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ELEMENTE DER MATHEMATIK

Revue de mathématiques ¢lémentaires — Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts

El. Math. Band 40 Nr. 6 Seiten 129-160 Basel, 10. November 1985

Das Kaprekar-Problem in der Sicht der
Computer-Mathematik

1. Das Kaprekar-Problem

Im Jahre 1949 hat der indische Mathematiker D. R. Kaprekar anhand von Beispielen eine
interessante zahlentheoretische Entdeckung gemacht. Er betrachtete 4stellige Zahlen, die
nicht aus lauter gleichen Ziffern bestanden, und bildete mit einer solchen Zahl #, durch
Unmstellen der Ziffern zwei neue Zahlen, ndmlich die grésstmogliche Zahl g, und die
kleinstmogliche Zahl k,. Hernach bildete er die Differenz

no=g,— k.

Das Ergebnis unterwarf er wiederum derselben Konstruktion. Es fiel ihm dabei auf, dass
bei mehrfacher Iteration die jeweilige Anschlussfolge zu n, spitestens nach dem 7. Glied
in die Zahl 6174 einmiindet und dann stabil bleibt [3]. Die beiden Beispiele in der Figur 1
illustrieren diesen Sachverhalt.

n_= 2749 n_ = 0180
[ o]
9, = 9742 g = 8100
= 2479 = 0018
%o ko
n - n_ = 8019
) = 7263 5
g, = 7632 g, = 9810
= 2367 = 0189
5 *
n, = 5265 n_ = 9621
2
= = 9621
9, = 6552 9, 96!
= = 1269
Ky 2556 k,
n = = 8352
4 = 39% n
9, = 9963 9, = 8532
= 3699 = 2358
ks ks
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5
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kg = 1467

ng = 6174

96 = 7641

o “ %
k =14 .
6

n, = 6174



130 El. Math., Vol. 40, 1985

Es sind offenbar auch 4stellige Zahlen zugelassen, die mit Null beginnen.

Seit dem Erscheinen der Mitteilung von Kaprekar wird 6174 die Kaprekar-Zahl zu den
4stelligen Zahlen im Positionssystem mit der Basis 10 genannt.

In der Zwischenzeit haben sich Zahlentheoretiker eingehend mit dem Kaprekar-Problem
befasst und dieses auch in einen grosseren Rahmen gestellt. Zunédchst wurden die Posi-
tionssysteme bestimmt, fiir welche die Kaprekar-Konstruktion bei 4stelligen Zahlen auf
Folgen mit derselben Stabilitdtseigenschaft fiihrt. Es hat sich gezeigt, dass dies genau fiir
eine Basis von der Form

b= 2k5, k =0 oder ungerade (LD

zutrifft [1]. Spéter sind bei beliebiger Basis & > 2 auch noch andere Stellenzahlen s in die
Untersuchungen einbezogen worden [4].

Es gibt total 10° — 10 = 9990 4stellige oder pseudo-4stellige Dezimalzahlen, die nicht aus
lauter gleichen Ziffern bestehen, und jede derartige Zahl ist als Anfangsglied einer
Kaprekar-Folge zugelassen. Bei endlich vielen Moglichkeiten sind zur Verifikation der
Stabilitdtseigenschaft keine aufwendigen zahlentheoretischen Analysen erforderlich;
man kann sich — wie Kaprekar dies seinerzeit getan hat — auf eine Durchmusterung aller
in Frage kommenden Folgen beschranken. Mit einer Kldrung auf dieser Ebene bleiben
natiirlich die tiefer liegenden zahlentheoretischen Zusammenhinge verborgen. Die
Durchmusterung ldsst sich aber durchaus so auslegen, dass dabei auch einige Querverbin-
dungen zwischen verschiedenen Klassen von Kaprekar-Folgen in bezug auf die Parame-
ter b und s sichtbar werden. Der folgende Computer-Approach zum Kaprekar-Problem
bewegt sich auf dieser Ebene. Er ldsst zudem noch eine bemerkenswerte algebraische
Hintergrundstruktur hervortreten.

2. 4stellige Dezimalzahlen

Zum Austesten der moglichen Kaprekar-Folgen wiirde an sich ein Algorithmus geniigen,
der fiir eine zuldssige 4stellige Zahl n, die Anschlussfolge

n,n,, ..
liefert. Es lohnt sich jedoch, vorerst einige theoretische Uberlegungen anzustellen. Wie
sich gleich zeigen wird, ldsst sich ndmlich die Testmenge stark reduzieren.
Bei einer 4stelligen Dezimalzahl » mit den Ziffern z,, z,, z;, z, kann die Indizierung stets so
gewihlt werden, dass

0<z,<2,<z,<2z,<9 2,1

ist. Die grosste und die kleinste Zahl, die aus diesen Ziffern gebildet werden kénnen, sind

g = (z42;2,2))0 und  k =1(2,2,2;24)y- 2,2)
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Der Nachfolger von 7 in einer Kaprekar-Folge lautet daher

n=v((n)=g—k
= (10°z, + 10z, + 10'z, + 10°z,) — (10°z, + 10°z, + 10"z, + 10°z,)  (2,3)
= (10° = 10%)(z, — z,) + (10 = 10")(z, — z,).
Mit
d=z,—z,; dy=2z,— 2z,

erhilt man insbesondere

i =999d, +90d,. 2,9
Aus (2,1) folgt, dass
0<d,<d <9. (2,5)

Ist n eine 4stellige Zahl mit nicht lauter gleichen Ziffern, dann gilt zusatzlich
d >0. (2,6)

Die bisherigen Feststellungen lassen darauf schliessen, dass die Anschlussfolge zu einer
Zahl ny nur von dem zu n, gehdrenden Differenzenpaar (d,, d,) abhingt. Zudem bewegen
sich die moglichen Anschlussfolgen ganz auf der Zahlenmenge, die durch (2,4) und (2,5)
gekennzeichnet ist. Dies sei anschliessend noch an unserem fritheren Beispiel illustriert.

n d_,d
+,)
n, = 2743 (17, 3)

7

y = 7263 = 999.7 + 90.3 €5, 3)

|

| |

n2 = 5265 = 999.5 + 90.3 (4, 0)
n_ = 3996 = 999.4 + 90.0 (6, 3)
|

n

n

¢

3

z Z z Z = =
X 3 . X A 6264 = 999.6 + 90.3 (4, 2)
¢ t + |
\_——V-————e-/
dz & = 4176 = 999.4 + 90.2 (6, 2)
" ! |
dl n6 = 6174 = 999,6 + 90.2 (6, 2)
Figur 2 Figur 3

Zum Differenzenpaar (7,3) gehoren samtliche Zahlen 7, in der folgenden Zusammenstel-
lung

9962 8851 7740
9852 8741 7630
9742 8631 7520
9632 8521 7410
9522 8411 7300
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und alle weitern 4stelligen Zahlen, die durch Umstellen der Ziffern daraus hervorgehen.
Es liegt nun nahe, bei der Untersuchung von Kaprekar-Folgen die entsprechenden
(d,, d,)-Folgen heranzuziehen. Diese Verkiirzung trifft offenbar den Kern des vorliegen-
den mathematischen Problems. Es sei noch darauf hingewiesen, dass das entscheidende
Differenzenpaar (6,2) schon in jenem Glied einer Kaprekar-Folge erscheint, das der
charakteristischen Zahl 6174 unmittelbar vorangeht.

Zur Gewinnung der Nachfolger-Konstruktion auf der Menge der (d,, d,)- Paare fithren wir
jetzt noch die Dezimalschreibweise der Zahl 7i = v (n) ein:

n=9994d, +90d,

10°d, + 10*(d, — 1) +10'(10—d,— 1) + 10°(10 — d),

falls d,—1>0

10°d, - 1)+ 10*(10+d,—- 1) + 10'(10 —d,— 1) + 10°(10 — d), 2,7
falls d,—1<0

= (24232;2)10-

(d,, d,) ist das Differenzenpaar, das zur Zahl n gehort.

entsprechender Umbezeichnung
0<%, <%<%<%<9.
Fiir das Differenzenpaar (d,, d,) zur Zahl 7 folgt daraus
d=z,-%2;, d=2-3 (2,8)

Es lasst sich jetzt zeigen, dass im Nachfolgerpaar (d,,d,) zu (d,,d,) stets d, > 0 ist. Zu-
nidchst entnimmt man aus (2.7), dass 7, als 4stellige Zahl aufgefasst, niemals aus 4
gleichen Ziffern bestehen kann. Zifferngleichheit impliziert ndmlich im ersten Falle
(d,— 1=0)
d=d -1 - d—-—d,+1=0
10—-d,—1=10—4d, -d,—1=0
und im zweiten Falle (d, — 1 <0)
dl_1=10+d2_—1 = dl_dz—l():o
10-d,—1=10—4, =

d.h. man kann in beiden Fillen zwei unvertragliche Aussagen folgern. Wenn aber 7 nicht
4 gleiche Ziffern aufweist, dann ist aufgrund einer fritheren Bemerkung d, > 0.

Zum Anfangsglied n einer Kaprekar-Folge gehort stets ein Differenzenpaar (d,,d,) mit
d, > 0. Dieselbe Eigenschaft besitzen jetzt offenbar auch alle Bildpaare der Anschluss-
folge zu n,, d. h. die Sequenz der Differenzenpaare (d,, d,) bewegt sich ganz auf der Menge

K\ ={(d,d)/0<d,<d <9,d,>0}. (2,9)
Thre Machtigkeit ist
K =10+9+8+7+6+5+4+3+2=54,
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denn mit einem bestimmten zuldssigen Wert von d, kann d, jeweils die Werte
d,d,—1,d—-2,...,1,0

annehmen.

Die Kaprekar-Konstruktion impliziert auch auf der Menge K,° eine 1stellige Verkniip-
fung, bei der (d,,d,) der Nachfolger von (d,,d,) ist. Wir wollen dies fortan mit der
Schreibweise

d,d) = x ((d, d))

zum Ausdruck bringen. Bezeichnet f die Abbildung, die der Zahl n das Paar (d,,d,)
zuordnet, dann gilt offenbar

kf(n)=f(v(n))), (2,10)

d. h. die Abbildung f ist ein Homomorphismus.

Man kann sich nun eine vollstindige Ubersicht iiber alle moglichen Kaprekar-Folgen
verschaffen, indem man das Verkniipfungsgebilde [K,°;x] an einem Di-Graphen veran-
schaulicht. Dazu ist jedem Paar (d,,d,)e K,° ein Knoten (Punkt) in der Zeichenebene
zuzuordnen, und zwei Knoten sind genau dann mit einer gerichteten Kante zu verbinden,
wenn die entsprechenden Paare in der Nachfolgerrelation stehen. Bevor wir die Gewin-
nung dieses Di-Graphen mit einem Rechner angehen, wollen wir noch eine Verallgemei-
nerung vornechmen.

3. 4stellige Zahlen im Positionssystem mit der Basis b > 2

Bei einer Basis b > 2 sind die Differenzenpaare (d,, d,) mit

0<d,<d,<b—1

moglich. Fiir die Klasse der 4stelligen Zahlen zum Differenzenpaar (d,,d,) ist die Zahl
n=>b%d, + b*d,= (d,d,00),

der einfachste Reprasentant. Man erhélt damit

g = (d,d,00),; k =(00d,d,),.

Daraus ergibt sich in Verallgemeinerung von (2,7)
ﬁ= V(n)=g_ k= b3dl + b2d2_ b!dz - bOdl

B b+ b=+ (b-d-1)+b(b-d), falls =120 o
VB, - D)+ b b—dy— 1)+ b (b—d,— 1) +b°(b - d,), falls d—1<0

= (25352,

wobei Z; < b — 1 ist.
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Nach dem Sortieren der Zahlen 7, z,, Z;, Z, zu einer aufsteigenden Folge und entsprechen-
der Umbezeichnung ist

0<z,<5,<7z;<z,<b-1.
Die neuen Differenzen lauten jetzt
d=:2,—1; d,=2,— 3, (3,2)

Die weitern Uberlegungen im Abschnitt 2 kénnen vollstindig iibernommen werden. Sie
fiihren zum folgenden Ergebnis.

Satz 1. Startet man die Kaprekar-Konstruktion im Positionssystem zur Basis b > 2 mit
einer Zahl n, die nicht aus 4 gleichen Ziffern besteht, dann erhilt man eine Folge von
Differenzenpaaren, die ganz in der Menge

K;={(d,d)/0<d,<d <b—1,d >0} (3,3)
enthalten ist.

Die Maichtigkeit von K} ldsst sich leicht bestimmen, wenn man beriicksichtigt, dass die
Figuren d,d, isotone Woérter (Kombinationen mit Wiederholungen) der Lénge 2 tiber
dem Alphabet 0,1,...,b — 1 darstellen. Wegen d, > 0 ist

IK£’|=(b+§“1>—1=(b;1>—1. (3.4)

An dieser Stelle wollen wir nun einen Abstecher in die Computer-Mathematik machen.
Es soll anschliessend ein Algorithmus aufgestellt werden, der den Di-Graphen zum Ver-
kniipfungsgebilde [K:; k] liefert. Einem Algorithmus mit dieser Zielsetzung lasst sich etwa
das folgende Konzept zugrunde legen.

Es werden nacheinander Ketten von Paaren (d,, d,)€ K¢ konstruiert, bei denen aufeinan-
derfolgende Glieder in der vorliegenden Nachfolgerrelation stehen. Paare, die im Ver-
laufe des Konstruktionsprozesses angetroffen werden, sind zu markieren. Dies macht es
moglich, die Kettenkonstruktion jeweils abzubrechen, sobald man auf ein Paar stosst,
das zuvor schon einmal aufgetreten ist. Als erstes Glied einer neuen Kette ist immer jenes
Paar (d,,d,) in der Restmenge der noch nicht in der Auflistung vorkommenden Elemente
von K? zu nehmen, fiir das die Zahl bd, + d, den grosstmoglichen Wert hat. Um den
geometrischen Zusammenhang des Di-Graphen aus dem Rechner-Output ablesen zu
konnen, ist mit jeder aufgefundenen Kette auch noch das (bereits friither schon begegnete)
Anschlussglied auszudrucken.

Die Markierung der im Verlaufe des Prozesses anfallenden Paare (d,, d,)e K} kann tiber
ein Parameterfeld

c(1,0), c(l,1), c(2,0), c(21), c(22), ..., cb—1b—-1)
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vorgenommen werden, das zuvor bereitzustellen ist. Bei Prozessbeginn ist etwa
c(d,,d,):=0 firalle (d,d,)ek;’

zu setzen. Wenn nun im Verlaufe der Kettenkonstruktion das Paar (d|,d;) angetroffen
wird, ldsst sich dieses mit der Anweisung

c(d,d):=1

markieren.

Der Start der Durchmusterung von K? erfolgt mit der Kette, an deren Anfang das Paar
(b — 1,b — 1) steht. Der Konstruktionsprozess ist abgeschlossen, sobald die Menge K
vollstindig in Ketten aufgeteilt vorliegt.

Der zunichst verbal umschriebene Algorithmus lasst sich nun sofort in das Flussdia-
gramm in der Figur 4 libertragen. Darin sind zusatzlich noch die beiden Parameter f und

DIM Z(4) C{1,J3):=1
DIM C(B-1,B-1 D1:= X
A:=0 D:=J
F2:= 0]
PRINT (D_,D_)
12
F:= F+]
c(1,J)=0 Z(1):= E-Dl
Z2(2):= B—Dz‘l
2(3):=Dp_-1
(3) -
2(4):= D
1

2(3):=2(3)+B
2(4):=2(4)-1

Sortieren
2(1), 2(2), 2(3), 2(4)

nein

PRINT

"Auflistung beendet” ‘
"Umfang der Algebra:"; A D1:=Z(4)-Z(l)
STOP 02:=Z(3)-Z(2)

1.2

PRINT
“Ldnge der Kette."; F
"Anschlussglied:";

(Dl'Dz)
A:= A+F

Figur 4 ]
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a eingefihrt; f dient zur Bestimmung der Kettenldngen, a zur Gewinnung der Méchtig-
keit von K!. Die Dimensionierungsanweisungen im zweiten Kdéstchen zielen auf eine
Umsetzung in die Programmiersprache BASIC ab.

Anschliessend ist das entsprechende Rechnerprogramm fiir den Rechner Commodore
C-64 und den zugehorigen Drucker VC-1520 aufgefiihrt.

1990 OPENt .6

118 PRINT#1, KAPREKAR~-PROBLEM
120 INPUT B EINGEBEN ;B

130 PRINT#1, 4-STELLIGE ZAHLEN;
* PRINT=t

140 pIM 2(4): DIM C(B-1,B-1):
158 REM PBFRAGE DER C-REGISTER
16@ FOR 1=B-1 TO 1 STEP -1

170 : FOR J=1 TO @ STEP -1

BASIS :B

A=0

180 : IF CCI1,J)=@ THEN C(I,J)J=1:
GOTO 25@
198 : NEXT J
202 NEXT 1
212 PRINT=1
228 PRINT#1, AUFLISTUNG BEENDET’
230 PRINT#1, MAECHTIGKEIT DER ALGEBRA:
A
240 STOP
250 F=8
260 REM KONSTRUKTION DER ANSCHLUSSFOLGE
27@ Di=1: D2=J
280 PRINT#1,SPC(6) ( :01; , 3025 )

KAPREKAR-PROBLEM

4~STELLIGE ZAHLEN; BASIS 1@
rs, 9
(9,2
(8,4
r6 .2
LAENGE DER KETTE: 4
ANSCHLUSSGL IED: (6,2
(3,8
(8.6
LAENGE DER KETTE: 2
ANSCHLUSSGL TED. (6,2
(9 .6)
(8.2
2?2 .5)
(4,2
(6,39
(a4 .2
LAENGE DER KETTE: 6
ANSCHLUSSGLIED: (6,2
rs, s
(8 ,8)
r7.2)
(6,4
3,1

LAENGE DER KETTE: S
ANSCHLUSSGL IED: 8,4

(9,4
LAENGE DER KETTE: |
ANSCHLUSSGL. IED: 8,2

39,31
LAENGE DER KETTL: |
ANSCHLUSSGLIED: (8,4

ts, 2 0(9,3)
LAENGE DER KETTE: |

ANSCHLUSSGLIED: 8 .6

9,1
LACNGE DER KETTE: I
ANSCHLUSSGLIED: 3 .72

93 ,0)

re .t
LAENGE DER KETTE: 2
ANSCHLUSSGL TED: (8,6 )

(8,8
LAENGE DER KETTE: 1
ANSCHLUSSGLIED: 2 .3%)

o

(o]

o

o

(9,5)

(8,0)

(1,2)

(6,4)

(3,1)

290
300
310
320
330
340

3509 :
360 :
370 :
380 @

330
400
4189
420
430
442
458
460
a7@
489

FaF+1
Z(1)=B-D1: 2(2)=B-D2-1
Z(3)=D2-1: 2(4)=D1

IF 2(3)>=0 THEN 348
2031=2(3)+B: 2(4)1=2(41-1
FOR I= 1 TO 3

FOR J=I+1 TO 4

IF Z2(13<=Z2(J) THEN 380
2=2(1)3: 2(13=Z2¢J): 20J)3=2Z
NEXT J

NEXT I

D1=2(4)~-Z(1): D2=2(3)-2(2)
IF C(D1,D2)=1 THEN 430

C(pt1,D2)=1: GOTOD 288

A=A+F

PRINT#1, LAENGE DER KETTE: ;:F
PRINT#1, ANSCHLUSSGLIED: 3
PRINT#1,SPC(3) ( :D1s , ;D25 )
PRINT#1

GOTO 1698

Figur 5 zeigt den Anfang des Drucker-Outputs fiir 5 = 10 und den daraus hervorgehen-
den Teil des Di-Graphen zum Verkniipfungsgebilde [K,°’; x].

(9,6) . (9,4)

o (o]

o (8,2) O (8,8)

o (7,5)
9,9 (9,1) (4,0) (9,0)
o o] o o
6,3 |8,1)

(9,7 g) (9,2)
o 9 /O o\T. ) ’o

(8,4 ©4,2) O (s,6)

Figur §



El. Math., Vol. 40, 1985 137

Der vollstindige Di-Graph zu [K}%; k] ist in Figur 6 aufgezeichnet. Man kann daraus
entnehmen, dass Kaprekar-Folgen bei 4stelligen Dezimalzahlen tatsidchlich nach hoch-
stens 7 Anschlussgliedern in die Zahl 6174 einmiinden. Damit ist zunédchst einmal ein
Computer-Approach zum klassischen Kaprekar-Problem freigelegt. Der vorliegende
Algorithmus kann aber generell zur Erschliessung der Verkniipfungsgebilde [K?; k] her-
angezogen werden. Bevor wir weitere Beispiele analysieren, wollen wir wiederum einige
theoretische Uberlegungen einfiigen.

[e)

,{r/f
(6,3)
(7,4) (7,7)
o O (4,4) O (8,3) o ols.1)
(8,4) (4,3) / / (V
Q o (b,é (T2 (9,5)
(3,1)
. (7,1) (8,0)

Q
(8,6) \0(9 3) Om-\\ o
'
o o)
3 © (9,9) (5,5)
O ——e
& 9,00 O (1,0
(2,1) °
—
° {6,5)
O(9,2) (2,0)

Figur 6 (8,5)

4. Unire Algebren

Das Kaprekar-Problem zeichnet sich ab in algebraischen Strukturen vom Typus [K; k],
wobei x eine auf der Objektmenge K erklirte 1stellige Verkniipfung ist. Man spricht in
einem solchen Falle von einer undren Algebra).

Wenn K eine endliche Menge ist, dann stosst man bei jeder Konstruktion einer Nachfol-
gerkette nach endlich vielen Schritten auf ein Element von K, das in der betreffenden
Kette schon an friitherer Stelle aufgetreten ist. Simtliche Ketten in [K;x] miissen daher
notwendigerweise in einen Zyklus einmiinden. Der Di-Graph zu einer endlichen unédren
Algebra zeigt also stets dasselbe Grundmuster: Er ist aufgebaut aus endlich vielen
Zyklen, an denen auf die Zyklen zu gerichtete Di-Bdume angehdngt sind.

1) Vgl. etwa [2], S. 80fT.
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Figur 7

Di-Graph einer undren Algebra, deren Kern aus 3 Zyklen besteht

Die Elemente von K, die in einem Zyklus enthalten sind, bilden zusammen den Kern der
undren Algebra [K ;k].

Die Stabilitdt der Kaprekar-Folgen bei 4stelligen Dezimalzahlen kommt nun darin zum
Ausdruck, dass der Kern der undren Algebra [K}°; k] nur aus einem einzigen Element
besteht. Man spricht in diesem Falle von einer baumartigen undren Algebra. Insbesondere
ist [K}°; k] eine baumartige undre Algebra von der Hohe 6 (Fig. 6).

Figur 8 zeigt noch die Digraphen zu den beiden uniren Kaprekar-Algebren [K?; k] und
[K7; x]. Sie wurden ebenfalls mit unserem generellen Algorithmus fiir die Kettenzerlegung
von [K?; k] erhalten. Fiir [K}; ] ist der vollstindige Drucker-Output anschliessend wie-
dergegeben.

KAPREKAR-PROBLEM
4-STELLIGE ZAHLEN; BASIS 5

(4,4
4, 2)
3., 1))

LAENGE DER KETTE: 3
ANSCHLUSSGLIED: 3,1

4,3
LAENGE DER KETTE: 1
ANSCHLUSSGL.IED: 3,1

c4, 1
LAENGE DER KETTE: 1
ANSCHLUSSGL IED: 4,2

f4,8)
6 5 LAENGE DER KETTE: 1
[xe] (1,0) [ <] ANSCHLUSSGLIED: ¢ 3 , 1 )
(3,3
(2;8)
0 (5,0) LAENGE DER KETTE: 2
(5,4) ANSCHLUSSGLIED: ( 3 , 1)
o] ¥ o {3,0)
ot €3,2)
(4,3) o LAENGE DER KETTE: 1
0\\ / S~ / 2 ANSCHLUSSGLIED: ( 2 , @ )
o (2,2) (3,8)
@0 (3,3 €2.2)
20 3 o LAENGE DER KETTE: 2
S

(4,1) (3,2) ANSCHLUSSGL IED 2,8
(3,2) o
\ / ©4,0 4,9 @ 3) o 2.1
o (2, o) (1.0) LAENGE DER KETTE: 1
(3 0) 4,0) : 3,1
\\ /(2 29 /° ANSCHLUSSGLIED C 3

(2,2)
(1,1
o, (501 an W 2’\ (40 LAENGE DER KETTE: 1

ANSCHLUSSGLIED: ( 4 , 2 )
/ (3,1)
1,08

o »

° 1 LAENGE DER KETTE: 1
s R ANSCHLUSSGLIED: (4 , 2 )
° AUFLISTUNG BEENDET

C(3,3) Figur 8 MAECHTIGKEIT DER ALGEBRA: 14



El. Math., Vol. 40, 1985 139

Bei [K?; k] ist ein Kern mit einem einzigen Zyklus vorhanden. [K};x] hingegen ist wie-
derum eine baumartige unire Algebra, d. h. bei 4stelligen Zahlen im Positionssystem mit
der Basis b = 5 weisen Kaprekar-Folgen dieselbe Stabilitdtseigenschaft auf wie im Dezi-
malsystem. Diese Feststellung steht im Einklang mit dem zitierten Ergebnis (1,1). Die
zugehorige Kaprekar-Zahl ist

(3100), — (0013), = (3032);.

5. s-stellige Zahlen im Positionssystem mit der Basis b > 2

Wir betrachten zunéchst Sstellige Zahlen im Positionssystem mit der Basis b. Gehen aus
einer solchen Zahl n die beiden Extremalzahlen

g =(25242:2,2)),

mit 0<z <z,<z,<z, <z, <b-—1
k =(z,2,2y2,25),

hervor, dann schliesst man fiir den Nachfolger

n=v)=g—k
=(b*z;+ b3z, + bz, + b'z, + b°z) — (b*z, + bz, + bz, + bz, + b°zy) (5,1
== bz, —z)+ (B’ —b")(z,— z),
d d,
d.h. es treten wie im Falle s = 4 zwei charakteristische Differenzen d, und d, auf. In
Analogie zu (3,1) erhélt man bei der Notation von n im System mit der Basis b
ﬁ = (dldzooo)b - (OOOdzdl)b

b*d, +b3(d,— 1)  +b2(b—-1D)+b'(b—d,—1)+b°(b—d),
_ falls 4,—1>0 (5,2)
b - D+ B+Hd,—-1D)+B2b - 1) +b'(b—d,— 1)+ b°(b—d),

falls d,—1<0

=(Z,2,2;2,2)), mit 0<z'<b—1.
0<7,<%,<%,<%,<zZ;<b— 1.
Das Nachfolgerpaar zu (d,, d,) lautet dann
al'-:Z_s”Z-‘; 6?2:54—2_2. (5,3)
Mit den friitheren Uberlegungen lisst sich auch hier zeigen, dass stets d, > 0 ist, d. h.

Kg = {(dl,dz)/o S d2 Sdl S b - l,d‘ > 0}-
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Der im Abschnitt 3 aufgestellte Algorithmus ldsst sich problemlos auf die Kaprekar-Al-
gebren [K?; k] libertragen.

In Anlehnung an die Fille s =4 und s = 5 kann jetzt die Kaprekar-Konstruktion auf
beliebige hohere Stellenzahlen verallgemeinert werden?). Bei s-stelligen Zahlen betragt die
Anzahl der charakteristischen Differenzen

m = B] ), (5.4)

wobei fir diese Differenzen

0<d,<d, < - -<dy<d<b—-1, d>0 (5,5)

gilt.
Anstelle von Satz 1 tritt fiir s > 3 der

Satz 2. Zur Charakterisierung der Kaprekar-Konstruktion bei s-stelligen Zahlen im Posi-
)
tionssystem mit der Basis b sind m = 5 Differenzen erforderlich.

Beginnt man die Konstruktion mit einer s-stelligen Zahl n, die nicht aus lauter gleichen
Ziffern besteht, dann bewegt sich die Folge der Differenzen-m-Tupel ganz auf der Menge

Kf= {(dladb'-"dm)/oSdmgdm-—l S T S611 Sb - 13dl >O} (5)6)

Da die Figuren d, d,...d,, isotone Worter der Liange m liber dem Alphabet 0,1,...,6 — 1
darstellen und d, > 0 ist, hat die zugehorige Kaprekar-Algebra [K?; k] den Umfang

+ —
K| = (b Z 1)— L. 5.7)

Der frither aufgestellte Algorithmus fiir die Kettenzerlegung der Algebra [K}; k] ldsst sich
ohne weiteres auf beliebige Stellenzahlen s libertragen. So hat man etwa fiir s = 7 von

n = (d,d,d,0000),
und

i=b%d +b’d,+ b*d,— b’d,— b'd,— b°d,

bod, +b'd, +b'd,—1)  +BB—-1D+bb—d—1)
+b'b—d,— 1)+ b'(b—d), falls d—1>0

bed, +b5(d,—1)  +b'b+di— 1)+ b —1)+b*b—d,— 1)
+b'(b—d,—1) +b°(b—d), falls d,—1<Oundd,— 10,

bSd =)+ b b+d— D)+ b b +d—1)+bb—1)+b(b—d—1)
+b'(b—d,— 1)+ b°(b —d), falls d,—1<Oundd,—1<0

-y o f e o -

e [ r=1r=r
=(2724252,2,2,2)),

auszugehen.

2) Fiir s = 2 k6nnen bei bestimmten Werten von b Nachfolger 77 auftreten, die aus lauter gleichen Ziffern bestehen.
3) [x] ist der Ganzzahlteil von x.
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Die Figuren 9 und 10 zeigen die mit dem Rechner erhaltenen Di-Graphen zu den beiden
uniren Algebren [K.’;x] und [K7; x]. Die Algebra [K73; k] ist offenbar wiederum baumar-
tig. Man liest aus dem zugehorigen Di-Graphen ab, dass

(3210000), — (0000123), = (3203211),

die Kaprekar-Zahl bei den 7stelligen Zahlen im Positionssystem mit der Basis 4 ist.
Zugleich kann man aus dem Di-Graphen entnehmen, dass eine entsprechende Kaprekar-
Folge nach maximal 6 Anschlussgliedern stabil wird.

[K.%; k] ist eine unére Algebra, deren Kern einen Zyklus der Lange 2 und zwei Zyklen der
Lange 4 aufweist.

o (5.0)
9,9)  (9,1)
[, °
57 1 (5,4) (3,2)
(6 1) (4 1)
) O———«——O
(9 8)  (1,1)
(6,0)
9 (s,5) o(e 4 O“““O

(9, 4) (B 8) 9,2)
(8 1) (9,0) (1,0)
o]

N
\/W\\\
AT

(5,1)

3, o\
o
@, 3>//

(9,7)

o o
(9,3) (8,0) . (2 1) (2,0)
(2,2)
o] (5,2)
*(8,7) (4,0) (7,0)
,7) (7,3)

0(7,6) o o (6,5)

/ \ */ (7,1) (5,3)
O—— QO (8,3) 0 —t—— () —+—O o) fe) fo)

o}
(3,1)

(4,2) \\/‘E’-‘U l(?,u (8,5) (9,5)\

o
6
/(\’2) (3,3)
o

(4,4) (6,6)

Figur 9

(2,0,0)
o
[%]
(3 3,00 (3,11
o
(2,00 (3,0,0) (1,0,0)

(3,3,3)
(3,1,0) (2,2,1) (3,2
_ 0 ' ’ o) 12) (3.35

\ \\o t,3,1)
° (2,2,0)
(2,1,1)
(1,1,0) 1,1,1) ” 2N
2,

O (3,2,0)

Figur 10



142 EL Math., Vol. 40, 1985
6. Schlussbemerkungen

Auf unire Algebren stosst man in der Mathematik auch bei andern Fragestellungen.
Betrachtet man etwa auf der Menge N der natiirlichen Zahlen die 1stellige Verkniipfung

1

n—ia=pun)= ) n wenn n gerade

3n+1 wennnungerade,

(6,1)

dann erhilt man eine transfinite unire Algebra [IV; u]. Figur 11 zeigt einen Ausschnitt aus
dem zugehorigen Di-Graphen, der alle natiirlichen Zahlen unterhalb 25 enthalt.
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Es wird vermutet, dass der Kern der Algebra [NV;u] aus dem Zyklus (4,2,1) besteht. Dies
konnte aber noch nicht bewiesen werden. Folgen mit dem Konstruktionsgesetz (6,1)
werden gelegentlich als Syracuse-Folgen bezeichnet. Dariiber gibt es eine sehr umfangrei-
che Literatur®).

4) Vgl. etwa [4]. Im Anschluss an diese Note findet der Leser einen ausfiihrlichen Literaturhinweis. Dort wird auch
mitgeteilt, dass namhafte Mathematiker fiir den Beweis der Vermutung iiber Syracuse-Folgen Preise ausgesetzt
haben.
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Den Hinweis auf die undren Algebren als entscheidende Hintergrundstruktur beim Ka-
prekar-Problem verdanke ich W. Deuber in Bielefeld.

M. Jeger
Mathematik-Departement ETH Ziirich
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Typisierung der elliptischen Dreiecke nach der Qualitat
ihrer Winkel und Seiten

In der Theorie der Polyeder in n-dimensionalen Riumen konstanter Kriimmung gibt es
eine Reihe von Problemen, bei denen nicht die genaue Grosse der Polyederinnenwinkel
von Interesse ist, sondern nur deren Qualitdt, d. h. die Eigenschaft, ein spitzer, ein rechter
oder ein stumpfer Winkel zu sein. Zu diesen Problemen gehort beispielsweise die von H.
Hadwiger gestellte Frage nach der Orthoschemzerlegbarkeit von Polyedern (vgl. [5]).
Eine ausfiihrliche Darstellung der qualitativen Winkeleigenschaften euklidischer Sim-
plexe findet sich bei M. Fiedler [3, 4].

Im vorliegenden Aufsatz werden die Moglichkeiten fiir die Existenz und die gegenseitige
Lage spitzer, rechter und stumpfer Elemente (d.h. Winkel und Seiten) bei elliptischen
Dreiecken untersucht.

Es sei € der zweidimensionale Raum mit der konstanten Kriimmung » = 1 (elliptische
Ebene). Im folgenden wird es oft niitzlich sein, an die Einheitshalbsphire mit identifizier-
ten diametralen Randpunkten als ein Modell von € zu denken.

Ein Dreieck in € (elliptisches Dreieck) ist im Unterschied zur euklidischen und hyperboli-
schen Geometrie durch seine drei Eckpunkte nicht eindeutig festgelegt. Sind 4, Bund C
drei Punkte aus € in allgemeiner Lage, dann zerlegen die Geraden g (4, B), g (4,C) und
g (B, C) die Ebene € elementar-geometrisch in vier Dreiecke 4,, 4,, 4, und 4,, die alle die
Eckpunkte 4, B und C besitzen (vgl. Figur 1 sowie [2], S.62; die Darstellung von € in
Figur 1 ist aufzufassen als senkrechte Parallelprojektion des Halbsphdrenmodells auf
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