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yield an expansion of length at most #» + 1. Over the integers, the related algorithms both
yield expansions for a/b of length at most a.
However, the algorithms differ greatly in size of the terms produced. The largest degree
term produced by the Farey series algorithm is clearly 1/Q, Q, which has degree at most
2g, — 1 since deg Q, < deg O, = ¢,. The Fibonacci type algortihm yields a bound depend-
ing on both degrees of P and Q. In the worst case, where deg P = g — 1, the largest term
may have degree as large as 2%~'. This behavior again mirrors that of the related
algorithms over the ordinary integers.
William A. Webb, Department of Mathematics
Washington State University
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Kleine Mitteilungen

Uber eine Vermutung von Thébault

Die hier behandelte Aufgabe wurde 1938 von V. Thébault in [2] gestellt und erschien in
beiden Auflagen von C. Stanley Ogilvys Buch « Tomorrow’s Math., Unsolved Problems
for the Amateur» (Oxford University Press: 1962, p.70; 1972, p. 82). Erst 45 Jahre spéter
fand K. B. Taylor eine Losung, die aber wegen ihrer betrdchtlichen Lénge (24 Seiten) nur
in Form eines knappen Auszugs abgedruckt wurde [1]. In der vorliegenden Note soll ein
kurzer Beweis gegeben werden.

Satz. Es sei T ein beliebig gewdihlter Punkt auf der Seite c des Dreiecks ABC. (M, r,) bzw.
(M, r,) seien die Kreise, die AT, TC bzw. BT, TC und den Umkreis (von innen) beriihren. Ist
I der Mittelpunkt des Inkreises und r sein Radius, dann liegen M\, M, und I kollinear.
Bezeichnet 0 die Hiilfte des Winkels ATC, dann gilt weiter M\1:IM, = sin’0:cos*0 und
r.cos’d + r,sin’0 = r.

(Anstelle von r,cos’@ + r,sin’0 =r wurde von Thébault (und Ogilvy) fdlschlich
r, + r, = r*sec’ @ angegeben; vgl. [1].)

Beweis: P, sei der Schnittpunkt von 4B mit dem Lot durch 7 auf die innere Winkelsym-
metrale des Winkels ATC, und M, sei der Schnittpunkt des Lotes durch P, auf 4B mit
dieser Winkelsymmetralen; M, ist analog zu definieren. Der Kreis mit Mittelpunkt M,
und Radius r, = M| P, beriihrt dann AT und TC. Es bleibt nachzuweisen, dass er auch
den Umkreis (von innen) beriihrt; dies ist dquivalent zu UM, =R —r, wobei R den
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Figur 1

Radius und U den Mittelpunkt des Umkreises bezeichnet. Ist O, der Schnittpunkt von
P.M; mit IP,(i #j), dann ist das Teilverhdltnis (P,M;Q) gleich dem Teilverhiltnis
(P,TP), also (P, M, Q,) = (Q, M, P,). Da die Geraden P, M, und P, M, parallel sind, muss
der Schnittpunkt / von P, Q, mit Q, P, auf M, M, liegen. Ist P der Fusspunkt des Lotes
von I auf AB, dann gilt P,P = r tan@ und PP, = r cot 0, also folgt

M,I:IM,= P,P:PP,=sin’0:cos’0.
Aus r, = P, Ttan@ und r, = TP,cot@ ergibt sich weiter

r,cos’d + r,sin’@ = (P,T + TP,)sinf cos@ = (PP + PP,)sinf cosf
=r (sin®0 + cos’@) =r.

Es bleibt UM, = R — r,(i = 1,2) zu zeigen, wobei man sich aus Symmetriegriinden auf
i = 1 beschrianken kann. Da U den Abstand %coty von AB hat, ist die Behauptung

dquivalent zu

c\2 c 2
(P,B-— E) 4 (r, = -icoty) =(R —r);

die Seiten und Winkel des Dreiecks werden wie iiblich mit a, b, c bzw. «, §,y bezeichnet.

i i i c . 55
Unter Berticksichtigung von R = 3 (siny)™' erhilt man daraus

P,B*— cP,B — cr,coty= — cr,(siny)™",
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also
1 —cos S -
%7 v =P B(c - PB).
siny

Setzt man 2s=a+b+c, dann gt PB=PP+PB=rtanf +s—5b und

1 — cos
— 27— tanl = - Daher ist die Behauptung dquivalent zu
sin y 2 g=¢
s—c¢
n=- (rtan@ +5s—b)(s —a— rtan@)
c
g
- T (s—a)(s —b)—r(a—b)tand — r*tan’6)
= s-—c( LA (a—b)tanG—rtan20>,
c \s—c

wobei r* = s7'(s — a)(s — b)(s — ¢) verwendet wurde.
Nach Konstruktion war

r,= P Ttan0= (P,B— TB)tand = (rtanf + s— b — TB)tand

und nach dem Sinussatz gilt

—  sin(20—p) _ . ,co0s20
TB-—a———————-—sinze —a(cos,B Smﬁsin29)

=a<cosﬁ + %sinﬂ(tanﬁ— cote)).

Es folgt

ro= %sinﬂ +(s—b—acosf)tanf + (r o %sinﬂ) tan’6.

ac . "
Wegen — sin B =rsund 2ac cosf = a’>+ ¢* — b? erhilt man daraus

1
cry=rs + 5((a —b+c)e— (a*+ ¢t — bY))tan0 + (rc — rs)tan*0

=rs —(a—b)(s—c)tan0 — r (s — ¢)tan’4,

wie behauptet.
Gerhard Turnwald, Technische Universitidt, Wien
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Eine allgemeine logarithmische Ungleichung

In dieser kleinen Mitteilung soll eine allgemeine logarithmische Ungleichung bewiesen
werden. Diese Ungleichung hat ihren Ursprung im Mittelwertsatz der Differentialrech-
nung [4], den Dieudonné ([1], S. 149) kommentiert: «... die wirkliche Natur des Mittel-
wertsatzes kommt zum Ausdruck, wenn man ihn als Ungleichung, nicht aber als Glei-
chung schreibt.»

Zuvor erinnern wir an das logarithmische Mittel und das (Potenz-) Mittel der Ordnung
p (p eR) fiir zwei Zahlen x,y eR* in der folgenden Definition.

logi — Jl)ogy firx %y
L(x,y)= ,
X firx=y
P + yp lip )
( > ) firp+£0
M, (x,y):= .
Jxy firp =0

log bezeichnet hier die natiirliche Logarithmus-Funktion.

Satz. Fiir 0 < a < b sei die Funktion f:[a,b]—R positiv und stetig in [a, b]. Weiterhin sei
fdifferenzierbar in Ja, b[ und f* dort positiv. Dann gilt:

M, (f(a).f (b)) < L(f(a).f (b)) < M,;(f(a).f (b)). (1)

Beweis: Wir definieren g:[a,b]—R und % :[a,b]—>R durch

1
g (x):=logf (¥) + s (F@) = £ (),

1
h):=logf () + 3o (@) = £ ().

Nach dem Mittelwertsatz existieren dann c,d €]a, b[ derart, dass

[ QM (f@)f() —f@Ff _
2[M,(f(a).f ()F ’

G N/ECT RN
f@L/f )+ Jf @)

Die Ungleichung (1) ist nun eine einfache Folgerung aus

gb)—gl@)=—(b-a)

h(b)—h(a)=(b—a)

gb)—g@)<0<h()—h(a).
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Bemerkung: Mit ferfiillt auch die Funktion \/f die Voraussetzungen des Satzes. Daraus
ergibt sich folgende offensichtliche linksseitige Verschdrfung von (1):

M,(/f(a),/f ) - M,({/f(a),/f (D)) < L(f(a).f (D).

Zusammen mit der bekannten ([3], S. 76) Abschidtzung

M, (f(@).f (b)) < M,,(f(a).f (b)) < M,(f (a).f (b)) 2)

liefert sie eine entsprechende Ungleichungskette.

Fiir Anwendungen wichtige, teilweise bekannte Ungleichungsketten lassen sich auf die
aus (1) und (2) gebildete Ungleichungskette zuriickfiihren. Abschliessend sollen noch
zwei solche Spezialfille angegeben werden.

a) f=id ([3], S.273)

Jab < —4=0 <<\3/;;\3/5)3<(\/5;\/5)2<“+b 3)

loga — logb 2

: b : :
Mit t:———; > 1 lasst (3) sich zu der Ungleichungskette

2t —1)  4@—-1) 8@ —1) t— 1

(t1 (St iy e Tr (4)

umformen, wobei die rechtsstehende Ungleichung von Karamata ([3], S.272) stammt. (4)
ist offensichtlich eine Verschirfung der bekannten elementaren Ungleichung

t—1
-~—t—-<logt<t—1 fir t>1.

Dariiber hinaus sei noch bemerkt, dass (4) dquivalent ist mit den beiden Ungleichungs-
ketten ([2], S.55; [3], S.273)

2 4 8
da+1 2a+1+2\/a(a+1)< 2a+1+3(Ja*(@a+ 1)+ Ja(a+1))
<1 1+ 1)< ! fira >0
9% a a(a+1) ’
2b 4b 8b

D <
2+ b 2+b+2/1+b  2+4b+3(J1+b+J(A+b))

b
irb > 0.
<log(l1+b)< 7—1+b fur
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1. b : )
Mit ¢:= > logzl- > 0 lasst (3) sich auch umformen zu der elementaren Ungleichungskette

hlY niY
1 1 CcOS 3 COS 2 1
& = o < <

sinh ¢ t sinh ¢ sinh ¢ tanh ¢
b) f = exp

[ a b
b e'—e’ fel+e’} (e +eé 2 e'+e
e < < < <
a—b 2 2 2

Dieter Riithing, Paderborn, BRD
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AW -

Nachtrag der Redaktion. Bei der Drucklegung dieser Kleinen Mitteilung sind wir auf eine
Note von T. P. Lin (The power means and the logarithmic mean; Am. Math. Monthly 81
(1974), p. 879-883) aufmerksam geworden, in der aus der Ungleichung

\/C_IB< i <(%;\3/Z)3, fir a>0,b>0,a%b

[

loga — logb

die Abschitzung (1) mit wesentlich schwécheren Restriktionen fiir f gefolgert wird. Es
geniigt, dass f positiv und f(a) + f(b) ist.
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Aufgaben

Aufgabe 917. Man betrachte die Menge aller einem gegebenen Dreieck 4ABC einbeschrie-
benen gleichseitigen Dreiecke 4°B'C’ mit A’ € BC, B'e CA,C’' € AB und den Seitenmitten
LeBC ,MecCA ,Ned'B.
Man zeige: L, M, N liegen auf je einer festen Geraden /, m, n.

L. Kuipers, Sierre

Losung: Wir betrachten allgemeiner eine Schar zueinander dhnlicher Dreiecke 4’ B'C’ mit
A'e€BC,B' €CA,C’ € AB und zeigen: Jede Menge von einander entsprechenden Punkten
dieser Dreiecke liegt auf einer jeweils festen Geraden.

Zum Beweis sei 4 als Nullpunkt der komplexen Ebene gewéhlt. O.B.d. A. sei ¥ BAC
+ ¥ B'A'C’' # n angenommen. Bezeichnen wir noch mit a,a’,... die den Punkten
A,A',... entsprechenden komplexen Zahlen, so gilt fiir jedes der betrachteten Dreiecke
mit geeigneten x, y,z eR:

ada=b+x(c—b), b=yc, ¢ =2zb. (1)

A\
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