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Über die Konstruktion der Jordanschen Normalform

Bei den verschiedenen Verfahren zur Gewinnung der Jordanschen Normalform J einer
quadratischen «-reihigen Matrix A kommt den Hauptvektorketten besondere Bedeutung
zu: Die Hauptvektorketten erzeugen unmittelbar eine Transformationsmatrix Xfür die
gesuchte Ähnlichkeitstransformation X~x AX /. Daher wird selbst die Theorie der
Jordanschen Normalform manchmal über die Hauptvektorketten entwickelt (z.B. in
[1-3]). Daneben treten eigenartigerweise die praktischen Möglichkeiten zur Konstruktion

der Hauptvektorketten in den Hintergrund (so werden z. B. in [1] die Hauptvektorketten

zwar theoretisch verwendet, die Konstruktion einer Transformationsmatrix soll
dagegen unabhängig davon über die Lösung des linearen Gleichungssystems AX XJ
erfolgen). Diesen praktischen Konstruktionsmöglichkeiten sind die folgenden Ausführungen

gewidmet (daher wird auf Beweise verzichtet).
Die quadratische «-reihige Matrix A mit komplexen Elementen besitze die charakteristische

Gleichung

(\XE - A\ (X - Xxp (X - X2)»2 • • • (A - XJ- 0, (1)

in der die Eigenwerte Xt mit den Vielfachheiten nt auftreten (nx + n2+ • • + nm n). Dann
genügt A der Matrizengleichung

(A - Xx E)"i (A - X2 E)n2 • • • (A - XmE)nm 0. (2)

Wir gehen davon aus, dass mindestens für ein i (i 1,2,...9m) der Rang n - rt von
A - Xt E grösser als n - nx ist, denn sonst besteht für A Diagonalähnlichkeit. Der Rangabfall

rx gibt die Anzahl der linear unabhängigen Eigenvektoren der Matrix A zum Eigenwert

X, an.
Die Lösungsvektorenz-(zx,z2,...,zn) von

(A-XtE)n>z' 0' (3)

erzeugen für jedes i (i 1,2,..., m) einen n- dimensionalen Teilraum Z, von C (z' ist der

aus z durch Transposition hervorgehende Spaltenvektor). Die m Teilräume Z{ des C sind

paarweise disjunkt.
Zur Vorbereitung des folgenden Verfahrens bestimmen wir unter Verwendung von (3) je
n, Basisvektoren btX, ba,..., bmi der Teilräume Zr Auf diese Weise ergeben sich insgesamt

nx + n2+ - - +nm n Basisvektoren des C\
Erster Schritt im Teilraum Z,: Wir ziehen die nx Basisvektoren des Zx heran und wenden

auf diese sukzessive A - Xx E (von links) an:
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*iu bX2,...,bXn ;

(A - XxE)b'xx, (A-XxE)b'X2,...,(A-XXE)b'Xnx;
(4)

(A-XxEp-xb;x, (A- XxEYx-xb'X2,...,(A- XxEY^xb'Xnx.

Da (A - Xx E)n^z' 0' für jeden Vektor z des Teilraumes Zx von C gilt, können wir die
natürliche Zahl px(Snx) so wählen, dass in der letzten Zeile von (4) mindestens ein
Vektor vom Nullvektor verschieden ist und bei nochmaliger Anwendung von A — XXE

(von links) lauter Nullvektoren entstehen. Dann sind alle vom Nullvektor verschiedenen
Vektoren in der letzten Zeile von (4) Eigenvektoren der Matrix A zum Eigenwert Xx.

Ist in der letzten Zeile von (4) nur (A — Xx Efi ~x b'xx vom Nullvektor verschieden, dann
können wir aus (4) unmittelbar

b'xx, (A-XxE)b'xx, (A-XxE)2b'xx,...,(A-XxEp-xb;x x'xx (5)

als Hauptvektorkette mit der Maximallängepx entnehmen. Deren Endvektor x'xx ist wegen
(A - XxE)x'xx 0' ein Eigenvektor der Matrix A zum Eigenwert Xx; für die px Vektoren
der Kette besteht lineare Unabhängigkeit.
Sind mehrere Vektoren der letzten Zeile von (4) vom Nullvektor verschieden, dann
müssen unter diesen die linear unabhängigen Eigenvektoren ausgewählt werden. Wie
vorhin gehen dann zu diesen Eigenvektoren aus (4) die weiteren Vektoren der zugehörigen

Hauptvektorketten hervor. Mit der linearen Unabhängigkeit der Eigenvektoren
besteht auch die lineare Unabhängigkeit aller Vektoren der zugehörigen Ketten. Somit
sind alle Hauptvektorketten mit der Maximallänge px bestimmt.
Zweiter Schritt im Teilraum Zx: Aus der vorletzten Zeile von (4) entstehen Eigenvektoren,
die Endvektoren von Hauptvektorketten der Länge px — 1 sind. Zur Gewinnung dieser

Eigenvektoren verwenden wir die Linearkombinationen der Vektoren aus der vorletzten
Zeile von (4), die nach nochmaliger Anwendung von A — Xx E (von links) auf den
Nullvektor führen (darunter kommen natürlich alle Eigenvektoren aus dem ersten Schritt
vor). Unter den entstehenden Eigenvektoren wählen wir diejenigen aus, die von den
Endvektoren der Hauptvektorketten aus dem ersten Schritt und untereinander linear
unabhängig sind. Mit den gleichen Linearkombinationen, die zu diesen Eigenvektoren
geführt haben, setzen wir aus den Vektoren der vorhergehenden Zeilen von (4) die

zugehörigen Hauptvektorketten der Länge px — 1 zusammen. Mit der linearen Unabhängigkeit

der Eigenvektoren besteht auch die lineare Unabhängigkeit aller Kettenvektoren,
die bisher konstruiert wurden.
Weitere Schritte im Teilraum Zx: Dieses Verfahren setzen wir so lange fort, bis rx linear
unabhängige Eigenvektoren der Matrix A zum Eigenwert Xx und zusammen mit den

zugehörigen Kettenvektoren nx linear unabhängige Vektoren des Teilraumes Z, von C
gefunden sind.
Gehen wir so mit allen Teilräumen Zt(i - l,29...,m) des C vor, dann ergeben sich
schliesslich rx + r2+ • • + rm-r linear unabhängige Eigenvektoren und zusammen mit
den zugehörigen Kettenvektoren n linear unabhängige Vektoren des C.
Jede auftretende Hauptvektorkette mit der Längep liefert ein Jordankästchen der Länge/?
in der Jordanschen Normalform, so dass r, Jordankästchen zum Eigenwert A, entstehen.
Diese liegen selbstverständlich nur bis auf die Reihenfolge eindeutig fest.
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Die Ähnlichkeitstransformation veranschaulichen wir am speziellen Fall einer dreireihigen
Matrix A mit dem dreifachen Eigenwert Xx und der Hauptvektorkette b[9 (A — XxE)b'x,

(A - XxE)2b'x je/ (x{ ist bis auf einen konstanten Faktor der einzige Eigenvektor von A
zu Xx). Mit der Transformationsmatrix X (x'x, (A — Xx E)b'x,b^, in der die Hauptvektorketten

immer in der umgekehrten Reihenfolge auftreten, und der inversen Matrix

X~x =(a
"2

,a3,

erhalten wir unter Verwendung von A x'x Xx x'x

a2)A(x'x,(A-XxE)b;,bxr)

Wx

a2 \(Xxx'x,x[+ XX(A - XxE)b'x, (A - XxE)b'x +Xx b[)
a

A, 1 0
0 A, 1

0 0 A,

Beispiel:

A - 1

1 1-1
0 0 0 0 \ fünffacher Eigenwert Xx 1,

2-1 1 0 i einfacher Eigenwert X2 2;
2-1 2 0 I ' der Rang von A- XXEist vier,
1-1 2 0 / der Rang von A - X2Eist fünf.
4 5 -4

a) Eigenwert Xx 1: Zur Bestimmung einer Basis des Teilraumes Zx berechnen wir

0 0

0 0

(A-XXEY ={ 0 0 0

0 0

,0-1 -2

als Basisvektoren werden ^ (1,0,0,0,0,0), b2 (0,1,0,0,0,1), b3 (0,0,1,0, - 1,0),

b4 (0,0,0,1,1, - 1), b5 (0,0,0,0,1,2) verwendet. Wir schreiben diese als Spaltenvektoren

einer Matrix und wenden darauf A - Xx E (von links) an:

0

0
1

0
1

0 -1

1 0 0
0 0

0 01 - 1

0 0
0 01 - 1

l 0 00 0

0 0 00 0
0 0 00 0
1 0 0
1 0 0

l 0 0
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Auf die entstehende Matrix wenden wir nochmals A- XXE (von links) an:

0 0 0 0\
0 0 0 0

0 0 0 0

10 0-1

Nochmalige Anwendung von A - Xx E (von links) liefert die Nullmatrix. Es entstehen
zwei Hauptvektorketten der Maximallänge drei, die (bis auf das Vorzeichen) zum
Eigenvektor xxx — (0,0,0,1,1, — 1) von A zu Xx als Endvektor führen. Davon verwenden wir eine

Kette:

1 - 1 1 - 1

0 0 0 0
0 0

1 - 1 1 - 1 0 0
1 - 1 1 0 0

0 -4 0 - 1 0 0

K (A - 1
xxE)b;= i r xxx (A-xxE)2b'2-

Aus dem vorletzten Schritt gewinnen wir durch

(A-XxE)b'2 + (A-XxE)b'5-

den zweiten linear unabhängigen Eigenvektor von A zu Xx, der Endvektor einer
Hauptvektorkette mit der Länge zwei ist. Über die gleiche Linearkombination der Basisvektoren

finden wir den Ausgangsvektor dieser Hauptvektorkette:

*2 + *5'

Damit liegen die fünf linear unabhängigen Vektoren des Teilraumes Zx vor.
b) Eigenwert X2-2: Hier erhalten wir x2- (0,0,0,0,0,1) als Eigenvektor von A tm X2;

damit steht der einzige linear unabhängige Vektor des Teilraumes Z2 fest.
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c) Da in der Transformationsmatrix X die Hauptvektorketten in der umgekehrten
Reihenfolge auftreten, erhalten wir insgesamt folgende Ähnlichkeitstransformation
X~XAX=J:

1 0-1 1 0 0\ / 1 1-1 1 - 1 0 \ / 0 10 0 0 0^

ioooo o\/ oiooo o\/ 001010
0 1-1 1-1 0 11 0 0 2-1 1 0 W 0 0 0 10 0

0 0 10 0 OH 1-1 2-1 2 0 II 1-1 0 10 0

0 0 1-1 1 0 / \ 1—1 1-1 2 0 / \ 1 -1 0 0100-1-2 3-2 1/ \-l 0-4 5-42/ Vi 1 1-1 3 L

Peter Lesky, Math. Institut A,
Universität Stuttgart
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Statistische Inferenz und strategisches Spiel

1. Einleitung

Der Entscheidungsträger (z. B. der Statistiker, der Unternehmer, der Staat usw.) sieht
sich oft in der Lage, aus einer Menge A {a,}1) von Aktionen oder Entscheidungen eine in
einem gewissen Sinne optimale auszuwählen, und zwar angesichts einer unsichern
Umwelt. Von dieser nehmen wir an, dass sie die relevanten Zustände z}eZ annehmen kann.
Wählt der Entscheidungsträger eine Aktion at im Zustand zJ9 so resultiert ein Ergebnis
etJeE. Mit Hilfe der Nutzenaxiomatik nach J. v. Neumann oder Luce-Raiffa [4], S. 105ff.,

1) Wir beschranken uns auf endliche Mengen
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