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Kleine Mitteilungen

Logarithmische Konvexitiit und Ungleichungsscharen

Eine differenzierbare Funktion f:R—R, heisst logarithmisch konvex, wenn log(f) kon-
vex ist, d. h. wenn f”/fisoton ist. Ist somit flogarithmisch konvex und s eine feste positive
Zahl, so darf man schreiben

O>f(t—S)[f'(t—S) __f'(t)] _dfi=s)
f@ L f—s) f@)] dt f(1)
Es folgt also, dass g:t—f(t — 5)/f(¢) antiton ist. Wir werden an einem Beispiel zeigen,

wie dieses elementare Ergebnis zu interessanten Ungleichungsscharen fithren kann.
Wir betrachten die Funktion

x'—1
F(t;x):= t
logx, t=0

wobei x > 0 eine feste Zahl ist. Da r—x’ konvex ist, ist es leicht, die Isotonie von F bez. ¢
nachzuweisen. Ferner ist F offenbar positiv, falls x > 1 ist.

Lemma: Sei x > 1 fest. Dann ist die Funktion F: t+—F (t;x) logarithmisch konvex.

Beweis: Es gilt fiir z 0

d’ x'[1 logx*\2
P F . = e | o
i (logF (¢;x)) g [x’ (x’ — 1) ],

und dies ist > 0 wegen der Ungleichung von Karamata (vgl. [1], 3.6.15)

logé 1
-1 < 72’ éER+\{1}

Nach diesen Vorbereitungen ist es ein Spiel, den folgenden Satz zu beweisen:

Satz: Die Funktion

t -1
& , t=*0,s
t—s x'—1
F(t—s;x) 1 1—x7°
(S, X)) = = | — t=0
G (:5,x) F(t;x) s logs
log x
s , t=3s
x'—1

ist antiton bez. t fiir alle festgewdhite x eR ,\{1},s > 0.
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Beweis: Der Fall x > 1 ist von den allgemeinen Betrachtungen am Anfang erledigt. Sei
0<x<1.WegenF(t;x)= —F(—1t;1/x)gilt

. _F(—t+s;1/x)
R TS

und G ist antiton nach dem ersten Fall.
Jetzt ziehen wir aus diesem Satz ein Paar hiibscher Folgerungen:

Korollar 1: Es gilt fiir 0 <u < s <v,x eR,\{1}

v x''—1 logx u 1—x"° 1 x*—1
. <S . < . < .
=85 x'=1 x*—=1 s—u x*—1 sx*  logx

Beweis: G (v;5,x) <G (s;5,x) <G (u;8,x)<G(0;5,x).

Bemerkungen: 1. Die ersten zwei Ungleichungen von Korollar 1 sindim Fallx > 1,5 =1,
in [2] formuliert worden.

2. In der «G (.;.,.)-Sprache» lautet die Ungleichung von Karamata (s. den Beweis des
Lemmas) einfach G (1;1,x) < G (*2;1,x). Jede G (1;1,x) < G (t;1,x), Y2 <t <1 liefert
somit eine Verschirfung dieser Ungleichung.

Korollar 2: Fiir n > 1,xeR \{1} gilt

(2=

Beweis: Die erste Ungleichung folgt aus G (n;1,x) > G (n + 1,1, x). Die zweite reduziert
sich auf (x — 1)>*> 0.
V. Mascioni, Mathematik-Departement, ETH Ziirich
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