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ELEMENTE DER MATHEMATIK

Revue de mathématiques €lémentaires — Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts

ElL. Math. Band 41 Nr. 2 Seiten 25-48 Basel, 10. Mirz 1986

Zur Entwicklung der zentralen Ideen in der
Funktionalanalysis

1. Einleitung

Kurz vor der Jahrhundertwende beginnend, entwickelte sich die Funktionalanalysis aus
recht heterogenen Anféngen innerhalb von 40-45 Jahren zu einem selbstdndigen und
relativ einheitlichen Gebiet. Rein dusserlich dokumentierte sich der Abschluss dieses
Prozesses im Jahre 1932 durch das gleichzeitige Erscheinen dreier Biicher, von Banach [1]
uber die Grundlagen der Theorie der normierten (insbesondere der Banachrdume) und
der Fréchetrdume [1*], von M.H. Stone [23] iiber Hilbertrdume (mit Einschluss der
Spektraltheorie unbeschrinkter linearer Operatoren) und von J. v. Neumann [20] iiber
die Grundlagen der Quantenmechanik im Rahmen der Hilbertraumtheorie.

In zwei aufeinanderfolgenden Arbeiten betrachten wir Zusammenhédnge zwischen den
Hauptideen bis 1932, die zu dem genannten Entwicklungsprozess der Funktionalanalysis
gefiihrt haben, und zwar in der ersten Arbeit die Zeit bis kurz nach der Jahrhundertwende
und in der zweiten die Zeit von Fréchets Dissertation (1906) und Hilberts Arbeiten zur
Spektraltheorie bis 1932. Manches kann dabei aus Platzgriinden nur angedeutet werden.
Betreffs weiterer Einzelheiten und Ergdnzungen sei auf eine kiirzlich gemeinsam mit
Herrn Garrett Birkhoff (Harvard-Universitdt) durchgefiihrte Untersuchung [4] verwie-
sen, auf der die vorliegenden Arbeiten zum Teil basieren. Dartiber hinaus hat mir Herr
Birkhoff wertvolle Ratschldge erteilt, die die Gestalt dieser Arbeiten wesentlich beein-
flusst haben, wofiir ich ihm auch an dieser Stelle herzlich danken mochte. Inhaltlich
schliesse ich mich weitgehend an meine kiirzlich auf dem 11. Osterreichischen Mathemati-
kerkongress (16.-20.9. 1985) in Graz gehaltenen Vortrage an.

Das steigende Interesse an der Entwicklung der Funktionalanalysis, wohl bedingt durch
die Bedeutung, die diese in Theorie und Anwendung gewonnen hat, wie auch durch ihre
Vielschichtigkeit, die den Gesamtiiberblick iiber den erreichten Stand erschwert, ersieht
man aus Monographien, wie etwa [5, 8, 18, 19], und aus einer wachsenden Zahl von
Publikationen in Zeitschriften, von denen nur [2, 6, 22, 24] genannt seien [2*].

2. Entwicklungsperioden

Als ersten Schritt unterteilen wir die Gesamtentwicklung zeitlich in verschiedene aufein-
anderfolgende Perioden. Dadurch schaffen wir eine gewisse Ordnung in der Vielfalt der
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miteinander verflochtenen Ideen und Erscheinungen. Stichwortartig kennzeichnen wir
die Hauptmerkmale und -ereignisse einer jeden dieser Perioden. So erhalten wir als erstes
Ergebnis einen groben Gesamtiiberblick in der Gestalt der folgenden

Zeittafel.

1684 Erste Veroffentlichung zur Differentialrechnung durch Leibniz [15]

1684—1887 Vorgeschichte

Bedeutsam fiir die spétere Funktionalanalysis ist wahrend dieser Zeit vor allem die
Entwicklung des Funktionsbegriffs, des Raumbegriffs, der Fourierreihen, der Varia-
tionsrechnung, der Potentialtheorie und der Mengenlehre auf R und im R".

1887 Geburtsjahr. Erste Noten iiber Funktionale von Volterra [25, 26]

1887-1906 Ubergangsperiode

Kennzeichen: Behandlung funktionalanalytischer Probleme mit klassischen Methoden.
Relevante Entwicklungen:

Integralgleichungen (1896 Volterra, 1900-3 Fredholm, 1904-6 Hilbert)

Wachsende Bedeutung der Axiomatik (1888 Dedekind, 1889 Peano, 1899 Hilbert)
Funktionale (1903 Hadamard)

Mass- und Integrationstheorie (Peano, Jordan, Borel, 1902 Lebesgue)

1906 Einfiihrung metrischer Rdume durch Fréchet [9]

1906-32 Entwicklung der Funktionalanalysis zu einem eigenen Gebiet
Hauptereignisse und -entwicklungen:

Integralgleichungen und Operatoren (1906 Hilbert; 1913, 1916 F. Riesz)
Riesz-Fischer-Satz (1907)

Funktionale (1906 Fréchet; 1906, 1909, 1910 F. Riesz)

Topologischer Raum (1914 Hausdorff, 1924 Alexandroff)

Hilbertraum und Quantenmechanik (Hilbert, 1927-32 v. Neumann, M. Stone)
Normbegriff (1916 F. Riesz, 1920 Banach, 1921 Helly, 1922 Hahn, Wiener)
Banach- und Fréchetraum (1920-32 Hahn, Banach, Steinhaus, Mazur)

1932 Monographien von Banach, M. Stone und v. Neumann: Ausserliches Zeichen des
Abschlusses der Entwicklung.

1932-85 Vielgestaltige Weiterentwicklung mit vielen neuen Anwendungen.

Wird in der vorliegenden Arbeit nicht weiter behandelt. Einige dieser neuen Entwicklungen
betreffen die Ergodentheorie, Banach- und v. Neumann-Algebren, topologische Vektor-
rdume, insbesondere lokalkonvexe Rdume, Operatorentheorie, insbesondere nichtlineare
Operatoren, Distributionen, abstrakte harmonische Analyse und Analysis auf Mannig-
faltigkeiten. Anwendungsgebiete umfassen die numerische Analysis, Approximations-
theorie, Quantentheorie, partielle Differentialgleichungen usw.

3. Die Idee des Funktionsbegriffs

Um der zu behandelnden Materie ndherzutreten, stellen wir den Begriff des Funktionen-
raums in den Mittelpunkt. Dieser Begriff, der sich sehr allgemein auffassen ldsst (indem
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man z.B. Riume von Distributionen einbegreift), spielt nicht nur in der Theorie eine
zentrale Rolle, sondern durchdringt auch die Anwendungen auf die Numerik, Approxi-
mationstheorie, Differentialgleichungen und andere Gebiete. Zugrunde liegt die Idee,
Mengen von Funktionen, die gewisse Eigenschaften gemeinsam haben (z. B. alle reellwer-
tig und in demselben Intervall stetig sind), als «Punkte» eines (metrischen oder noch
allgemeineren) « Raumes» aufzufassen. Dies setzt den Funktionsbegriff und den Raumbe-
griff voraus.
Die Idee des Funktionsbegriffs hat sich langsam, aber folgerichtig und ohne wesentliche
Umwege entwickelt, vor allem im Zusammenhang mit der Differential- und Integralrech-
nung. Die erste Veroffentlichung der Differentialrechnung erscheint im Jahre 1684:
Leibniz [15] entschliesst sich erziirnt zu einer raschen und knappen Mitteilung seiner
Theorie, um weiteren Plagiaten durch W. v. Tschirnhaus vorzubeugen, der wesentliche
Ergebnisse von Leibniz 1683 (in Actis eruditorum, 433-37) unter seinem Namen publi-
ziert hatte. Das Wort «functio» wird 1694 von Leibniz in einem anderen Sinn [3*] und ab
1698 von Joh. Bernoulli und Leibniz etwa in dem heute iiblichen Sinne benutzt. Wichtiger
als das Wort aber ist die Sache, namlich die Idee, die verschiedenartigen Abhéngigkeits-
verhéltnisse, die Leibniz selbst um transzendente bereichert hatte, unter einem einzigen
Begriff, dem der Funktion, zusammenzufassen, als Grundlage fiir den neuen «Calculus»,
dessen Kenntnis sich von 1684 an relativ rasch verbreitete.
Euler hat dann mit seiner beriihmten «Introductio in analysin infinitorum» (1748) ein
Werk von grossem Einfluss geschaffen, das erstmals den Begriff der Funktion [4*] an die
Spitze stellt und als Einteilungsprinzip benutzt. Dem 19. und beginnenden 20.Jahrhun-
dert verdanken wir schliesslich drei wichtige Funktionsklassen und zugehorige Integra-
tionstheorien (auf die sich die Jahreszahlen beziehen), namlich

die stetigen Funktionen (Cauchy 1821 [7]),

die beschrinkten Funktionen (Riemann 1854 [21, S.227-71]) und

die messbaren Funktionen (Lebesgue 1902 [14]).
Wihrend dieses Zeitraums erscheint 1822 Fouriers «Bibel des theoretischen Physikers»,
wie Sommerfeld das Buch «Théorie analytique de la chaleur» genannt hat. Fourierreihen

fx)=3a,+ Y (a,cosnx + b, sinnx)

n=1

mit
| | B .
a,= — j f(x) cosnxdx, b,=— jf(x) sinnx dx
m?, n 2,

— und ebenso Fourierintegrale; vgl. Birkhoff [3, S.164-70] — werden damit zum Allge-
meingut weiter mathematischer Kreise und iiben wiederholt grossen Einfluss auf die
Entwicklung aus:

1. Der «moderne» Dirichletsche Funktionsbegriff steht in einem Bericht iiber Fourier-
reihen [16] aus dem Jahre 1837.

2. Riemanns Integrationstheorie ist ein Nebenprodukt der Untersuchung iiber Fourier-
reihen (Habilitationsschrift 1854; [21, S.227-71]), und Lebesgue hat die Kraft seiner
neuen Begriffe und Methoden zuerst in grosserem Umfange an der Theorie der Fourier-
rethen erwiesen.



28 El. Math., Vol.41, 1986

3. Fourierreihen wurden zum Prototyp und Leitfaden fiir viele Ideen zur Orthogonalitit
in der klassischen Theorie und noch mehr im Hilbertraum, beginnend mit Hilberts
Arbeiten iiber Integralgleichungen.

4. Die Idee des Raumbegriffs in der Funktionalanalysis

Das zweite Ingrediens des Funktionenraums, der Raumbegriff, ist in seiner Genesis
schwieriger zu erfassen. Denn erstens ist der Begriff als solcher stark von dem mathemati-
schen Gebiet abhingig, das man betrachten will, und zweitens ist es nicht ganz einfach,
die Grosse des Einflusses verschiedenartiger Faktoren abzuschitzen, die die Idee des
Raumes wihrend der Vorgeschichtsperiode 1684—1887 (und dariiber hinaus bis 1906)
entwickeln und schliesslich auch den fiir die Analysis entscheidenden Schritt von endli-
cher zu unendlicher Dimension vorzubereiten halfen. Sicher ist aber, dass sich derartige
Faktoren hauptsichlich auf den folgenden Gebieten ergaben:

1. Mechanik. «Raum» nannte man bis weit in das 19. Jahrhundert hinein nur den dreidi-
mensionalen euklidischen Raum. Die Idee, iiber die Dimension 3 hinauszugehen, reicht
aber wenigstens bis ins 16.Jahrhundert zuriick; z. B. findet man sie bei M. Stifel (1553).
Segre (Enc. math. Wiss. 111, 2.2., S.733) macht einige Andeutungen iiber Friihentwick-
lungen, die aber ohne Folgen geblieben sind. Die Vorstellung eines xyz¢-Raumes (¢ die
Zeit) findet sich bei J. L. Lagrange («Méchanique analitique», 1788; 2. Aufl. «Mécanique
analytique», 1811-15) und bezeichnet wohl den Beginn der systematischen Benutzung
hoherdimensionaler Rdume. Von hier aus fiihrte der Weg folgerichtig zum 3»n-dimensio-
nalen Konfigurations- und 6n-dimensionalen Phasenraum des n-Korperproblems und
zur « Geometrisierung» der Mechanik unter dem Einfluss der klassischen Variationsprin-
zipe (Hamilton 183435, Jacobi 1837).

2. Projektive Geometrie. Die Schopfungen der grossen Geometer des 19.Jahrhunderts
bilden einen weiteren einflussreichen Faktor bei der Entwicklung des Raumbegriffs. Die
projektive, die sphérische und die Liniengeometrie wiren hier zu nennen und als Namen
Poncelet, Chasles, Steiner, Pliicker und andere. F. Klein, der mit seinem Erlanger Pro-
gramm selbst einen grundlegenden Beitrag leistete, hat in seinem Buch [12] einen guten
Uberblick iiber die Entwicklung dieser Geometrien gegeben.

3. Nichteuklidische Geometrie. Es ist merkwiirdig, dass ein Jahrtausende altes Problem
fast gleichzeitig dreimal unabhéingig voneinander gelost wird, durch Gauss, der spite-
stens 1816 Klarheit iiber die Losung des Problems besass, aber, das Geschrei der Bootier
fiirchtend, nichts dariiber veroffentlichte, durch N.I. Lobatschewski (1829) und schliess-
lich durch den jiingeren Bolyai (Janos, 1832). Diese Arbeiten wurden ziemlich spat
bekannt und haben deshalb erst in der 2. Hilfte des 19. Jahrhunderts zur Idee des Raum-
begriffs beigetragen.

4. Vektorrdume traten zuerst um die Mitte des 19. Jahrhunderts auf (Cayley 1844, Grass-
mann 1844 «Die Wissenschaft der extensiven Grosse oder die Ausdehnungslehre»).
Allerdings blieb Grassmanns Werk auch in der Umarbeitung von 1862 so schwierig, dass
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sein Einfluss gering war. Unendlichdimensionale Vektorraume finden wir dann erstmals
im Jahre 1888, und zwar bei Peano, und bald darauf (1895) auch bei Pincherle.

5. Funktionentheorie. Diese hat durch die Ideen der komplexen Ebene (Wessel 1798,
Argand 1806, Gauss 1799 (unveroffentlicht) und 1831) und der Riemannschen Fliche [5*)
ebenfalls die Entwicklung des Raumbegriffs wesentlich beeinflusst. Riemann (1826-66)
«doit étre considéré comme le créateur de la topologie, comme de tant d’autres branches
de la mathématique moderne» schreibt Bourbaki [5, S.175]. Wichtig ist dabei fiir uns,
dass Riemanns topologischen Ideen (z.B. im Zusammenhang mit Bettizahlen) immer
durch Sachverhalte der Analysis motiviert und auf diese angewendet wurden. Bei Rie-
mann finden wir nun erstmals die Idee des Funktionenraums, nicht in ausgereifter Form,
aber doch greifbar. In seiner Dissertation von 1851 schreibt Riemann [21, S. 30]:

«Die Gesammtheit der Functionen A bildet ein zusammenhéangendes in sich abgeschlosse-
nes Gebiet, indem jede dieser Functionen stetig in jede andere iibergehen. .. kann.»

In seinem Habilitationsvortrag von 1854, in dem er den Begriff der Mannigfaltigkeit
einfiihrt, sagt er [21, S. 272, 276],

«dass eine mehrfach ausgedehnte Grosse verschiedener Massverhéltnisse fiahig ist und
der [dreidimensionale euklidische] Raum also nur einen besonderen Fall einer dreifach
ausgedehnten Grosse bildet... Es giebt indess auch Mannigfaltigkeiten, in welchen die
Ortsbestimmung nicht eine endliche Zahl, sondern entweder eine unendliche Reihe oder
eine stetige Mannigfaltigkeit von Gréssenbestimmungen erfordert. Solche Mannigfaltig-

keiten bilden z.B. die moglichen Bestimmungen einer Function fiir ein gegebenes Ge-
biet,...».

6. Mengenlehre. Wiewohl Cantors erste einschlagige Arbeit schon 1874 erschien, hat die
Mengenlehre die Entwicklung des Raumbegriffs erst gefordert, seitdem man begann,
auch Riume mit abstrakten Grundmengen zu betrachten, also etwa zu Beginn der
Arbeiten Fréchets kurz nach der Jahrhundertwende.

7. Variationsrechnung. Neben den Integralgleichungen hat die Variationsrechnung wohl
den starksten Einfluss auf die Frithentwicklung der Funktionalanalysis ausgeiibt und
diese durch Methoden und Probleme entscheidend bereichert. Im Zusammenhang mit
der Raumidee interessiert uns hier vor allem das Problem, ein Integral (Funktional)

J()= [ F(x,y.y)dx

in einer Funktionsmenge zu minimisieren, etwa in der Menge aller auf [a,b] zweimal
stetig differenzierbaren Funktionen, die in a und b vorgegebene Werte annehmen, und die
Tatsache, dass man diese «zuldssigen Funktionen» in der Form

Y.(x) =y (x) + ey (x)

darstellt. Fiir # fordert man das Verschwinden an den Endpunkten des Intervalles und
hat dann, wenn y das J minimisiert, 8.J/d¢|, ., = 0. Hier klingt also die Idee eines Abstan-
des zwischen Funktionen an, der durch & gemessen wird. Entsprechend wird die Idee von
Umgebungen einer Funktion y, in Funktionenrdumen durch Bedingungen



30 El Math,, Vol. 41, 1986
@ yx) =y <k, (b) y'(x)—yx)| <k

vorbereitet, die «schwache Minima» [(a) und (b)] und «starke Minima» [nur (a); Weier-
strass 1879] definieren (A. Knesers Terminologie, 1900).
Aber von hier bis zu Fréchets metrischem Raum ist es noch ein weiter Weg!

5. Die Geburt der Funktionalanalysis im Jahre 1887

Es ist wohl kein Zufall, dass die Funktionalanalysis in Italien begann, wo Giulio Ascoli
(1843-1896), Ulisse Dini (1845-1918) und Cesare Arzela (1847-1912) schon angefangen
hatten, das Neuland vorzubereiten (1883-84 Satz von Ascoli und Arzela). Das Jahr 1887
des Erscheinens von 5 Noten [25,26] Volterras iiber eine recht allgemeine Klasse von
Funktionalen wird iiblicherweise als das Geburtsjahr der Funktionalanalysis angesehen.
Vito Volterra (1860-1940), Dinis Schiiler, war im Grunde seines Herzens angewandter
Mathematiker, wie sein Lebenswerk zeigt, das 5 stattliche Binde von Arbeiten und einige
Biicher umfasst. In der ersten der genannten 5 Noten formuliert er (in Italienisch) sein
Ziel mit den Worten (Opere 1, 294):

«In dieser Note erlaube ich mir, auf einige Betrachtungen hinzuweisen, die dazu dienen,
Begriffe zu kldren, die. .. fiir eine Verallgemeinerung der Riemannschen Funktionentheo-
rie notig sind. ..

§ 1. Funktionen, die von anderen Funktionen abhdngen

... Die Verallgemeinerung des [Dirichletschen] Funktionsbegriffs, {iber die wir hier reden
werden, unterscheidet sich wesentlich von dem iiblichen [Begriff] der Funktion einer
anderen Funktion.»

Die Funktionale y, die Volterra einfiihrt, sind auf einer Menge stetig differenzierbarer
Funktionen ¢ definiert; er sagt: «Héngt... y von allen Werten einer Funktion ¢ (x)...in
(A...B)ab, so... schreiben wir

Yllp@)ll  oder einfach  y|lp (x))|.»

Interessant ist, dass er nun Ideen der Variationsrechnung fiir seinen Zweck benutzt und
eine « Variation»

oy =ylle + 01 — yllell

sowie eine « Ableitung»

0 . 1
ylleCetl= lim = mit o= [0(x)dx
n—m-0 m
max|6|-+0

definiert; @ hat hierbei konstantes Vorzeichen, und das Teilintervall [m,n] zieht sich auf
den Punkt ¢ zusammen. Diese ad hoc-Theorie wurde spéter zum Gegenstand der Kritik
wie auch weiterer Untersuchungen [6*].
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Salvatore Pincherle (1853-1936), der u.a. durch seinen Encyklopidieartikel (1905) viel
zur Verbreitung der neuen Ideen beitrug, schlug 1897 (Math. Ann. 49, 325-82) fiir das
sich entwickelnde neue Gebiet den Namen «Funktionalkalkiil» (Calcul fonctionnel,
Calcolo funzionale) vor [7*] und Paul Lévy (1886-1971) im Jahre 1922 schliesslich die
heute iibliche Bezeichnung «Funktionalanalysis» (Analyse fonctionnelle) [17].

6. Die Ubergangsperiode 1887-1906

Diese Periode haben wir in §2 schon stichwortartig gekennzeichnet. Die fiir uns wichtig-
sten Ereignisse sind:

1. Mass und Integral entwickeln sich schon bald nach Cantors erster Arbeit zur Mengen-
lehre (1874) unter Erkenntnis der Méngel des Riemann-Integrals zu der auch in der
spateren Funktionalanalysis notwendigen Allgemeinheit. Nacheinander erscheinen die
Inhaltsbegriffe von Cantor (1884), Stolz-Harnack (1884-85) und Peano-Jordan (1887
bzw. 1892). Es folgen 1898 das Borel-Mass und als Hohepunkt 1902 das Lebesgue-Inte-
gral von Henri Lebesgue (1875-1941), als die infolge ihrer abzidhlbaren Additivitit fiir die
Analysis vollig befriedigende Losung des Inhaltsproblems. Interessante historische Ein-
zelheiten bringt Hawkins [11].

2. Axiomatische Definitionen, wie sie fiir die Funktionalanalysis unerlésslich sind, waren
um die Jahrhundertwende trotz der vorangegangenen Bemiithungen Cantors, Dedekinds
und Peanos keineswegs gang und gébe. Zu ihrer allgemeinen Anerkennung in weiteren
mathematischen Kreisen hat ausgerechnet die Elementargeometrie, eines der einfachsten
Gebiete der Mathematik, wesentlich beigetragen, insbesondere durch das Buch «Grund-
lagen der Geometrie» von David Hilbert (1862—-1943), das 1899 zuerst erschien (12. Aufl.,
Stuttgart 1977).

3. Funktionale. Im Jahre 1903 (C.R. Paris 136, 351-54) warf Jacques Hadamard (1865-
1963) das Problem auf, eine allgemeine Darstellung der stetigen linearen Funktionale U
auf dem Raum C [a, b] der auf einem Intervall [a, b] stetigen (reellwertigen) Funktionen f,
mit der gleichmassigen Konvergenz auf [a, b] als Konvergenzbegriff, zu finden. Er 16ste
dieses Problem durch eine Darstellung der Form

Ulf(x)] = lim ff(x)tb (x,p)dx.

p—o0 a

Fiir @ (x,, 1) kann man U (uF [u (x — x,)]) mit F(y) =exp(— yz)/\/;_t wihlen. Wiewohl
diese Darstellung, bei der man fiir @ auch andere Funktionen verwenden kann, bald
(1909 durch F. Riesz, s. §4 unserer zweiten Arbeit) durch eine bessere ersetzt wurde,
bedeutet sie doch insofern einen grossen Fortschritt, als sie zum Modellfall entsprechen-
der Darstellungen fiir Funktionale auf anderen Riumen wurde, also eine systematische
Dualititstheorie eroffnete [8*]. Hadamards Schiiler Maurice Fréchet (1878-1973) gab
schon 1905 (Trans. Amer. Math. Soc. 6, 134-40) entsprechende Darstellungen fiir stetige
lineare Funktionale auf dem Raum C’[a, b] an, dessen «Punkte» die auf[a, b] r-mal stetig
differenzierbaren Funktionen sind.
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4. Integralgleichungen. Die Entwicklung klassischer (und, 1906 beginnend, auch «funk-
tionalanalytischer») Theorien fiir grosse Klassen von Integralgleichungen ist wohl das
wichtigste Ereignis der Ubergangsperiode. Wir betrachten es deshalb gesondert.

7. Der Einfluss der Potentialtheorie und der Integralgleichungen

Integralgleichungen haben seit der Jahrhundertwende das besondere Interesse weiter
mathematischer Kreise erregt. Eingeleitet und motiviert wurde diese Entwicklung schon
viel frither durch das Dirichletproblem fir die Laplacegleichung

Au=0mnG, u = fauf dem Rand von G,

bei dem man um Existenzbeweise fiir allgemeine Gebiete G im R?* (oder im R®, mit
hinreichend glattem Rand) und stetigen Randwerten u = f bemiiht war. Als Existenzbe-
weismethode fiir dieses Problem hat nun Dirichlet wiederholt sein Dirichletprinzip vorge-
tragen; der Name stammt von Riemann, der das Prinzip ebenfalls benutzt hat. Das
Prinzip besagt, dass in der Menge M der in G stetigen und in G zweimal stetig differenzier-
baren Funktionen ¢ mit den Randwerten feine Funktion ¢ = u existiert, die das Dirich-
letintegral

oo (2 (3 oo

zum Minimum macht und das obige Problem 16st. Dieses Prinzip wurde aber bald als
unhaltbar erkannt: Weierstrass wies 1870 [Werke 11, 49-54] darauf hin, dass aus der
Existenz einer grossten unteren Schranke k fiir D (¢) eben nicht die Existenz einer
Funktion in der Menge M folgt, fiir die das Integral den Wert £ auch wirklich annimmt.
Und Prym zeigte 1871 [J.r.a. Math. 73, 340-64], dass D (p) gar nicht endlich zu sein
braucht, selbst wenn das obige Dirichletproblem eine Losung hat. [9%*].

So war man damals auf der Suche nach neuen Existenzbeweismethoden fiir das Dirichlet-
problem. Erfolg hatten 1870 H. A. Schwarz mit seinem «alternierenden Verfahren» und
Carl Neumann (1832-1925) mit seiner sog. « Methode des arithmetischen Mittels» (fiir
konvexe Gebiete), die Integralgleichungen ins Spiel bringt. Neumann setzt nimlich die
Losung u in Integralform als Doppelschichtpotential mit unbekannter Dichte p an und
diesen Ansatz in 4u = 0 ein. Wegen der Randbedingung erhélt er dann fiir p die Integral-
gleichung

1 a (1
p+Tp=f mit Tp(Q)=2—7;a{;p(Q*)5;(;)dw,

die er durch die beriihmte « Neumann-Reihe» 10st. Hierbei is 0G der Rand von G, der
zweite Faktor im Integranden die Normalableitung von 1/r und r der Abstand QQ*.
[10%].

1888 schldgt du Bois-Reymond den Namen « Integralgleichungen» fiir solche Gleichun-
gen vor und prophezeit, dass die Schaffung zugehoriger aligemeinen Theorien (im Gegen-
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satz zur Untersuchung einzelner Gleichungen wie etwa der Abelschen) zur Losung
verschiedenartiger Randwertprobleme fithren wird. Nicht allzu lange dauert es, bis 1895
bzw. 1896 Le Roux und Volterra (Opere 2, 216-54) unabhéngig voneinander eine erste
solche Theorie publizieren, und zwar eine Losungstheorie fiir « Volterra-Gleichungen»

0 ()= A [k (63)p () dy =f(x).

Besonders Volterra hebt dabei die Grundidee der «Algebraisierung» des vorgelegten
Problems (Approximation der Gleichung durch ein System linearer algebraischer Glei-
chungen) deutlich hervor [11*].

Anfangs-, Rand- und Eigenwertprobleme der mathematischen Physik waren um diese
Zeit eines der Hauptarbeitsgebiete in Paris, dem damals bedeutendsten mathematischen
Zentrum der Welt, unter der Fiihrung von Henri Poincaré (1854-1912). Dieser veroffent-
lichte 1890 (Amer. J. Math. 12, 211-94) seine schon 1887 angekiindigte «Balayageme-
thode» fiir die Existenz der Losung des Dirichletproblems der Laplacegleichung und
1894 (Rend. Palermo 8, 57-155) seinen Existenzbeweis fiir alle Eigenwerte der Helm-
holtzgleichung. Im Jahre 1899, dem Jahre, in dem Poincarés klassisches Lehrbuch « Théo-
rie du potentiel newtonien» erscheint, kommt Ivar Fredholm (1866-1927) zu einem
Studienbesuch nach Paris. Er hort dabei auch Poincarés und Picards Vorlesungen. Sofort
nach seiner Riickkehr nach Schweden veroffentlicht er die Grundidee (1900; (Euvres
61-68) und 1903 die Einzelheiten (Acta Math. 27, 365-90) seiner durch das Dirichletpro-
blem motivierten berithmten Losungstheorie fiir « Fredholmgleichungen»

¢ (x)—A[k(x,y)p()dy =f(x).

Er stellt die Losung in der Form

p(x)=f(x)+4[R(x,y,A)f()dy

mit dem «l6senden Kern» (oder der «Resolvente») R = D,/D dar, wobei er, um an die
Grundidee, die Analogie zur Algebra (Cramersche Regel) zu erinnern, D und D, (beides
unendliche Reihen) «Determinante» bzw. « 1. Minor» nennt und diese Analogie in der
Gestalt der sog. Fredholmschen Sitze voll entwickelt.
Fredholms Theorie wirkte durch ihre Allgemeinheit und Einfachheit sensationell und
fand sofort vom Erscheinungsjahr 1900 an ausserordentlich grosses Interesse, wie man
aus Arbeiten und spateren Biichern iiber Integralgleichungen (Bocher 1909, A. Kneser
1911, Heywood und Fréchet 1912, Lalesco 1912) schliessen kann. Insbesondere fingt
Hilbert schon im Jahre 1901 an, sich mit Fredholms Ergebnissen auseinanderzusetzen
und seine Spektraltheorie der Integralgleichungen mit symmetrischem Kern zu schaffen.
Ein Jahr spiter erscheint bereits die erste Dissertation eines Hilbert-Schiilers (O.D.
Kellogg) iiber Integralgleichungen. Hilbert selbst beginnt von 1904 an mit der Veroffent-
lichung seiner Theorie (in Buchform zusammengefasst 1912). Mit diesen Untersuchungen
befassen wir uns in der Anschluss-Arbeit « Uber die weitere Entwicklung der Funktional-
analysis bis 1932», die in El. Math. Vol.41, Heft 3 erscheinen wird.

Erwin Kreyszig, Carleton University, Ottawa, Kanada
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ANMERKUNGEN

[1*] Im Sinne von Banach, also der vollstindigen metrischen Vektorrdume mit invarianter Metrik [d.h.,
d(x,y) = d(x — y,0)] und in jeder der beiden Variablen stetiger Skalarmultiplikation (a, x) + ox. Lokalkon-
vexitit, d. h. die Existenz einer Basis konvexer Nullumgebungen, wurde erst spiter von Mazur und Bourbaki
zur Definition hinzugenommen, um eine befriedigende Dualitdtstheorie zu garantieren.

[2*] Diese Liste liesse sich noch wesentlich erweitern. Das Studium der Originalquellen bleibt unerlésslich, um
retrospektiven Fehlinterpretationen, Ungenauigkeiten und anderen Méngeln zu entgehen.

[3*] «Functionem voco portionem rectae, quae ductis ope sola puncti fixi et puncti curvae cum curvedine sua dati
rectis abscinditur. Tales sunt: Abscissa..., ordinata..., tangens..., radius osculi seu curvedinis..., et aliae
innumerare.» (Acta erudit. 1694; s. auch C.I. Gerhardt, G.W. Leibniz Mathematische Schriften (Halle
1858-63; Olms, Hildesheim 1971), Bd.V, S. 306).

[4*] Funktionen, die durch eine einheitliche Formel gegeben sind («functiones continuae»), aber auch «willkiirli-
che Funktionen», z. B. lediglich graphisch gegebene, usw. Einzelheiten hierzu, auch iiber den Einfluss der
Physik (schwingende Saite!) und die weitere Entwicklung, s. Encykl. d. math. Wiss. Bd.II.1, S.3-8, 958-71.
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[5*] Fiir Riemann war diese vorwiegend ein anschauliches Hilfsmittel. Erst H. Weyl hat sie in seinem Buch «Die
Idee der Riemannschen Fliche» (Teubner, Leipzig 1913) begrifflich scharf gefasst.

[6*] Vgl. Dieudonné [8, S.86], A. Weil [(Euvres I1, 532], A.F. Monna [Nieuw Arch. Wisk. (3) 30, 247-57 (1982)],
E.P. Hamilton und M. Z. Nashed [J. Funct. Anal. 49, 128-44 (1982)].

[7*] Pincherle verdanken wir auch das Wort « Funktionenraum» (er sagt « Funktionalraum» [Encykl. d. math.
Wiss. 11, 1.2, S. 777, spazio funzionale [Rend. Bologna (2) 1, 85 (1896-7)] espace fonctionnel [Math. Ann. 49,
330 (1897)]). Er sagt in Math. Ann. (ibid.) auch, «Operator» (opérateur) sei 1891 von Carvallo eingefiihrt
worden. «Funktional» (fonctionnelle) als Substantiv stammt von Hadamard, 1904 oder 1905; vgl. [24,
S.251].

[8*] Hadamard nennt u.a. C. Bourlet als Vorldufer, der bereits 1897 (Ann. Ec. Norm. Sup. (3) 14, 133-89)
dhnliche Ideen publizierte.

[9*] Zur Geschichte des Prinzips, das Gauss und Lord Kelvin schon benutzten, siehe [10, 19]. Hilbert hat dann

spéter (1900-01) gezeigt, dass und in welcher Form sich das Prinzip als Beweismethode streng begriinden
lasst.

[10*] Eine bei Neumann verbliebene kleine Liicke hat Lebesgue 1937 (s. BBuvres IV, 151-66) geschlossen.
[11*] F.G. Tricomi («Integral Equations», Interscience/Wiley, New York 1957; S.5) macht dazu eine historisch
recht interessante Bemerkung betr. Volterra und Fredholm.
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Covering the sphere with 11 equal circles

The dual counterpart of the well-known problem of densest spherical circle-packing is
the problem of thinnest spherical circle-covering, that is the following: To determine the
smallest angular radius r, of n equal circles (or spherical caps) by which the surface of a
sphere can be covered without gaps. Contrary to the packing problem, the covering
problem has not been intensively investigated. Solutions and conjectures are only known
forn = 2to 10 and 12, 14, 16, 20, 32. References to these results and the literature on the
problem of thinnest spherical circle-covering can be found in L. Fejes Toth’s book [3] and
in a survey paper by Melnyk, Knop and Smith [4].

The first gap in the sequence of the investigated cases is at n = 11. The aim of this paper is
to fill this gap and to present a good construction for covering the sphere with 11 equal
circles.

To a covering system of the circles a graph is associated as suggested by L. Fejes Toth [3].
The graph is a bipartite graph. It contains two kinds of vertices. The vertices of the first
kind are the centres of the spherical circles and the vertices of the second kind are the
points of the perimeters of the circles in which the spherical point is only just covered. (In
the figures, the vertices of the first kind will be marked by small circles but the vertices of
the second kind will not have any special mark.)

The edges of the graph are the shorter great circle arcs joining the centres and the just
covering perimetric points of the circles. As a consequence of equality of the circles, all the
edges of the graph are of equal length.

For n = 10 the solution is due to G. Fejes Toth [1]. The centres of the circles form a
regular bipyramided square antiprism and the angular radius of the circles is
ri = 42°18'28.2". The graph of the arrangement of the circles can be seen in a simplified
stereographic projection in figure 1 where 4 and J denote the vertices of the pyramids.
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