtervall [m,n] zieht sich auf
den Punkt t zusammen Diese ad hoc-Theone wurde spater zum Gegenstand der Kritik
wie auch weiterer Untersuchungen [6*]
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Salvatore Pincherle (1853-1936), der u a durch seinen Encyklopadieartikel (1905) viel
zur Verbreitung der neuen Ideen beitrug, schlug 1897 (Math Ann 49 325-82) fur das
sich entwickelnde neue Gebiet den Namen «Funktionalkalkul» (Calcul fonctionnel,
Calcolo funzionale) vor [7*] und Paul Levy (1886-1971) im Jahre 1922 schliesslich die
heute übliche Bezeichnung «Funktionalanalysis» (Analyse fonctionnelle) [17]

6. Die Übergangsperiode 1887-1906

Diese Periode haben wir in § 2 schon stichwortartig gekennzeichnet Die fur uns wichtigsten

Ereignisse sind

1 Mass und Integral entwickeln sich schon bald nach Cantors erster Arbeit zur Mengenlehre

(1874) unter Erkenntnis der Mangel des Riemann-Integrals zu der auch in der
spateren Funktionalanalysis notwendigen Allgemeinheit Nacheinander erscheinen die

Inhaltsbegriffe von Cantor (1884), Stolz-Harnack (1884-85) und Peano-Jordan (1887
bzw 1892) Es folgen 1898 das Borel-Mass und als Höhepunkt 1902 das Lebesgue-Inte-
gral von Henri Lebesgue (1875-1941), als die infolge ihrer abzahlbaren Additivität fur die
Analysis völlig befriedigende Losung des Inhaltsproblems Interessante historische
Einzelheiten bringt Hawkins [11]

2 Axiomatische Definitionen wie sie fur die Funktionalanalysis unerlasshch sind, waren
um die Jahrhundertwende trotz der vorangegangenen Bemühungen Cantors, Dedekinds
und Peanos keineswegs gang und gäbe Zu ihrer allgemeinen Anerkennung in weiteren
mathematischen Kreisen hat ausgerechnet die Elementargeometne, eines der einfachsten
Gebiete der Mathematik, wesentlich beigetragen, insbesondere durch das Buch «Grundlagen

der Geometrie» von David Hubert (1862-1943), das 1899 zuerst erschien (12 Aufl,
Stuttgart 1977)

3 Funktionale Im Jahre 1903 (C R Paris 136 351-54) warf Jacques Hadamard (1865-
1963) das Problem auf, eine allgemeine Darstellung der stetigen linearen Funktionale U
auf dem Raum C [a,b] der auf einem Intervall [a,b] stetigen (reellwertigen) Funktionen/,
mit der gleichmassigen Konvergenz auf [a,b] als Konvergenzbegriff, zu finden Er loste
dieses Problem durch eine Darstellung der Form

U\f(x)] lim]f(x)0(x,p)dx
ßi-xx) a

Für 0 (x0,p) kann man U(pF[p(x- x0)]) mit F(y) exp( - y2)/y/n wählen Wiewohl
diese Darstellung, bei der man fur <_> auch andere Funktionen verwenden kann, bald

(1909 durch F Riesz, s §4 unserer zweiten Arbeit) durch eine bessere ersetzt wurde,
bedeutet sie doch insofern einen grossen Fortschritt, als sie zum Modellfall entsprechender

Darstellungen fur Funktionale auf anderen Räumen wurde, also eine systematische
Duahtatstheone eröffnete [8*] Hadamards Schuler Maurice Frechet (1878-1973) gab
schon 1905 (Trans Amer Math Soc 6, 134-40) entsprechende Darstellungen fur stetige
lineare Funktionale auf dem Raum Cr[a, b] an, dessen «Punkte» die auf [a, b] r-mal stetig
differenzierbaren Funktionen sind
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4. Integralgleichungen. Die Entwicklung klassischer (und, 1906 beginnend, auch
«funktionalanalytischer») Theorien für grosse Klassen von Integralgleichungen ist wohl das

wichtigste Ereignis der Übergangsperiode. Wir betrachten es deshalb gesondert.

7. Der Einfluss der Potentialtheorie und der Integralgleichungen

Integralgleichungen haben seit der Jahrhundertwende das besondere Interesse weiter
mathematischer Kreise erregt. Eingeleitet und motiviert wurde diese Entwicklung schon
viel früher durch das Dirichletproblem für die Laplacegleichung

Au 0 in G, u =/auf dem Rand von G,

bei dem man um Existenzbeweise für allgemeine Gebiete G im R2 (oder im R3, mit
hinreichend glattem Rand) und stetigen Randwerten u =/bemüht war. Als
Existenzbeweismethode für dieses Problem hat nun Dirichlet wiederholt sein Dirichletprinzip
vorgetragen; der Name stammt von Riemann, der das Prinzip ebenfalls benutzt hat. Das

Prinzip besagt, dass in der Menge M der in G stetigen und in G zweimal stetig differenzierbaren

Funktionen cp mit den Randwerten feine Funktion cp u existiert, die das Dirich-
letintegral

D(cp)=l\ dx) \dy
dxdy

zum Minimum macht und das obige Problem löst. Dieses Prinzip wurde aber bald als

unhaltbar erkannt: Weierstrass wies 1870 [Werke II, 49-54] darauf hin, dass aus der
Existenz einer grossten unteren Schranke k für D(cp) eben nicht die Existenz einer
Funktion in der Menge M folgt, für die das Integral den Wert k auch wirklich annimmt.
Und Prym zeigte 1871 [J.r.a. Math. 73, 340-64], dass D(cp) gar nicht endlich zu sein

braucht, selbst wenn das obige Dirichletproblem eine Lösung hat. [9*].
So war man damals auf der Suche nach neuen Existenzbeweismethoden für das Dirichletproblem.

Erfolg hatten 1870 H.A. Schwarz mit seinem «alternierenden Verfahren» und
Carl Neumann (1832-1925) mit seiner sog. «Methode des arithmetischen Mittels» (für
konvexe Gebiete), die Integralgleichungen ins Spiel bringt. Neumann setzt nämlich die

Lösung u in Integralform als Doppelschichtpotential mit unbekannter Dichte p an und
diesen Ansatz in Au 0 ein. Wegen der Randbedingung erhält er dann für p die
Integralgleichung

+ _>-/ mit TpiQ^^^Unlfyda,,
die er durch die berühmte «Neumann-Reihe» löst. Hierbei is dG der Rand von G, der
zweite Faktor im Integranden die Normalableitung von 1/r und r der Abstand QQ*.
[XO*].
1888 schlägt du Bois-Reymond den Namen «Integralgleichungen» für solche Gleichungen

vor und prophezeit, dass die Schaffung zugehöriger allgemeinen Theorien (im Gegen-
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satz zur Untersuchung einzelner Gleichungen wie etwa der Abelschen) zur Lösung
verschiedenartiger Randwertprobleme führen wird. Nicht allzu lange dauert es, bis 1895
bzw. 1896 Le Roux und Volterra (Opere 2, 216-54) unabhängig voneinander eine erste
solche Theorie publizieren, und zwar eine Lösungstheorie für « Volterra-Gleichungen»

X

cp(x)- X \k(x,y)cp(y)dy=f(x).
a

Besonders Volterra hebt dabei die Grundidee der «Algebraisierung» des vorgelegten
Problems (Approximation der Gleichung durch ein System linearer algebraischer
Gleichungen) deutlich hervor [11*].
Anfangs-, Rand- und Eigenwertprobleme der mathematischen Physik waren um diese

Zeit eines der Hauptarbeitsgebiete in Paris, dem damals bedeutendsten mathematischen
Zentrum der Welt, unter der Führung von Henri Poincare (1854—1912). Dieser veröffentlichte

1890 (Amer. J. Math. 12, 211-94) seine schon 1887 angekündigte «Balayageme-
thode» für die Existenz der Lösung des Dirichletproblems der Laplacegleichung und
1894 (Rend. Palermo 8, 57-155) seinen Existenzbeweis für alle Eigenwerte der Helm-
holtzgleichung. Im Jahre 1899, dem Jahre, in dem Poincares klassisches Lehrbuch «Theorie

du potentiel newtonien» erscheint, kommt Ivar Fredholm (1866-1927) zu einem
Studienbesuch nach Paris. Er hört dabei auch Poincares und Picards Vorlesungen. Sofort
nach seiner Rückkehr nach Schweden veröffentlicht er die Grundidee (1900; (Euvres

61-68) und 1903 die Einzelheiten (Acta Math. 27, 365-90) seiner durch das Dirichletproblem

motivierten berühmten Lösungstheorie für «Fredholmgleichungen»

b

cp (x) - X j k (x,y)cp(y)dy =f(x).
a

Er stellt die Lösung in der Form

cp(x)=f(x) + x] R(x,y,X)f(y)dy

mit dem «lösenden Kern» (oder der «Resolvente») R Dx/D dar, wobei er, um an die

Grundidee, die Analogie zur Algebra (Cramersche Regel) zu erinnern, D und Dx (beides
unendliche Reihen) «Determinante» bzw. «1. Minor» nennt und diese Analogie in der
Gestalt der sog. Fredholmschen Sätze voll entwickelt.
Fredholms Theorie wirkte durch ihre Allgemeinheit und Einfachheit sensationell und
fand sofort vom Erscheinungsjahr 1900 an ausserordentlich grosses Interesse, wie man
aus Arbeiten und späteren Büchern über Integralgleichungen (Böcher 1909, A. Kneser

1911, Heywood und Frechet 1912, Lalesco 1912) schhessen kann. Insbesondere fängt
Hilbert schon im Jahre 1901 an, sich mit Fredholms Ergebnissen auseinanderzusetzen

und seine Spektraltheorie der Integralgleichungen mit symmetrischem Kern zu schaffen.

Ein Jahr später erscheint bereits die erste Dissertation eines Hilbert-Schülers (O.D.
Kellogg) über Integralgleichungen. Hilbert selbst beginnt von 1904 an mit der Veröffentlichung

seiner Theorie (in Buchform zusammengefasst 1912). Mit diesen Untersuchungen
befassen wir uns in der Anschluss-Arbeit «Über die weitere Entwicklung der Funktionalanalysis

bis 1932», die in El. Math. Vol. 41, Heft 3 erscheinen wird.
Erwin Kreyszig, Carleton University, Ottawa, Kanada
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ANMERKUNGEN

[1*1 Im Sinne von Banach, also der vollständigen metrischen Vektorraume mit invananter Metrik [d h,
d (x,y) - d (jc - y, 0)] und in jeder der beiden Variablen stetiger Skalarmultiphkation (a, x) i-> ax Lokalkon-
vexitat, d h die Existenz einer Basis konvexer Nullumgebungen, wurde erst spater von Mazur und Bourbaki

zur Definition hinzugenommen, um eine befriedigende Duahtatstheone zu garantieren
[2*] Diese Liste liesse sich noch wesentlich erweitern Das Studium der Onginalquellen bleibt unerlasshch, um

retrospektiven Fehhnterpretationen, Ungenauigkeiten und anderen Mangeln zu entgehen

[3*] «Functionem voco portionem reetae, quae ductis ope sola puneti fixi et puneti curvae cum curvedme sua dati
rectis abscinditur Tales sunt Abscissa ordinata tangens radius oscuh seu curvedinis et ahae

innumerare » (Acta erudit 1694, s auch C I Gerhardt, G W Leibniz Mathematische Schriften (Halle
1858-63, Olms, Hildesheim 1971), Bd V, S 306)

[4*] Funktionen, die durch eine einheitliche Formel gegeben sind («functiones contmuae»), aber auch «willkürli¬
che Funktionen», z B lediglich graphisch gegebene, usw Einzelheiten hierzu, auch uber den Einfluss der

Physik (schwingende Saite1) und die weitere Entwicklung, s Encykl d math Wiss Bd II 1, S 3-8,958-71
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[5*] Fur Riemann war diese vorwiegend ein anschauliches Hilfsmittel Erst H Weyl hat sie in seinem Buch «Die
Idee der Riemannschen Flache» (Teubner, Leipzig 1913) begrifflich scharf gefasst

[6*] Vgl Dieudonne [8, S 86], A Weil [(Euvres II, 532], A F Monna [Nieuw Areh Wisk (3) 30, 247-57 (1982)],
E P Hamilton und M Z Nashed [J Funct Anal 49, 128-44(1982)]

[7*] Pincherle verdanken wir auch das Wort «Funktionenraum» (er sagt «Funktionalraum» [Encykl d math
Wiss 11,1 2,S 777], spazio funzionale [Rend Bologna (2) 7,85 (1896-7)] espace fonctionnel [Math Ann 49,
330 (1897)] Er sagt in Math Ann (lbid auch, «Operator» (Operateur) sei 1891 von Carvallo eingeführt
worden «Funktional» (fonctionnelle) als Substantiv stammt von Hadamard, 1904 oder 1905, vgl [24,
S 251]

[8*] Hadamard nennt u a C Bourlet als Vorlaufer, der bereits 1897 (Ann Ec Norm Sup (3) 14, 133-89)
ähnliche Ideen publizierte

[9*] Zur Geschichte des Prinzips, das Gauss und Lord Kelvin schon benutzten, siehe [10, 19] Hilbert hat dann

spater (1900-01) gezeigt, dass und in welcher Form sich das Prinzip als Beweismethode streng begründen
lasst

[10*] Eine bei Neumann verbliebene kleine Lücke hat Lebesgue 1937 (s (Euvres IV, 151-66) geschlossen

[11*] F G Tncomi («Integral Equations», Interscience/Wiley, New York 1957, S 5) macht dazu eine historisch
recht interessante Bemerkung betr Volterra und Fredholm
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Covering the sphere with 11 equal circles

The dual counterpart of the well-known problem of densest spherical circle-packing is
the problem of thinnest spherical circle-covering, that is the following: To determine the
smallest angular radius rn of n equal circles (or spherical caps) by which the surface of a

sphere can be covered without gaps. Contrary to the packing problem, the covering
problem has not been intensively investigated. Solutions and conjeetures are only known
for n 2 to 10 and 12,14,16, 20, 32. References to these results and the literature on the

problem of thinnest spherical circle-covering can be found in L. Fejes Töth's book [3] and
in a survey paper by Melnyk, Knop and Smith [4].
The first gap in the sequence of the investigated cases is at n 11. The aim of this paper is

to fill this gap and to present a good construction for covering the sphere with 11 equal
circles.
To a covering system ofthe circles a graph is associated as suggested by L. Fejes Töth [3].

The graph is a bipartite graph. It contains two kinds of vertices. The vertices of the first
kind are the centres of the spherical circles and the vertices of the second kind are the

points ofthe perimeters ofthe circles in which the spherical point is only just covered. (In
the figures, the vertices of the first kind will be marked by small circles but the vertices of
the second kind will not have any special mark.)
The edges of the graph are the shorter great circle arcs joining the centres and the just
covering Perimetrie points ofthe circles. As a consequence ofequality ofthe circles, all the

edges ofthe graph are of equal length.
For n 10 the Solution is due to G. Fejes Toth [1]. The centres of the circles form a

regulär bipyramided square antiprism and the angular radius of the circles is

r10 42° 18' 28.2". The graph of the arrangement of the circles can be seen in a simplified
stereographic projection in figure 1 where A and / denote the vertices of the pyramids.
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