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yield an expansion of length at most n + 1 Over the integers, the related algorithms both
yield expansions for a/b of length at most a
However, the algorithms differ greatly in size of the terms produced The largest degree
term produced by the Farey senes algorithm is clearly 1/ß, ß2 which has degree at most
2q{ - 1 smce degß2 < degß, qx The Fibonacci type algortihm yields a bound depend-
mg on both degrees of P and ß In the worst case, where degP q - 1, the largest term
may have degree as large as 2q* ~1 This behavior again mirrors that of the related
algorithms over the ordinary integers

William A Webb, Department of Mathematics
Washington State University
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Kleine Mitteilungen

Über eine Vermutung von Thebault
Die hier behandelte Aufgabe wurde 1938 von V Thebault in [2] gestellt und erschien in
beiden Auflagen von C Stanley Ogilvys Buch «Tomorrow's Math Unsolved Problems
for the Amateur» (Oxford University Press 1962, p 70, 1972, p 82) Erst 45 Jahre spater
fand K B Taylor eine Losung, die aber wegen ihrer beträchtlichen Lange (24 Seiten) nur
in Form eines knappen Auszugs abgedruckt wurde [1] In der vorliegenden Note soll ein
kurzer Beweis gegeben werden

Satz. Es sei T ein beliebig gewählter Punkt aufder Seite c des Dreiecks ABC (Mx,rx) bzw

(M2, r2) seien die Kreise, die AT, TC bzw BT, TC undden Umkreis (von innen) berühren Ist
I der Mittelpunkt des Inkreises und r sein Radius, dann hegen MX,M2 und I kollmear
Bezeichnet 0 die Hälfte des Winkels ATC, dann gilt weiter Mj IM2 sin26 cos20 und
rxcos26 + r2sin20 r
(Anstelle von rxcos26 + r2sm26 r wurde von Thebault (und Ogilvy) fälschlich

rx + r2 r2sec20 angegeben, vgl [1])

Beweis Px sei der Schnittpunkt von AB mit dem Lot durch / auf die innere Winkelsym-
metrale des Winkels ATC, und Mx sei der Schnittpunkt des Lotes durch Px auf AB mit
dieser Winkelsymmetralen, M2 ist analog zu definieren Der Kreis mit Mittelpunkt Mx
und Radius r, M\PX berührt dann .47und TC Es bleibt nachzuweisen, dass er auch
den Umkreis (von innen) berührt, dies ist äquivalent zu UMX R- r„ wobei R den
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Figur 1

Radius und U den Mittelpunkt des Umkreises bezeichnet. Ist Qx der Schnittpunkt von
P,Mt mit IPj(i =t=y), dann ist das Teilverhältnis (PxMxQt) gleich dem Teilverhältnis
(P, JP,), also (P, Mx ß,) (ß2M2P2). Da die Geraden Px Mx und P2M2 parallel sind, muss
der Schnittpunkt I von P, ß2 mit ß, P2 auf M, M2 liegen. Ist P der Fusspunkt des Lotes
von I auf AB, dann gilt PyP r tan 0 und PP~2 r cot #, also folgt

MJ:IM~2= P\P:PP2 sin2Ö:cos2ö.

Aus r, PXTtan6 und r2 TP2cot0 ergibt sich weiter

r,cos20 + r2sin2<9= (P[T + 27^) sin 0 cos 0 (Pj? + PP2) sin 0 cos 0

r (sin20 + cos2#) r.

Es bleibt £/Af, R — r,(i 1,2) zu zeigen, wobei man sich aus Symmetriegründen auf
c

i 1 beschränken kann. Da U den Abstand -coty von AB hat, ist die Behauptung

äquivalent zu

PxB-^J + (rx-^coty)2 (R-rx)2;

die Seiten und Winkel des Dreiecks werden wie üblich mit a,b,c bzw. oc,ß,y bezeichnet.
c

Unter Berücksichtigung von R - (siny)"1 erhält man daraus

PXB2 - cPxB - crxcoty- - crx(siny) x,
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also

1 — cos y
: -crx PxB(c - PXB).

smy

Setzt man 2s a + b + c, dann gilt Pß Pß + PB rtanO + s-b und

1 — cos y y r
—: tan — Daher ist die Behauptung äquivalent zu

sin y 2 s — c

s — c
r, (rtanö + s- b)(s — a — rtanO)

rc
S~C

((s- a)(s -b)-r(a-b) tanO - r2tan20)
rc

s — c rs - (a-b)tanO-rtan20
c \s — c

wobei r2 s~l (s — a)(s — b)(s — c) verwendet wurde.
Nach Konstruktion war

rx P/TtanO= (Bß - TB)tan0 (rtanO + s-b- TB)tanO

und nach dem Sinussatz gilt

_ sin(20-ß) / n n cos 20
TB a—\ Hß

A cos£- sinß
sin20 \ sin20

al cosß + -sinß(tan#- cot0) j.

Es folgt

r, -sin/? + (s- b- flcos/?)tan0 + (r - -sin/? tan20.

ac
Wegen — sin/? rs und 2accosß a2 + c2 - b2 erhält man daraus

crx rs + -((a-b + c)c - (fl2 + c2 - b2))tan0 + (rc - rs)tan20

rs - (fl- b)(s- c)tanO- r(s- c)tan20,

wie behauptet.
Gerhard Turnwald, Technische Universität, Wien
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Eine allgemeine logarithmische Ungleichung

In dieser kleinen Mitteilung soll eine allgemeine logarithmische Ungleichung bewiesen
werden. Diese Ungleichung hat ihren Ursprung im Mittelwertsatz der Differentialrechnung

[4], den Dieudonne ([1], S. 149) kommentiert: «... die wirkliche Natur des
Mittelwertsatzes kommt zum Ausdruck, wenn man ihn als Ungleichung, nicht aber als
Gleichung schreibt.»
Zuvor erinnern wir an das logarithmische Mittel und das (Potenz-) Mittel der Ordnung
p(peR) für zwei Zahlen x,yeR+ in der folgenden Definition.

L(x,y):=

Mp(x,y):=

x-y
logx- logy

xp + yl
xIp

für x+y

für x y

für/7 +0

?xy fürp 0

log bezeichnet hier die natürliche Logarithmus-Funktion.

Satz. Für 0 < a < b sei die Funktion/:[a,£]-»R positiv und stetig in [a,b]. Weiterhin sei

/differenzierbar in ]a,b[ und/' dort positiv. Dann gilt:

M0(f(a),f(b)) <L(f(a),f(b)) < MXß(f(a),f(b)).

Beweis: Wir definieren g: [a,6]->R und h: [„,&]-?R durch

1

(1)

g(xy-logf(x) +

h(x):=logf(x) +

M0V(a),f(b))

1

Mlß(f(a),f(b))

(f(a)-f(x)),

(f(a)-f(x)).

Nach dem Mittelwertsatz existieren dann c,de]a,b[ derart, dass

g(b)-g(a) -(b-a) f(c)[M0{f(a),f(c))-f{a)f
2[M0(f(a),f(c))f

<0,

Hb)-h(a)^b-a)f(d)im+M)v>0-
Die Ungleichung (1) ist nun eine einfache Folgerung aus

g(b)-g(a)<Q<h(b)-h(a).
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Bemerkung Mit/erfüllt auch die Funktion yffdie Voraussetzungen des Satzes Daraus
ergibt sich folgende offensichtliche linksseitige Verschärfung von (1)

M0(y/f&,y/f(b)) Mx(y/j^),y/f(f))<L(f(a),f(b)^

Zusammen mit der bekannten ([3], S 76) Abschätzung

Mxß(f(a),f(b)) < Mx/2(f(a),f(b)) < M,(f(a)J(b)) (2)

liefert sie eine entsprechende Ungleichungskette
Fur Anwendungen wichtige, teilweise bekannte Ungleichungsketten lassen sich auf die

aus (1) und (2) gebildete Ungleichungskette zurückfuhren Abschliessend sollen noch
zwei solche Spezialfälle angegeben werden

a)f=id([3],S213)

a-b (fa + jß\ fJä + y/b\2 a+b

b
Mit t =- > 1 lasst (3) sich zu der Ungleichungskette

fl

2(/-l) A(t -1) 8(f - 1) t-X
(4)

umformen, wobei die rechtsstehende Ungleichung von Karamata ([3], S 272) stammt (4)
ist offensichtlich eine Verschärfung der bekannten elementaren Ungleichung

<log*<f-l fur t>l

Darüber hinaus sei noch bemerkt, dass (4) äquivalent ist mit den beiden Ungleichungsketten

([2], S 55, [3], S 273)

2 4 8

2fl + 1
<

2fl + l+2y/a(a + 1)
<

2fl 4- 1 + 3(^fl2(fl + l) + y/a(a + l)2)

<log(l + -)< i furfl>0,\ a) y/a(a + l)

2b 4b U
2 + b

<
2 + b+2y]l+b

<
2 + ^ + 3(^1+6+^(1 + b)2)

<log(l+b)<-T—r fur&>0
yjl + b
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1 b
Mit t:—- log- > 0 lässt (3) sich auch umformen zu der elementaren Ungleichungskette

2 fl

1 v
<__<___

I cosh-) cosh- 1

1 1 V 3/ V 2/ 1

sinh. t sinh. sinhr tanh.

b)/ exp

*¦*¦* ea-eb fe' + e'V /J + S V ea + eh

a-b \ 2 \ 2 2

Dieter Rüthing, Paderborn, BRD
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Nachtrag der Redaktion. Bei der Drucklegung dieser Kleinen Mitteilung sind wir aufeine
Note von T. P. Lin (The power means and the logarithmic mean; Am. Math. Monthly 81

(1974), p. 879-883) aufmerksam geworden, in der aus der Ungleichung

V5< a-b a£^v für a>0>4>0>a+6logfl-log^ \ 2

die Abschätzung (1) mit wesentlich schwächeren Restriktionen für/gefolgert wird. Es

genügt, dass/positiv und/(fl) +f(b) ist.
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Aufgaben

Aufgabe 917. Man betrachte die Menge aller einem gegebenen Dreieck ABC einbeschriebenen

gleichseitigen Dreiecke A'B'C mit Ä eBC,B' eCA,C eÄB und den Seitenmitten

LeffC,MeCA',NeA'ff.
Man zeige: L, M, N liegen auf je einer festen Geraden /, m, n.

L. Kuipers, Sierre

Lösung: Wir betrachten allgemeiner eine Schar zueinander ähnlicher Dreiecke A'B'C mit
Ä e BC, ff e CA, C e AB und zeigen: Jede Menge von einander entsprechenden Punkten
dieser Dreiecke liegt auf einer jeweils festen Geraden.
Zum Beweis sei A als Nullpunkt der komplexen Ebene gewählt. O.B.d.A. sei £ BAC
+ £ ffA'C i^n angenommen. Bezeichnen wir noch mit a,a',... die den Punkten

A,Ä',... entsprechenden komplexen Zahlen, so gilt für jedes der betrachteten Dreiecke
mit geeigneten x,y,zeR:

a' b+x(c-b), b' yc, c' zb. (1)
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