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ELEMENTE DER MATHEMATIK
Revue de mathematiques elementaires - Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts

El Math Band 40 Nr 6 Seiten 129-160 Basel, 10 November 1985

Das Kaprekar-Problem in der Sicht der
Computer-Mathematik

1. Das Kaprekar-Problem

Im Jahre 1949 hat der indische Mathematiker D R Kaprekar anhand von Beispielen eine
interessante zahlentheoretische Entdeckung gemacht Er betrachtete 4stelhge Zahlen, die
nicht aus lauter gleichen Ziffern bestanden, und bildete mit einer solchen Zahl n0 durch
Umstellen der Ziffern zwei neue Zahlen, namhch die grosstmoghche Zahl g0 und die

kleinstmögliche Zahl k0 Hernach bildete er die Differenz

«i £o - ^o

Das Ergebnis unterwarf er wiederum derselben Konstruktion Es fiel ihm dabei auf, dass

bei mehrfacher Iteration die jeweilige Anschlussfolge zu n0 spätestens nach dem 7 Glied
in die Zahl 6174 einmundet und dann stabil bleibt [3] Die beiden Beispiele in der Figur 1

illustrieren diesen Sachverhalt
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Es sind offenbar auch 4stellige Zahlen zugelassen, die mit Null beginnen.
Seit dem Erscheinen der Mitteilung von Kaprekar wird 6174 die Kaprekar-Zahl zu den

4stelligen Zahlen im Positionssystem mit der Basis 10 genannt.
In der Zwischenzeit haben sich Zahlentheoretiker eingehend mit dem Kaprekar-Problem
befasst und dieses auch in einen grösseren Rahmen gestellt. Zunächst wurden die
Positionssysteme bestimmt, für welche die Kaprekar-Konstruktion bei 4stelligen Zahlen auf
Folgen mit derselben Stabilitätseigenschaft führt. Es hat sich gezeigt, dass dies genau für
eine Basis von der Form

b 2*5, k 0 oder ungerade (1,1)

zutrifft [1]. Später sind bei beliebiger Basis b > 2 auch noch andere Stellenzahlen s in die

Untersuchungen einbezogen worden [4].
Es gibt total 104 - 10 9990 4stellige oder pseudo-4stellige Dezimalzahlen, die nicht aus
lauter gleichen Ziffern bestehen, und jede derartige Zahl ist als Anfangsglied einer

Kaprekar-Folge zugelassen. Bei endlich vielen Möglichkeiten sind zur Verifikation der

Stabilitätseigenschaft keine aufwendigen zahlentheoretischen Analysen erforderlich;
man kann sich - wie Kaprekar dies seinerzeit getan hat - auf eine Durchmusterung aller
in Frage kommenden Folgen beschränken. Mit einer Klärung auf dieser Ebene bleiben
natürlich die tiefer liegenden zahlentheoretischen Zusammenhänge verborgen. Die
Durchmusterung lässt sich aber durchaus so auslegen, dass dabei auch einige Querverbindungen

zwischen verschiedenen Klassen von Kaprekar-Folgen in bezug auf die Parameter

b und s sichtbar werden. Der folgende Computer-Approach zum Kaprekar-Problem
bewegt sich auf dieser Ebene. Er lässt zudem noch eine bemerkenswerte algebraische

Hintergrundstruktur hervortreten.

2.4stellige Dezimalzahlen

Zum Austesten der möglichen Kaprekar-Folgen würde an sich ein Algorithmus genügen,
der für eine zulässige 4stellige Zahl n0 die Anschlussfolge

nx,n2,...

liefert. Es lohnt sich jedoch, vorerst einige theoretische Überlegungen anzustellen. Wie
sich gleich zeigen wird, lässt sich nämlich die Testmenge stark reduzieren.
Bei einer 4stelligen Dezimalzahl n mit den Ziffern zx, z2, z3, z4 kann die Indizierung stets so

gewählt werden, dass

0<zx <z2<z3<z4<9 (2,1)

ist. Die grosste und die kleinste Zahl, die aus diesen Ziffern gebildet werden können, sind

g (z4z3z2zx)xo und k (zxz2z3z4)xo. (2,2)
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Der Nachfolger von n in einer Kaprekar-Folge lautet daher

n v(n) g — k
(103z4 + 102z3 + 10!z2 + 10°z,) - (103z, + 102z2 + 10^3 + 10°z4) (2,3)
(103 - 10°) (z4 - zx) + (102 - I0x)(z3 - z2).

Mit

dx:=z4- d2:=z3-z2

erhält man insbesondere

n =999dx + 90d2.

Aus (2,1) folgt, dass

0 < d2 < dx < 9.

Ist n eine 4stellige Zahl mit nicht lauter gleichen Ziffern, dann gilt zusätzlich

dy>0.

(2,4)

(2,5)

(2,6)

Die bisherigen Feststellungen lassen darauf schhessen, dass die Anschlussfolge zu einer
Zahl n0 nur von dem zu n0 gehörenden Differenzenpaar (dx,d2) abhängt. Zudem bewegen
sich die möglichen Anschlussfolgen ganz auf der Zahlenmenge, die durch (2,4) und (2,5)
gekennzeichnet ist. Dies sei anschliessend noch an unserem früheren Beispiel illustriert.

z z z12 3

H 1 \~

' 7263 999.7 + 90.3

5265 999.5 + 90.3

' 3996 999.4 + 90.0

6264 999.6 + 90.3

" 4176 999.4 + 90.2

• 6174 999.6 + 90.2

Figur 2 Figur 3

Zum Differenzenpaar (7,3) gehören sämtliche Zahlen n0 in der folgenden Zusammenstellung

9962 8851 7740

9852 8741 7630
9742 8631 7520
9632 8521 7410
9522 8411 7300
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und alle weitern 4stelligen Zahlen, die durch Umstellen der Ziffern daraus hervorgehen.
Es liegt nun nahe, bei der Untersuchung von Kaprekar-Folgen die entsprechenden
(dx,d2)-Folgen heranzuziehen. Diese Verkürzung trifft offenbar den Kern des vorliegenden

mathematischen Problems. Es sei noch darauf hingewiesen, dass das entscheidende
Differenzenpaar (6,2) schon in jenem Glied einer Kaprekar-Folge erscheint, das der
charakteristischen Zahl 6174 unmittelbar vorangeht.
Zur Gewinnung der Nachfolger-Konstruktion aufder Menge der (dx, d2)-Paare führen wir
jetzt noch die Dezimalschreibweise der Zahl ii v (n) ein:

n =999dx + 90d2
I03dx + I02(d2 - 1) + 10!(10 - 4 - 1) + 10°(10 - dx),
falls 4 - 1 > 0

io3(4 - i) + io2(io + 4- i) 4- io1 (io - 4- i) + io°(io - 4), (2,7)
falls 4 - 1< 0

(z^z3z2zx)Xq.

(4,4) ist das Differenzenpaar, das zur Zahl n gehört.
Sortiert man die anfallenden Ziffern z'x,z2,z'3,z'4 in aufsteigender Folge, dann gilt nach
entsprechender Umbezeichnung

0 < z, < z2 < z3 < z4 < 9.

Für das Differenzenpaar (3X,32) zur Zahl n folgt daraus

J, z4 - z,; 32 z3- z2 (2,8)

Es lässt sich jetzt zeigen, dass im Nachfolgerpaar (4,4) zu (d\,d2) stets 4 > 0 ist.
Zunächst entnimmt man aus (2.7), dass h, als 4stellige Zahl aufgefasst, niemals aus 4

gleichen Ziffern bestehen kann. Zifferngleichheit impliziert nämlich im ersten Falle

(4 - 1 > 0)

4=4-1 1

10-4-1 10-4 J

4-
4-

-4+1=0
-4-1=0

und im zweiten Falle (d2 - 1 < 0)

4-1 10 + 4-11
10 - 4 - 1 10 - 4 J

4-
4-

-4-10 0

-4-1 =0,

d. h. man kann in beiden Fällen zwei unverträgliche Aussagen folgern. Wenn aber h nicht
4 gleiche Ziffern aufweist, dann ist aufgrund einer früheren Bemerkung 3X > 0.

Zum Anfangsglied n einer Kaprekar-Folge gehört stets ein Differenzenpaar (4.4) m^
4 > 0. Dieselbe Eigenschaft besitzen jetzt offenbar auch alle Bildpaare der Anschlussfolge

zu n09 d. h. die Sequenz der Differenzenpaare (dx, d2) bewegt sich ganz aufder Menge

Ki° {(4, d2)/0 <d2<dx<9,dx>0}. (2,9)

Ihre Mächtigkeit ist

|jr410| 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 54,
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denn mit einem bestimmten zulässigen Wert von dx kann d2 jeweils die Werte

4,4- 1,4-2,...,1,0
annehmen.
Die Kaprekar-Konstruktion impliziert auch auf der Menge K4X0 eine Isteilige Verknüpfung,

bei der (4,4) der Nachfolger von (4>4) ist. Wir wollen dies fortan mit der
Schreibweise

(4,4) k ((4,4))

zum Ausdruck bringen. Bezeichnet / die Abbildung, die der Zahl n das Paar (dx,d2)

zuordnet, dann gilt offenbar

Kf(n)=f(v(n)), (2,10)

d. h. die Abbildungf ist ein Homomorphismus.
Man kann sich nun eine vollständige Übersicht über alle möglichen Kaprekar-Folgen
verschaffen, indem man das Verknüpfungsgebilde [K4X0;k] an einem Di-Graphen
veranschaulicht. Dazu ist jedem Paar (dx,d2)eK4X0 ein Knoten (Punkt) in der Zeichenebene

zuzuordnen, und zwei Knoten sind genau dann mit einer gerichteten Kante zu verbinden,
wenn die entsprechenden Paare in der Nachfolgerrelation stehen. Bevor wir die Gewinnung

dieses Di-Graphen mit einem Rechner angehen, wollen wir noch eine Verallgemeinerung

vornehmen.

3.4stellige Zahlen im Positionssystem mit der Basis b > 2

Bei einer Basis b > 2 sind die Differenzenpaare (4,4) mit

0 < 4 < 4 < b - 1

möglich. Für die Klasse der 4stelligen Zahlen zum Differenzenpaar (4,4) ist die Zahl

n b3dx + b2d2 (dxd200)b

der einfachste Repräsentant. Man erhält damit

g (4400)A; k (00dxd2)b.

Daraus ergibt sich in Verallgemeinerung von (2,7)

n ___ v (n) _= g - k b3dx + b2d2 -bxd2- b°dx

b3dx+ b2(d2-l) + bl(b-d2-l) + b°(b-dx), falls 4~l>0nn
b3(dx - 1) + b2(b -d2-l) + bx(b-d2-l) + b°(b - dx), falls 4-1< 0 l ' ;

(z4z3z2zx)b,

wobei z; < b - 1 ist.
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Nach dem Sortieren der Zahlen z'x,z'2,z'3,z'4 zu einer aufsteigenden Folge und entsprechender

Umbezeichnung ist

0 < z, < z2 < z3 < z4 < b - 1

Die neuen Differenzen lauten jetzt

3x z4-zX9 32 z3- z2 (3,2)

Die weitern Überlegungen im Abschnitt 2 können vollständig übernommen werden Sie
fuhren zum folgenden Ergebnis

Satz 1. Startet man die Kaprekar-Konstruktion im Positionssystem zur Basis b > 2 mit
einer Zahl n, die nicht aus 4 gleichen Ziffern besteht, dann erhalt man eine Folge von
Differenzenpaaren, die ganz in der Menge

Kb {(dx,d2)/0 <d2<dx<b-l,dx>0} (3,3)

enthalten ist

Die Mächtigkeit von K4 lasst sich leicht bestimmen, wenn man berücksichtigt, dass die

Figuren dx d2 isotone Worter (Kombinationen mit Wiederholungen) der Lange 2 uber
dem Alphabet 0,1, b - 1 darstellen Wegen 4 > 0 ist

«-CTO-'-C")-'
An dieser Stelle wollen wir nun einen Abstecher in die Computer-Mathematik machen
Es soll anschliessend ein Algorithmus aufgestellt werden, der den Di-Graphen zum Ver-

knupfungsgebüde [K4,k] liefert Einem Algorithmus mit dieser Zielsetzung lasst sich etwa
das folgende Konzept zugrunde legen
Es werden nacheinander Ketten von Paaren (dx,d2)eK4 konstruiert, bei denen
aufeinanderfolgende Glieder in der vorliegenden Nachfolgerrelation stehen Paare, die im
Verlaufe des Konstruktionsprozesses angetroffen werden, sind zu markieren Dies macht es

möglich, die Kettenkonstruktion jeweils abzubrechen, sobald man auf ein Paar stosst,
das zuvor schon einmal aufgetreten ist Als erstes Glied einer neuen Kette ist immer jenes
Paar (4*4)ln der Restmenge der noch nicht in der Auflistung vorkommenden Elemente

von K4 zu nehmen, fur das die Zahl bdx+ d2 den grösstmöglichen Wert hat Um den

geometrischen Zusammenhang des Di-Graphen aus dem Rechner-Output ablesen zu
können, ist mit jeder aufgefundenen Kette auch noch das (bereits früher schon begegnete)

Anschlussglied auszudrucken
Die Markierung der im Verlaufe des Prozesses anfallenden Paare (dx,d2)eK4 kann uber

ein Parameterfeld

c(l,0), c(l,l), c(2,0), c(2,l), c(2,2), c(b-l,b-l)
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vorgenommen werden, das zuvor bereitzustellen ist. Bei Prozessbeginn ist etwa

c(4,4):=0 für alle (dx,d2)eKx4°

zu setzen. Wenn nun im Verlaufe der Kettenkonstruktion das Paar (d[9 4) angetroffen
wird, lässt sich dieses mit der Anweisung

c(4',4):=l

markieren.
Der Start der Durchmusterung von K4 erfolgt mit der Kette, an deren Anfang das Paar
(b - l,b - 1) steht. Der Konstruktionsprozess ist abgeschlossen, sobald die Menge K4

vollständig in Ketten aufgeteilt vorliegt.
Der zunächst verbal umschriebene Algorithmus lässt sich nun sofort in das Flussdiagramm

in der Figur 4 übertragen. Darin sind zusätzlich noch die beiden Parameter/und

DIM Z(4)
DIM C(B-1,B-1)
A 0

PRINT

"Auflistung beendet"

"Umfang der Algebra "; A

STOP

Figur 4

C(I,J) 1

PRINT (D ,D
1 2

ZUJ B-D

Z(2 B-D -1

Z(3) D -1

Z(4) D

_(3)£0

Z(3) =Z(3)+B

Z(4) =Z(4)-1

Sortieren
ZU), Z(2), Z(3), ZU)

D =Z(4)-Z(1)
1

D »Z(3)-Z(?)

PRItfT
"Lange der Kette "; F

"Anschlussglied ";

(D1'D2>

A - A+F
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a eingeführt;/dient zur Bestimmung der Kettenlängen, a zur Gewinnung der Mächtigkeit

von K4. Die Dimensionierungsanweisungen im zweiten Kästchen zielen auf eine

Umsetzung in die Programmiersprache BASIC ab.

Anschliessend ist das entsprechende Rechnerprogramm für den Rechner Commodore
C-64 und den zugehörigen Drucker VC-1520 aufgeführt.

100 OPEN1.6
110 PRINT*1 KAPREKAR-PROBLEM
120 INPUT B EINGEBEN ,B
130 PRINT«1 4-STELUGE ZAHLEN, BASIS

PRINT-1
140 DIM Zf43 DIU CCB-1,B-13 A=0
150 REM ABFRAGE DER C-REGISTER
160 FOR I=B 1 TO 1 STEP -1
170 : FOR J-I TO 0 STEP -1
180 IF CfI.JD-0 THEN CC I .J 3 1-

GOTO 250
190 NEXT J
200 NEXT I
210 PRINT-1
220 PRINT«!. AUFLISTUNG BEENDET
230 PRINT*1, riAECHTIGKEIT DER ALGEBRA.
A

240 STOP
250 F=0
260 REH KONSTRUKTION DER ANSCHLUSSFOLGt
270 Dl=1 D2=J
280 PRINT«!.SPCC63 f Dl. »02, 1

290 F=F+1
300 ZflD B-Dl Zf2.-B-D2~l
310 ZC3D-D2-1 ZC4D-D1
320 IF Zf33>=0 THEN 340
330 ZT33-ZC33+B ZC43-ZC43-1
340 FOR 1= 1 TO 3
350 FOR J =1 + 1 TO 4
360 IF ZfI3<=ZCJ3 THEN 380
370 z-zci. zcn-zm zcn=z
380 NEXT J
390 NEXT I
400 D1=ZC4--ZC1D. D2=ZC33 ZC23
410 IF CCD1.D23-1 THEN 430
420 CCD1,D2 3=1 GOTO 280
430 A=A+F
440 PPINT*1, LAENGE DER KETTE F

450 PRINT»1 ANSCHLUSSGLIED ;

460 PRINT«!,SPCf33 f ,D1. ,D2, 3

470 PRINT»»1
480 GOTO 160

Figur 5 zeigt den Anfang des Drucker-Outputs für b 10 und den daraus hervorgehenden

Teil des Di-Graphen zum Verknüpfungsgebilde [iK}0;*;].
KAPREKAR PROBLEM
4-STLLLIGF ZAHLEN BASIS 1

f 9 9 3

f 9 7 3

r 8 4 3

r 6 2 3

lAENGE DER KETTE 4
ANSCHLUSSGLIED C 6 2

f 9 8 3

f 8 6 3

lAENGE DER KETTE 2
ANSCHLUSSGLIED C 6 2

r 9 6 3

f 8 2 3

C 7 5 3

r 4 0 3

f 6 3 3

f 4 2 3

-AtNGE DER KETTE 6
ANSCHLUSSGLIED r 6 2

f 9 5 3

C 8 0 3

f 7 2 3

f 6 4
f 3 1 3

lAENGE DER KETTE 5
ANSCHLUSSGLIED C 8 4

f 9 4 3

lAENGE DER KETTE 1

ANSCHLUSSGlIED' C 8 2

f 9 3 3

LAENGE DER KETTE 1

ANSCHLUSSGLIED f 8 4

C 9 2 3

lAENGE DER KETTE 1

ANSCHLUSSGLIED C 8 6

lAENGE DER KETTE 1

ANSCHLUSSGlIED C

f 9 0 3

f 8 1 3

lAENGE DER KETTE 2
ANSCHLUSSGlIED C

tAENGE DER KETTE
ANSCHLUSSGLIED

0(8,0) ° (R.J) 0(8,8)

(7,2)
(7,5)

4) (*'9) <*" (4,0) (9,0)
o""4' o yö O

(6,3) (8,1)(9,3) 1(3,1)ov"J' 6 ' O'V)

(8,4) (4,2) (8,6)

(6,2

,8) <9'2>

Figur 5
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Der vollständige Di-Graph zu [ITj0,*:] ist in Figur 6 aufgezeichnet Man kann daraus
entnehmen, dass Kaprekar-Folgen bei 4stelhgen Dezimalzahlen tatsächlich nach höchstens

7 Anschlussgliedern in die Zahl 6174 einmunden Damit ist zunächst einmal ein
Computer-Approach zum klassischen Kaprekar-Problem freigelegt Der vorliegende
Algorithmus kann aber generell zur Erschliessung der Verknupfungsgebilde [K4,k]
herangezogen werden Bevor wir weitere Beispiele analysieren, wollen wir wiederum einige
theoretische Überlegungen einfugen

0(4 1)

18 8)

(4 0)

(5 3

¦* O
(7 0) (3 3)

(4 2}
(7 4

0(5 1)O (8 3)(4 4)
(3 0(4 3)

o (3 1

(8 0)(7 1)(6 2 O (3 2)

(9 1

^\ (9 0)
(2 1) ^v^

(5 5)

[1 0)

(6 5)
0(9 2)

(5 0)
(9 8)

(6 0) (5

Figur 6

4. Unäre Algebren

Das Kaprekar-Problem zeichnet sich ab in algebraischen Strukturen vom Typus [K,k],
wobei k eine auf der Objektmenge Verklärte Isteilige Verknüpfung ist Man spricht in
einem solchen Falle von einer unaren Algebra1)
Wenn üTeine endliche Menge ist, dann stosst man bei jeder Konstruktion einer Nachfolgerkette

nach endlich vielen Schritten auf ein Element von K, das in der betreffenden
Kette schon an früherer Stelle aufgetreten ist Sämtliche Ketten in [K,k] müssen daher

notwendigerweise in emen Zyklus einmunden Der Di-Graph zu einer endlichen unaren
Algebra zeigt also stets dasselbe Grundmuster Er ist aufgebaut aus endlich vielen

Zyklen, an denen auf die Zyklen zu gerichtete Di-Baume angehängt sind

l)Vgl etwa [21, S 80fT
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/
/

o
Di-Graph einer unaren Algebra, deren Kern aus 3 Zyklen besteht

Figur 7

Die Elemente von K, die in einem Zyklus enthalten sind, bilden zusammen den Kern der
unaren Algebra [K;k].
Die Stabilität der Kaprekar-Folgen bei 4stelligen Dezimalzahlen kommt nun dann zum
Ausdruck, dass der Kern der unaren Algebra [l^j0;*;] nur aus einem einzigen Element
besteht. Man spricht in diesem Falle von einer baumartigen unaren Algebra. Insbesondere

ist [iSTj0;*:] eine baumartige unäre Algebra von der Höhe 6 (Fig. 6).

Figur 8 zeigt noch die Digraphen zu den beiden unaren Kaprekar-Algebren [K4;k] und
[K4; k]. Sie wurden ebenfalls mit unserem generellen Algorithmus für die Kettenzerlegung
von [K4;k] erhalten. Für [K4;k] ist der vollständige Drucker-Output anschliessend

wiedergegeben.
KAPREKAR-PROBLEM
4-STELLIGE ZAHLEN, BASIS 5

f 4 4 3

C 4 2 3

C 3 „
1 3

LAENGE DER KETTE 3
ANSCHLUSSGLIED C 3

L* (1,0)

0(5,0)

/(4,1)
[4,3)^

(2,0)
(2,1)

(3,1)
(3,2)

(4,0)(3,0)

(2,2)

(5,3)

E5,3)(5,5)

[v-1

(4,1)

(4,3) (2,0)

2.1

(4,0)(4,2)

(3,1)

C 4 3 3

LAENGE DER KETTE
ANSCHLUSSGLIED

C 4 1 3

LAENGE DER KETTE
ANSCHLUSSGLIED

lAENGE DER KETTE
ANSCHLUSSGLIED

f 3 3 3

f 2 0 3

LAENGE DER KETTE
ANSCHLUSSGLIED

C 3 2 3

LAENGE DER KETTE
ANSCHLUSSGLIED

C 3 0 3

C 2 2 3

LAENGE DER KETTE
ANSCHLUSSGLIED

C 2 - 1 D

LAENGE DER KETTE
ANSCHLUSSGLIED

C 1 1 3

LAENGE DER KETTE
ANSCHLUSSGLIED

C 1 0 3

LAENGE DER KETTE
ANSCHLUSSGLIED

Figur 8
AUFLISTUNG BEENDET
MAECHTIGKEIT DER ALGEBRA
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Bei [-ÄT4;jc] ist ein Kern mit einem einzigen Zyklus vorhanden. [äJ;k:] hingegen ist
wiederum eine baumartige unäre Algebra, d. h. bei 4stelligen Zahlen im Positionssystem mit
der Basis b 5 weisen Kaprekar-Folgen dieselbe Stabilitätseigenschaft auf wie im
Dezimalsystem. Diese Feststellung steht im Einklang mit dem zitierten Ergebnis (1,1). Die
zugehörige Kaprekar-Zahl ist

(3100)5-(0013)5 (3032)5.

5. 5-stellige Zahlen im Positionssystem mit der Basis b > 2

Wir betrachten zunächst 5stellige Zahlen im Positionssystem mit der Basis b. Gehen aus
einer solchen Zahl n die beiden Extremalzahlen

g (z5z4z3z2zx)b mk 0<z1<z2<z3<z4<z5<Z>-lk — (zxz2z3z4z5)b

hervor, dann schliesst man für den Nachfolger

n v(n) g-k
(b4z5 + b3z4 + b2z3 + bxz2 + b°zx) - (b4zx + b3z2 + b2z3 + bxz4 + b°z5) (5,1)
(b4 - b")(z^) + (b3 - b^z^-zj),

dx d2

d. h. es treten wie im Falle s 4 zwei charakteristische Differenzen dx und d2 auf. In
Analogie zu (3,1) erhält man bei der Notation von n im System mit der Basis b

h (dxd2000)b- (000d2dx)b

b4dx + b3(d2 - 1) + b2(b - l) + bx(b-d2-l) + b°(b - dx),
falls d2 - 1 > 0 (5,2)
b4(dx -l) + b3(b +d2-l) + b2(b -l) + bx(b-d2-l) + b°(b- dx),
falls d2 - l< 0

(z'sz'4z'3z2zx\ mit 0 < z/< b - 1.

Nach dem Sortieren der Zahlen z"x,z2,z"3,z'4,z"5 und entsprechender Umbezeichnung ist

0 < z, < z2 < z3 < z4 < z5 < b — 1.

Das Nachfolgerpaar zu (dx,d2) lautet dann

3X z5-zx; 32 z4-z2. (5,3)

Mit den früheren Überlegungen lässt sich auch hier zeigen, dass stets 3X > 0 ist, d. h.

Kb {(dx,d2)/0 <d2<dx<b- l,dx > 0}.



140 El Math Vol 40, 1985

Der im Abschnitt 3 aufgestellte Algorithmus lasst sich problemlos auf die Kaprekar-Algebren

[K\,k] übertragen
In Anlehnung an die Falle s 4 und s 5 kann jetzt die Kaprekar-Konstruktwn auf
beliebige höhere Stellenzahlen verallgemeinert werden2) Bei s-stelligen Zahlen betragt die
Anzahl der charakteristischen Differenzen

m RH 3), (5,4)__•>'

wobei fur diese Differenzen

0<dm<dm_x< <d2<dx<b -l, dx>0 (5,5)

gilt
Anstelle von Satz 1 tritt fur s > 3 der

Satz 2. Zur Charakterisierung der Kaprekar-Konstruktwn bei s-stelhgen Zahlen im Posi-
s

J>_
Beginnt man die Konstruktion mit einer s-stelhgen Zahl n, die nicht aus lauter gleichen
Ziffern besteht, dann bewegt sich die Folge der Differenzen-m-Tupel ganz auf der Menge

tionssystem mit der Basis b sindm : Differenzen erforderlich

Kbs {(dx,d2, ,dm)/0 <dm<dm.x< <dx<b~ 1,4 > 0} (5,6)

Da die Figuren dx d2 dm isotone Worter der Lange m uber dem Alphabet 0,1, b — 1

darstellen und dx > 0 ist, hat die zugehörige Kaprekar-Algebra [Kb59ic] den Umfang

^CT1)-1 (5'7)

Der früher aufgestellte Algonthmus fur die Kettenzerlegung der Algebra [K4 ,/c] lasst sich
ohne weiteres auf beliebige Stellenzahlen s übertragen So hat man etwa fur s 7 von

n (dxd2d30000)b

und

n b6dx + b5d2 + b4d3 - b2d3 -bxd2- b°dx

b6dx + b5d2 + b4(d3 - 1) + b3(b -l) + b2(b ~d3-l)
+ bl(b-d2-l) + b°(b-dx), falls d3 - 1 > 0

b6dx + b5(d2 - 1) + b4(b +d3-l) + b3(b -l) + b2(b -d3-l)
+ bx(b-d2-l)+b°(b-dx), falls d3-K0undd2-l >0,

b6(dx -l) + b5(b +d2-l) + b4(b +d3-l) + b3(b -l) + b2(b-d3-l)
+ bx(b-d2-l) + b°(b-dx), falls d3-l<0undrf2~ 1< 0

(z7 z6 z5 Z4Z3 z2 zx)b

auszugehen

2) Fur 5=2 können bei bestimmten Werten von b Nachfolger n auftreten, die aus lauter gleichen Ziffern bestehen

3) [x] ist der Ganzzahlteil von x
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Die Figuren 9 und 10 zeigen die mit dem Rechner erhaltenen Di-Graphen zu den beiden

unaren Algebren [K\°9k] und [K4, k] Die Algebra [K4, k] ist offenbar wiederum baumartig

Man liest aus dem zugehörigen Di-Graphen ab, dass

(3210000)4 - (0000123)4 (3203211)4

die Kaprekar-Zahl bei den 7stelhgen Zahlen im Positionssystem mit der Basis 4 ist
Zugleich kann man aus dem Di-Graphen entnehmen, dass eine entsprechende Kaprekar-
Folge nach maximal 6 Anschlussgliedern stabil wird
[K™, k] ist eine unare Algebra, deren Kern einen Zyklus der Lange 2 und zwei Zyklen der
Lange 4 aufweist

(9 9) (9 1)

i,54>K -]
(6 1) (4.1)
O Q

0 (9 8) (1 1)

o—«•—o(5 5) Q(8 4)
19 4) 1 / (8 8) (9 2)

(8 1) (9 0) (1 0)
o—_—o———o —-—ov—¦*—o—¦*—o(5 1)

[7 5) MJ« 6) N.9 6)

n O O O
(6 3) ° W\f8 2) (2 1) (2 0)
W (2 2) V\ P(9 3) <8 0)

[5 2)
(8 7)

E7 7) (7 3)
P O

(7 6)

V (7 1) (5 3)
O •¦ Ov (8 3) 'o C> —*—O—-• O

(6 4) i (7 4) (8 5) (9 5)

[3 1)

X
(4 4 (6 6) Figur 9

[¦H

(~^P

(3 3 0) (3 1 1)

(2 10) (3 0 0) (IOC

(1 10) (11 1)
* O (3 2 0)

Figur 10
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6. Schlussbemerkungen

Auf unäre Algebren stösst man in der Mathematik auch bei andern Fragestellungen.
Betrachtet man etwa auf der Menge _Vder natürlichen Zahlen die Isteilige Verknüpfung

- - n wenn n gerade ,r t.n\->n p(n)= j 2 (6,1)
I 3 n + 1 wenn n ungerade,

dann erhält man eine transfinite unäre Algebra [N; p]. Figur 11 zeigt einen Ausschnitt aus
dem zugehörigen Di-Graphen, der alle natürlichen Zahlen unterhalb 25 enthält.

?/
Ol4

t/
V
\y

\y *

\y
/ \y 52

\7 i
| i 40

cc1 o oO 20 O 3

\y

r^ Figur 11

Es wird vermutet, dass der Kern der Algebra [N;p] aus dem Zyklus (4,2,1) besteht. Dies

konnte aber noch nicht bewiesen werden. Folgen mit dem Konstruktionsgesetz (6,1)
werden gelegentlich als Syracuse-Folgen bezeichnet. Darüber gibt es eine sehr umfangreiche

Literatur4).

4) Vgl. etwa [4J. Im Anschluss an diese Note findet der Leser einen ausführlichen Literaturhinweis. Dort wird auch

mitgeteilt, dass namhafte Mathematiker für den Beweis der Vermutung über Syracuse-Folgen Preise ausgesetzt
haben.
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Den Hinweis auf die unaren Algebren als entscheidende Hintergrundstruktur beim
Kaprekar-Problem verdanke ich W. Deuber in Bielefeld.

M. Jeger
Mathematik-Departement ETH Zürich
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Typisierung der elliptischen Dreiecke nach der Qualität
ihrer Winkel und Seiten

In der Theorie der Polyeder in «-dimensionalen Räumen konstanter Krümmung gibt es

eine Reihe von Problemen, bei denen nicht die genaue Grösse der Polyederinnenwinkel
von Interesse ist, sondern nur deren Qualität, d. h. die Eigenschaft, ein spitzer, ein rechter
oder ein stumpfer Winkel zu sein. Zu diesen Problemen gehört beispielsweise die von H.
Hadwiger gestellte Frage nach der Orthoschemzerlegbarkeit von Polyedern (vgl. [5]).
Eine ausführliche Darstellung der qualitativen Winkeleigenschaften euklidischer
Simplexe findet sich bei M. Fiedler [3, 4].
Im vorliegenden Aufsatz werden die Möglichkeiten für die Existenz und die gegenseitige

Lage spitzer, rechter und stumpfer Elemente (d. h. Winkel und Seiten) bei elliptischen
Dreiecken untersucht.
Es sei (E der zweidimensionale Raum mit der konstanten Krümmung x 1 (elliptische
Ebene). Im folgenden wird es oft nützlich sein, an die Einheitshalbsphäre mit identifizierten

diametralen Randpunkten als ein Modell von (£ zu denken.
Ein Dreieck in ($: (elliptisches Dreieck) ist im Unterschied zur euklidischen und hyperbolischen

Geometrie durch seine drei Eckpunkte nicht eindeutig festgelegt. Sind A, B und C
drei Punkte aus (E in allgemeiner Lage, dann zerlegen die Geraden g (A, B), g (A, C) und

g (B9 C) die Ebene <£ elementar-geometrisch in vier Dreiecke AX,A2, A3 und A4, die alle die

Eckpunkte A,B und C besitzen (vgl. Figur 1 sowie [2], S.62; die Darstellung von ($; in
Figur 1 ist aufzufassen als senkrechte Parallelprojektion des Halbsphärenmodells auf
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