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c) Da in der Transformationsmatrix X die Hauptvektorketten in der umgekehrten
Reihenfolge auftreten, erhalten wir insgesamt folgende Ähnlichkeitstransformation
X~XAX=J:

1 0-1 1 0 0\ / 1 1-1 1 - 1 0 \ / 0 10 0 0 0^

ioooo o\/ oiooo o\/ 001010
0 1-1 1-1 0 11 0 0 2-1 1 0 W 0 0 0 10 0

0 0 10 0 OH 1-1 2-1 2 0 II 1-1 0 10 0

0 0 1-1 1 0 / \ 1—1 1-1 2 0 / \ 1 -1 0 0100-1-2 3-2 1/ \-l 0-4 5-42/ Vi 1 1-1 3 L

Peter Lesky, Math. Institut A,
Universität Stuttgart

LITERATURVERZEICHNIS

1 A I Kostnkin Introduction to Algebra Spnnger-Verlag, Berlin, Heidelberg, New York 1982

2 W Schmeidler Vortrage uber Determinanten und Matnzen mit Anwendungen in Physik und Technik
Akademie-Verlag, Berlin 1949

3 R Zurmühl und S Falk Matrizen und ihre Anwendungen, 5 Aufl, Teil 1 Spnnger-Verlag, Berlin, Heidel¬

berg, New York 1984

© 1985 Birkhauser Verlag, Basel 0013-6018/85/060105-05S1.50 + 0 20/0

Statistische Inferenz und strategisches Spiel

1. Einleitung

Der Entscheidungsträger (z. B. der Statistiker, der Unternehmer, der Staat usw.) sieht
sich oft in der Lage, aus einer Menge A {a,}1) von Aktionen oder Entscheidungen eine in
einem gewissen Sinne optimale auszuwählen, und zwar angesichts einer unsichern
Umwelt. Von dieser nehmen wir an, dass sie die relevanten Zustände z}eZ annehmen kann.
Wählt der Entscheidungsträger eine Aktion at im Zustand zJ9 so resultiert ein Ergebnis
etJeE. Mit Hilfe der Nutzenaxiomatik nach J. v. Neumann oder Luce-Raiffa [4], S. 105ff.,

1) Wir beschranken uns auf endliche Mengen



110 El. Math., Vol. 40, 1985

lässt sich der Ergebnisraum E quantifizieren, d. h. jedem Ergebnis etJ wird ein Nutzen
wyeR oder Verlust vyeR zugeordnet.
Die modellhafte Beschreibung von realen Entscheidungssituationen kann durch das sog.
Grundmodell der Entscheidungstheorie erfolgen, das im Rahmen der statistischen
Problemstellung im nachfolgenden Kapitel vorgestellt wird. Die Entscheidungstheorie bei
Unsicherheit ist wesenhaft mit dem Zufall und dadurch mit der Wahrscheinlichkeitsrechnung

und Statistik verbunden.
Angesichts einer unsichern Umwelt oder Realität ist man geneigt, diese - im Sinne einer
pessimistischen Grundhaltung - als konkurrierenden Gegenspieler zu interpretieren. So

gelangen wir zur Theorie der strategischen Spiele (kurz Spieltheorie genannt), die von J.

v. Neumann und O. Morgenstern im klassischen Werk [1] niedergelegt wurde.

2. Die klassische Statistik im Lichte der Entscheidungstheorie

In der klassischen induktiven oder inferentiellen Statistik2) stehen Begriffe wie
Erwartungstreue, Effizienz, Fehler 1. und 2. Art und Macht eines Tests im Mittelpunkt.
Hingegen vermisst man eine ökonomische oder finanzielle Bewertung richtiger oder
falscher Entscheide sowie den Einbezug von gewissen Vorinformationen bezüglich der zu
schätzenden Parameter.
Epochemachend kann der universale Ansatz von A. Wald bezeichnet werden, der um
1950, ausgehend von der Sequentialanalyse3), sämtliche Probleme der statistischen Infe-
renz in den Rahmen der Entscheidungstheorie bei Unsicherheit eingebaut hat [2]. Im
Mittelpunkt dieser Theorie steht der Begriff der statistischen Entscheidungsfunktion oder
Strategie. Es ist eines unserer Ziele, diese Theorie an einem abgegrenzten Problemkreis
exemplarisch darzustellen (Kapitel 5) und die verschiedenen Lösungsansätze aufzuzeigen
(Kapitel 4).
Einen ganz andern Weg, nämlich im Rahmen der sog. weichen Modellbildung, haben E.

Kofier und G. Menges unlängst beschritten [3]. Ihr Anliegen ist es, flexible, realitätsbezo-

gene Entscheidungsmodelle zu verwenden, die es gestatten, auch unvollständige oder
partielle Informationen optimal einzubeziehen.
Auch dieser Ansatz wird in seinen Grundzügen vorgestellt. (Siehe Fall III im Kapitel 4.)

3. Das Modell der statistischen Entscheidungstheorie

Sei _¥eine Zufallsvariable, deren Verteilungsfunktion F(x, z) vom unbekannten Parameter

z}eZ abhängt. Die z} werden als Zustände der Umwelt oder Natur interpretiert und
bilden den Zustandsraum Z.
Der Statistiker (allgemein der Entscheidungsträger) wählt eine Aktion a,eA (oder
Letztentscheidung). A heisst Aktionsraum, und unter at kann man sich z.B. Annahme oder

Ablehnung einer statistischen Hypothese vorstellen.

2) Sie zerfallt im wesentlichen in Test- und Schätztheorie sowie Versuchsplanung und wurde vor allem von R. A.
Fisher, J. Neyman und E. S. Pearson in den zwanziger Jahren unseres Jahrhunderts entwickelt.

3) Der Stichprobenumfang wird nicht zum vornherein fixiert, sondern hängt vom Ergebnis einer Teilstichprobe
ab.
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Die ökonomische Bewertung erfolgt über eine Verlustfunktion4) v (at, z) vip die den
Verlust angibt, der bei Verwendung der Aktion ax im Zustand z, entsteht. Das Tripel
(Z,A,v) beschreibt das ursprüngliche Entscheidungsproblem, das auch matriziell nach
(1) dargestellt werden kann.

Z
A zx •• • z, • - z„

ax *>ii Vxn

a, — K »m

ak »kl vkn (1)

Die Parameter z. sind unbekannt und charakterisieren das Verteilungsgesetz F(x,z) der
Zufallsvariablen X, die wir mittels einer Stichprobe beobachten. Damit gewinnen wir
zusätzlich Informationen über Z.
Mit X, dem sog. Stichprobenraum, wird die Menge aller Realisationen x bezeichnet,
welche X annehmen kann5). In Abhängigkeit von xe% hat der Statistiker eine Aktion
oder Letztentscheidung ateA zu treffen.

Definition: Unter einer statistischen Entscheidungsfunktion oder Strategie d(x) versteht

man eine Abbildung des Stichprobenraumes X auf den Aktionsraum A.

(2)X
Ad(

Figur 1

Jeder Strategie dteD (D heisst Strategienmenge) können wir den mittleren Verlust oder
das Risiko r (d„z) zuordnen, das entsteht, wenn im Zustand z. die Strategie dt angewandt
wird.
Mit E als Operator der Erwartungswertbildung folgt

r(dl,zJ) rlJ E{v[dl(X),zJ]}

Yj v[dt(x),zJ]'p(x\z). (3)

4) Es ist in der statistischen Entscheidungstheorie üblich, statt eines Gewinnes oder Nutzens u (at,Zj) den Verlust

v(a„Zj) zu verwenden.

5) Zur exemplarischen Verdeutlichung verweisen wir auf das Beispiel in Kapitel 5.



112 El Math, Vol.40, 1985

Das Tripel (Z9D9r) stellt das aus (Z,A,v) erweiterte Entscheidungsproblem dar.

Z <P\ % <Pn

D z, ¦¦ Zj ¦ •• z„

*. 4 *n ru

6, d, — K

sm dm r-i r' mn (4)

4. Das Fundamentalproblem der statistischen Entscheidungstheorie

Auf der Basis eines Optimalitätskriteriums K sowie der Daten Z, A, v,%, r und D soll eine
im Sinne von K optimale Strategie d* ermittelt werden.
Das Kriterium K hängt vor allem davon ab, wieviel Information bezüglich der Zustands-

menge Z vorhanden ist.
In der klassischen Theorie Waldscher Prägung, die ganz im Sinne der harten Modellbildung

angelegt ist, werden zwei Extremfälle abgehandelt.

Fall I: Es existiert keine Information hinsichtlich der Häufigkeit des Auftretens der
Zustände zr In dieser Situation rät Wald, getragen von einer pessimistischen Grundhaltung,

die Natur oder Umwelt als konkurrierenden Gegenspieler zu interpretieren.
Das Tripel (Z,D,r) wird somit als 2-Personen-Nullsummenspiel des Statistikers gegen
die Natur oder Umwelt interpretiert. Damit gelangen die Sätze aus der Spieltheorie
sinngemäss zur Anwendung [4], S. 170ff. Wald war sich der Fragwürdigkeit seines
pessimistischen Ansatzes bewusst.

Wir gehen jetzt vom Tripel (Z, D, r) nach (4) aus und führen (ganz im Sinne der Spieltheorie)

über D und Z Wahrscheinlichkeitsverteilungen ö eA und cp e(_> ein.

n

9=(9\><P*---<Pfi-~>9d mit 9j^0 und _£%=1
heisst A-priori-Verteilung über Z.

m

ö (öl,62,...öi,...,SJ mit .,>0 und £<5,= 1

i= 1

heisst gemischte Strategie des Statistikers.
Definition:

heisst mittleres Risiko oder mittlerer erwarteter Verlust.

(5)
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Der Statistiker wählt nach dem Minimax-Kriterium seine optimale, gemischte Strategie S*

so, dass das maximale erwartete Risiko minimiert wird, d. h.

min max f (ö,cp) min max f (S,z) max r (ö*z}). (6a)
OeA <pe0 OeA zjtZ zjeZ

Analog wird die Natur, welche über cp bzw. z, verfügt, cp* (die bezüglich des Statistikers
ungünstigste A-priori-Verteilung) so wählen, dass das minimale erwartete Risiko maxi-
miert wird.

max min r(ö,cp) max minf (dx,cp) minf (dt,cp*). (6b)
pe# <5e_J <pe<P dteD dteD

Die optimale Lösung im Fall I führt somit im allgemeinen aufeine gemischte Strategie ö*
(siehe Figur 3).

Fall II: Wir verfügen über vollständige Informationen hinsichtlich der Häufigkeit des

Auftretens der zp d. h. die Verteilung cp über Z ist bekannt.

f(d„<p) £r(d„zJ)-% (7)
7=1

ist das mittlere Risiko (auch Bayes'sches Risiko genannt), das der Statistiker zu tragen hat,
wenn er die Strategie dt bei Gültigkeit der Zustandsverteilung cp verwendet.
Der Statistiker wählt nach dem Kriterium der minimalen Verlusterwartung (Bernoullikri-
terium) seine optimale Strategie ö* bzw. d*so, dass

r(d*,cp) min r(dt,cp). (8)
dteD

Fall III: Partielle Information bezüglich 0.
Hier betrachten wir die praktisch bedeutsame Situation, in der die Verteilung cp über Z nur
teilweise bekannt ist. Wie in der Einleitung bereits erwähnt, haben Kofier und Menges für
die Ausgestaltung dieser Theorie Pionierarbeit geleistet. Im Rahmen dieser Arbeit sollen

lediglich die Grundideen exemplarisch vorgeführt werden.

Algorithmisch leicht zugänglich und praktisch relevant ist der Fall, wo die partielle
Information bezüglich 0 durch ein System von linearen Ungleichungen beschrieben werden

kann, z. B.

durch Intervallangaben

a, <?>,</>, 1 1,2,30 (9a)

oder durch eine schwache, einfache Ordnung

cpx<cp2<cp3. (9b)

6) Wir beschränken uns hier auf den Fall n 3.
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Die Menge aller Wahrscheinlichkeitsverteilungen <_> stellt für n 3 das 2dimensionale
Simplex S{3) dar, welches in der Figur 2 als gleichseitiges Dreieck mit der Höhe 1

dargestellt ist.

(0,0,1)

plä)

_:

<P=(<Pi,V>2,9%)

(0,1,0) (1,0,0)

Figur 2

Die linearen Restriktionen in der Form eines Ungleichungssystems führen aufein konvexes

Polyeder P(3) cz ,S(3) mit den Eckpunkten bzw. Eckpunkteverteilungen cp®.

Die möglichen A-priori-Verteilungen werden somit auf P(3) eingeschränkt.
Die Entscheidungssituation (P(3),D,r) kann wiederum als 2-Personen-Nullsummenspiel
des Statistikers (er verfügt über die Strategien dteD) gegen die Umwelt (sie wählt eine der
unendlich vielen Verteilungen cp eP(3)) interpretiert werden.

r(d0(p)^YA r(d»z)'<Pj' (9c)
y=i

Der Statistiker wählt nun - ganz im Sinne der Minimax-Philosophie - d*Y bzw. S* so, dass

maxf (d*x,cp)- min maxf (dl9cp). (10)
yePQ) d,eD ipePO)

Es handelt sich bei (10) offenbar um die Minimierung der maximalen Verlusterwartung f,
kurz um das Min EMa_-Prinzip, der sog. linearen, partiellen Information, kurz LPI
genannt.

Lemma, f (dl9 cp) V r (dl9zk). cpk ist eine lineare Funktion in den cpk und nimmt somit ihr

Maximum über dem konvexen Polyeder P{3) in einem ihrer Eckpunkte cp® an.

Das obige Lemma gestattet uns die Reduktion des Spiels (P{3),D,f) auf das endliche

2-Personen-Nullsummenspiel (£,9D9r). Dabei ist £, die Menge der Eckpunkteverteilungen
n

cp® und f(dl9cp®) ^ r(d„Zk) * ¥k das erwartete Risiko. cp\(k 1,2,... n) ist die A>te

Komponente des Verteilungsvektors cp®.
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(10) modifiziert sich in der Form

min max f (dl9 cp®) max f (d*u, cp®). (11)

Matrizielle Darstellung:
Mit

Qne (<pJk) und Rmn (r(dl9zk)) (IIa)

folgt

Rmn'Qne Lme=(f(dl,cp®).

Das LPI-Spiel wird somit durch die Auszahlungsmatrix L beschrieben:

n Anzahl Zustände zk der Umwelt,
m Anzahl Strategien dx des Statistikers,
e Anzahl Eckpunkteverteilungen cp®.

5. Beispiel (Produktionsplanung)

Ein Unternehmen plant die Produktion eines neuen Artikels.

Z {zx,z2} z, 0,4, starke Nachfrage
z2 0,2, schwache Nachfrage

Zj ist der Anteil der potentiellen Käuferschaft, der das neue Produkt erwirbt.

A {ax,a2} ax Produktion einsetzen,

a2 auf Produktion verzichten.

Die Verluste v(ax,z) als entgangene Nutzen7) interpretiert, setzen wir in der folgenden
Matrix fest

.Z
A Z\ z2

<*\ 0 100

a2 40 0 (12)

Es wird nun eine Stichprobe vom Umfang n 10 erhoben8), d.h. aus dem potentiellen
Käuferkreis werden 10 Personen zufällig ausgewählt und danach befragt, ob sie den

geplanten Artikel kaufen werden oder nicht.

7) vy max ukj - uXJ.

8) Diese Zahl wurde so klein gewählt, um einerseits den numenschen Aufwand in vernünftigen Grenzen zu
halten und anderseits eine geometrische Interpretation des Problems zu ermöglichen.
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X Xzj0, die Anzahl positiver Antworten, ist binominalverteilt, und es gilt

p{X=x\z}=p(x\z)=r®\z;'(l-zJ)X0-x; x=0,...,10. (13)

Je nach dem Befragungsresultat x wird die Aktion ax oder a2 ergriffen.
Die Entscheidungsregel oder Strategie d, wird wie folgt lauten:

j ax, wenn x > i
dx(x)=l

\ a2, wenn x < i

i heisst Annahmekennzahl.
Gemäss (3) berechnen sich die Risiken r (dx,z)

10

r(dt,z)= Yu v[dl(x),zJ]'p(x\z).
x 0

i

Mit Hilfe von (12) und (13) und F= £ p(x\z) folgt
x=10

r(d„Zl) 40 -F],
r(4,Z2)=100(l-_^).

Die transformierte Entscheidungssituation oder das Spiel (Z,D,r) nimmt dann im Sinne

von (4) folgende konkrete Form an9):

D <50 <*1 ^2 S3 S4 ö5 S6 ön ö% ö9

Z a\ dx d2 d3 d4 d5 d6 d1 d% d9

(Px Zx 0.2 1.9 6.7 15.3 25.3 33.4 37.8 39.5 39.9 40.0

cp2 89.3 62.4 32.2 12.1 3.3 0.6 0.1 0.0 0.0 0.0

Da wir nur 2 Zustände zx und z2 haben, lässt sich die obige Risikomatrix R in nachstehender

Figur 3 als sog. Risikomenge M veranschaulichen, indem man jeder Strategie dteD
einen Punkt P mit den Koordinaten x r (dt,zx) und y - r (d„z2) eineindeutig zuordnet.

Fall I (keine Information bezüglich 0)
Da max min r (dl9z) < min max r (dt9z)9 hat das Spiel (14) keine Lösung in reinen Stra-

_/ d dz
tegien dteD. Wir gehen deshalb zu gemischten Strategien öeA über mit ö (ö0,..., ö9).

r(S,z)(J 1,2) sind dann die Koordinaten eines Punktes PeM der konvexen Hülle der

10Punkte4(/ 0,..., 9).

9) Zeilen und Kolonnen sind vertauscht.
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y r(d,,z2)

d

60

50

AO-
M

30-

20 ^ ff

:.<
&/,M

20 30 AO

Figur 3 x= r(dlfzi)

Nach (6a) folgt:

min max f (ö, z) min max (x,y) max f (ö* z).
6 zj PeM zj

Graphisch ergibt sich <5*als Schnittpunkt der 1. Winkelhalbierenden x y mit R, dem

sog. Südwest-Rand der konvexen Risikomenge M. Die graphische Bestimmung von S*

lässt sich nach Figur 3 rechnerisch auswerten und führt auf

1 VO.1115 0.8885

Es sind nur die Strategien d2 und a\ zu verwenden, und zwar in der «stochastischen

Mischung» 1115:8885.
Der Statistiker wird also im stochastischen Mittel höchstens den Betrag V verlieren,
wobei

F= f(ö*zx) r(ö*z2) r(d29zx) • 0.1115 + r(d39zx) • 0.8885 14.3411.

^////(vollständige Information bezüglich 0)
Wir nehmen an cpx f, cp2 1 - cpx f, d.h. cp (% f), es sei also a priori bekannt, dass der
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Zustand zx (starke Nachfrage) mit einer Wahrscheinlichkeit von f eintreffe. Nach (7)
berechnet sich das Bayes'sche Risiko

2 3 2 3
r(dl9cp) - -r(dx,zx) + - -r(dx,z2) - x + - y.

r (d„ cp) konstant bilden eine Schar paralleler Geraden. Unter diesen ist g jene Gerade -
sie geht durch d4 -, welche das kleinste Bayes'sche Risiko trägt. (Siehe Figur 3.)
Somit ist d*= d4.

Bemerkung: Die Annahmekennzahl / 4 ist höher als im Fall I, was auch intuitiv leicht
einzusehen ist, denn es besteht eine relativ geringe A-priori-Wahrscheinlichkeit cpx \ für
starke Nachfrage.
Der erwartete Verlust bei Anwendung von d* und bei Gültigkeit von cp (% f) ist dann

r(d49(p) ->r(d49zx)+-'r(d49z2)= 12.1.

Fall III (partielle Information bezüglich 0)
Es sei a priori bekannt, dass starke Nachfrage (zx) mindestens dreimal so wahrscheinlich
sei als schwache Nachfrage (z2), d. h.

cpx>3-cp2,

mit cp2 1 - cpx lautet dann die partielle Information: cpx > \.
Die Menge 0 {(cpx,cp2)\cpx + cp2 1, cp}> 0} wird deshalb eingeschränkt auf P(2)

{((Px,(Pi)\(Px>1a}-

-iPr

4= a1
(0,1) [%%) {%,%) (1,0)

Figur 4

Es gibt somit 2 Eckpunktverteilungen <pm — (1,0) und ^?(2) (|, j). Mit

oO) m(2)

d0 / 0.2 89.3
1.9 62.4

Ri02= d,\ 6.7 32.2 I und Q
14) 0 -

_, ^40.0 0.0

folgt
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/9m
d„ / 0.2

„, 1.9

d2 6.7

d} 15.3

dt 25.3

/m0,2 * (_-2,2 I"10,2 ds 33.4
de 37.8

d, 39.5
d% \ 39.9
d9 \40.0

119

9W\ max
22.5 \ 22.5
17.0 17.0

13.1 13.1 =min max
14.5 15.3

21.5 25.3
25.2 33.4
28.4 37.8
29.6 39.5
29.9

30.0/
39.9

40.0

(15)

Nach (11) und (15):

min max f(dl9 cp®) max f (d2,cp®) 13.1,
dt <pU) <p(J)

d.h. im Falle der partiellen Information cpx>\ ist die optimale Strategie d*n d2, und
der Statistiker hat höchstens mit einem Risiko von 13.1 zu rechnen.
Kommentar: Die partielle Information cpx > \ ist optimistisch, und ebenso fällt die
entsprechende optimale Strategie aus.

6. Schlussbemerkungen

6.1. Wenn wir die Risikomenge M in Figur 3 betrachten, so fällt auf, dass die Strategien

ö auf dem Rand R sog. zulässig sind, d. h. es gibt keine andere Strategie von M,
die öeR dominiert10).
Die Strategien auf dem Rand R bilden eine sog. minimale vollständige Klasse11) R a M
von Strategien.
6.2. Die von A. Wald entwickelte statistische Entscheidungstheorie basiert auf dem

gleichen Wahrscheinlichkeitsmodell wie die klassische induktive Statistik. Auch
Vorentscheidungen mehr oder weniger willkürlicher Art sind bei beiden Modellen notwendig.

Charakteristisch für die entscheidungstheoretische Betrachtungsweise sind

a) der Einbezug einer ökonomischen Bewertung richtiger oder falscher Entscheidungen
in Form einer Verlustfunktion v;
b) Berücksichtigung von (evtl. subjektiver) Vorinformation in Form einer
Wahrscheinlichkeitsverteilung cp über dem Zustandsraum Z;
c) Verlagerung des Inferenzproblems auf die Ebene der Optimierung mit Einschluss

spieltheoretischer Aspekte.

10) _»' dominiert ö, wenn r(Ö',Zj) < f(ö,Zj) für alle/
11) R cz M heisst minimal vollständig, wenn zu jeder Strategie öq R eine Strategie Ö'eR existiert, die S dominiert,

aber keine Teilmenge von R hat diese Eigenschaft.
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Wenn auch der universale entscheidungstheoretische Ansatz sowohl praktisch als auch
theoretisch integrierendes Potential besitzt, so sind doch hinsichtlich der Operationali-
tät des Verfahrens einige Vorbehalte zu machen.
Vor allem scheint einerseits die Festsetzung der Verlustfunktion v und anderseits die

Frage nach der A-priori-Verteilung cp über dem Zustandsraum etwelche Probleme zu
verursachen.
Zu ihrer Lösung scheinen mir deshalb weitere Untersuchungen zum Fall III der partiellen

Information (auch hinsichtlich v) erfolgversprechend.
Hans Loeffel

Hochschule St. Gallen
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Kleine Mitteilungen

Ungleichungen für (e/a)* (b/e)b

In einer vor kurzem in dieser Zeitschrift veröffentlichten kleinen Mitteilung [1] sind die
beiden Ungleichungen

/ /-7x* (e\(b\b (a+b\b-a(Job?- < H -J < (—J b > a > 0, (1)

bewiesen worden. (Mit e wird die Eulersche Zahl bezeichnet.) Wird für positive Zahlen
a und b für r eR der Wert Mr(a,b) durch

Mr(a,b):=

'

(ar + br\xlr
(—2~J für reR-{0}

y/ab für r 0

definiert, so besagt (1):

[MQ(a,b)]b-°< (e/a)a(b/e)b< [Mx(a,b)f-a, b>a>0. (2)

Mr ist eine bezüglich r in ganz R stetige Funktion, denn es gilt: lim Mr(a9b) y/ab.
r-0
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