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Uber die Konstruktion der Jordanschen Normalform

Bei den verschiedenen Verfahren zur Gewinnung der Jordanschen Normalform J einer
quadratischen n-reihigen Matrix A kommt den Hauptvektorketten besondere Bedeutung
zu: Die Hauptvektorketten erzeugen unmittelbar eine Transformationsmatrix X fiir die
gesuchte Ahnlichkeitstransformation X~ AX = J. Daher wird selbst die Theorie der
Jordanschen Normalform manchmal iiber die Hauptvektorketten entwickelt (z.B. in
[1-3]). Daneben treten eigenartigerweise die praktischen Moglichkeiten zur Konstruk-
tion der Hauptvektorketten in den Hintergrund (so werden z. B. in [1] die Hauptvektor-
ketten zwar theoretisch verwendet, die Konstruktion einer Transformationsmatrix soll
dagegen unabhingig davon iiber die Losung des linearen Gleichungssystems AX = XJ
erfolgen). Diesen praktischen Konstruktionsméglichkeiten sind die folgenden Ausfiih-
rungen gewidmet (daher wird auf Beweise verzichtet).

Die quadratische n-reihige Matrix 4 mit komplexen Elementen besitze die charakteristi-
sche Gleichung

(AE = A4]=) (o= Ay (b= A2 (A= dym=0, M

in der die Eigenwerte A, mit den Vielfachheiten n, auftreten (n, + n, + - - - + n,, = n). Dann
geniigt 4 der Matrizengleichung

(A —AMEY1 (A — L Ey2--(A— A, Eym=0. @)

Wir gehen davon aus, dass mindestens fiir ein i (i = 1,2,...,m) der Rang n—r; von
A — A,E grosser als n — n, ist, denn sonst besteht fiir 4 Diagonaléhnlichkeit. Der Rangab-
fall r, gibt die Anzahl der linear unabhéangigen Eigenvektoren der Matrix 4 zum Eigen-
wert A an.

Die Losungsvektoren z = (z,2,,...,2,) von

(A—- LEYiz' =0 (3)

erzeugen fiir jedes i (i = 1,2,...,m) einen n-dimensionalen Teilraum Z; von C"(z’ ist der
aus z durch Transposition hervorgehende Spaltenvektor). Die m Teilrdume Z; des C" sind
paarweise disjunkt.

Zur Vorbereitung des folgenden Verfahrens bestimmen wir unter Verwendung von (3) je
n; Basisvektoren b,,b,,...,b,, der Teilriume Z, Auf diese Weise ergeben sich insgesamt
n,+n,+ - - - + n, = n Basisvektoren des C".

Erster Schritt im Teilraum Z,: Wir ziehen die n, Basisvektoren des Z, heran und wenden
auf diese sukzessive 4 — A, E (von links) an:
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Bliv BBy
(4—A4E)b, (A—A'IE)bI’ZV",(A—A'IE)b{nl;

................................................... (4)
(A4—-ALEY by, (A= LEY'7'b),...,(A— LEY 'y, .
Da (4 — A, E)"z' = 0’ fiir jeden Vektor z des Teilraumes Z, von C" gilt, konnen wir die
natiirliche Zahl p,( < n,) so wihlen, dass in der letzten Zeile von (4) mindestens ein
Vektor vom Nullvektor verschieden ist und bei nochmaliger Anwendung von 4 — A, E
(von links) lauter Nullvektoren entstehen. Dann sind alle vom Nullvektor verschiedenen
Vektoren in der letzten Zeile von (4) Eigenvektoren der Matrix A4 zum Eigenwert A,.

Ist in der letzten Zeile von (4) nur (4 — A, Ey1~'b/, vom Nullvektor verschieden, dann
konnen wir aus (4) unmittelbar

b, (A—A4E)b\, (A—ALE)b,...,(A— LEY'"'b=x| )

als Hauptvektorkette mit der Maximallinge p, entnehmen. Deren Endvektor x|, ist wegen
(A — A E)x,, = 0’ ein Eigenvektor der Matrix 4 zum Eigenwert A,; fiir die p, Vektoren
der Kette besteht lineare Unabhingigkeit.

Sind mehrere Vektoren der letzten Zeile von (4) vom Nullvektor verschieden, dann
miissen unter diesen die linear unabhéingigen Eigenvektoren ausgewdhlt werden. Wie
vorhin gehen dann zu diesen Eigenvektoren aus (4) die weiteren Vektoren der zugehori-
gen Hauptvektorketten hervor. Mit der linearen Unabhiéngigkeit der Eigenvektoren
besteht auch die lineare Unabhéngigkeit aller Vektoren der zugehorigen Ketten. Somit
sind alle Hauptvektorketten mit der Maximallidnge p, bestimmt.

Zweiter Schritt im Teilraum Z,. Aus der vorletzten Zeile von (4) entstehen Eigenvektoren,
die Endvektoren von Hauptvektorketten der Linge p, — 1 sind. Zur Gewinnung dieser
Eigenvektoren verwenden wir die Linearkombinationen der Vektoren aus der vorletzten
Zeile von (4), die nach nochmaliger Anwendung von 4 — A, E (von links) auf den Null-
vektor fithren (darunter kommen natiirlich alle Eigenvektoren aus dem ersten Schritt
vor). Unter den entstehenden Eigenvektoren wihlen wir diejenigen aus, die von den
Endvektoren der Hauptvektorketten aus dem ersten Schritt und untereinander linear
unabhiingig sind. Mit den gleichen Linearkombinationen, die zu diesen Eigenvektoren
gefiihrt haben, setzen wir aus den Vektoren der vorhergehenden Zeilen von (4) die
zugehorigen Hauptvektorketten der Lange p, — 1 zusammen. Mit der linearen Unabhén-
gigkeit der Eigenvektoren besteht auch die lineare Unabhingigkeit aller Kettenvektoren,
die bisher konstruiert wurden.

Weitere Schritte im Teilraum Z,: Dieses Verfahren setzen wir so lange fort, bis r, linear
unabhingige Eigenvektoren der Matrix 4 zum Eigenwert 4, und zusammen mit den
zugehorigen Kettenvektoren », linear unabhédngige Vektoren des Teilraumes Z, von C”
gefunden sind.

Gehen wir so mit allen Teilrdumen Z,(i = 1,2,...,m) des C" vor, dann ergeben sich
schliesslich r, + r, + - - - + r,, = r linear unabhéngige FEigenvektoren und zusammen mit
den zugehorigen Kettenvektoren » linear unabhéngige Vektoren des C”.

Jede auftretende Hauptvektorkette mit der Lange p liefert ein Jordankdstchen der Lange p
in der Jordanschen Normalform, so dass r; Jordankistchen zum Eigenwert 4, entstehen.
Diese liegefl selbstverstandlich nur bis auf die Reihenfolge eindeutig fest.
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Die Ahnlichkeitstransformation veranschaulichen wir am speziellen Fall einer dreireihigen
Matrix A mit dem dreifachen Eigenwert 4, und der Hauptvektorkette b, (4 — 4, E) b/,
(4 — A, E)*b/ = x| (x| ist bis auf einen konstanten Faktor der einzige Eigenvektor von 4
zu A,)). Mit der Transformationsmatrix X = (x/, (4 — 4, E) b, b)), in der die Hauptvektor-
ketten immer in der umgekehrten Reihenfolge auftreten, und der inversen Matrix

a,
X! =(a2)
a,

erhalten wir unter Verwendung von A x| = 4, x/

aQ
(%)A (x),(4 — A E)b),b))

a,
a, A1 0
=<a2)(/11x1’,x{+ AM(A—AE)b,(A— A E)b/+ 1, b)) = (0 A 1 ) -
a, 0 0 4
Beispiel:
1 1 -1 1-1 0
o 1 0 0 o0 o0 funffacher Eigenwert A, = 1,
4= 0 0 2 -1 1 0 . einfacher Eigenwert 4, = 2 ;
1 -1 2 -1 2 0 " der Rang von 4 — A, E ist vier,
1 —1 1 -1 2 0 der Rang von 4 — A, E ist funf.
<1l 0 -4 5 -4 2

a) Eigenwert 1, = 1: Zur Bestimmung einer Basis des Teilraumes Z, berechnen wir

(A—MLE) =

SO OO OO
_—o o O O O
MO OO OO
WO OO oOOo
NO OO OO
-_—0 O O O O

als Basisvektoren werden &, = (1,0,0,0,0,0), b,=(0,1,0,0,0,1), b,=(0,0,1,0, — 1,0),
b, = (0,0,0,1,1, — 1), b; = (0,0,0,0,1,2) verwendet. Wir schreiben diese als Spaltenvekto-
ren einer Matrix und wenden darauf 4 — 4, E (von links) an:

1 -1 1 -—
0O 0 O
0 1 —1
-1
-1
0

DD = O e

I -1
-4 5 —

— - OO O
-0 oo oo
—_—0 O O - O
—— e OO
N -0 OO O
— e e O OO
— et (D D b
SO OO OCO
SO OO OO

1
1
2 -2 2
1
4

SO OCoOo O -
O O = OO
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Auf die entstehende Matrix wenden wir nochmals 4 — A, E (von links) an:

0 1 -1 1-1 0 0 1 0 0 -1 60 0 0 0 0
0 0 0 0 0 O 0 0 0 0 O 0 0 0 0 O
0 0 1 -1 1 0 0 0 0 0 1}Jo o0 o0 o0 o
1 -1 2-2 20 1 -1 0 0o 2Jto0o 1 0 0 -1
1 -1 1-1 10 1 -1 0 0 1 0 1 0 0 -1
1 0-4 5 -4 1 1 1 0 0 - 0-1 0 0 1

Nochmalige Anwendung von 4 — 4, E (von links) liefert die Nullmatrix. Es entstehen
zwei Hauptvektorketten der Maximalldnge drei, die (bis auf das Vorzeichen) zum Eigen-
vektor x,, = (0,0,0,1,1, — 1) von A4 zu 4, als Endvektor fiihren. Davon verwenden wir eine
Kette:

» (A= A E)b,= » Xy =(A-LE)b =

1
0
0
1
1
1

_—0 0O = O
—_— e — O OO

Aus dem vorletzten Schritt gewinnen wir durch

(A—-AME)D,+(A— AL E)b,=

_—O = = OO

den zweiten linear unabhéngigen Eigenvektor von 4 zu ,, der Endvektor einer Haupt-
vektorkette mit der Linge zwei ist. Uber die gleiche Linearkombination der Basisvekto-
ren finden wir den Ausgangsvektor dieser Hauptvektorkette:

b, + b

W o= O O == O

Damit liegen die fiinf linear unabhéngigen Vektoren des Teilraumes Z, vor.
b) Eigenwert A, = 2: Hier erhalten wir x, = (0,0,0,0,0,1) als Eigenvektor von 4 zu 4,;
damit steht der einzige linear unabhéngige Vektor des Teilraumes Z, fest.

\
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¢) Da in der Transformationsmatrix X die Hauptvektorketten in der umgekehrten

Reihenfolge auftreten, erhalten wir insgesamt folgende Ahnlichkeitstransformation
X'AX=J:

1 0-1 1 0 0 1 1-1 1-10 0 1.0 00
1 0 0 0 0 O 0 1.0 0 00O 0 01 01
0 1-1 1-10 0 0 2-1 10 0 00 10
0O 0 1 0 00 I-1 2-1 2 0 1-1 0 1 0
0 0 1-1 10 1-1 1-1 2 0 1-1 0 0 1
0 -1-2 3-21 -1 0-4 5-4 2 1 1 1 -1 3
1 1. 0 0 O O
0O 1 1 0 0 O
{0 0 1 0 O O
o o 0o 1 1 o0
0 0 0 0o 1 O
0 0 0 0 O 2
Peter Lesky, Math. Institut A,
Universitédt Stuttgart
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Statistische Inferenz und strategisches Spiel

1. Einleitung

Der Entscheidungstriager (z. B. der Statistiker, der Unternehmer, der Staat usw.) sieht
sich oft in der Lage, aus einer Menge A4 = {a;}') von Aktionen oder Entscheidungen eine in
einem gewissen Sinne optimale auszuwihlen, und zwar angesichts einer unsichern Um-
welt. Von dieser nehmen wir an, dass sie die relevanten Zustinde z;,e Z annehmen kann.
Wihlt der Entscheidungstriger eine Aktion g, im Zustand z, so resultiert ein Ergebnis
e;€ E. Mit Hilfe der Nutzenaxiomatik nach J. v. Neumann oder Luce-Raiffa [4], S. 105ff.,

1) Wir beschrinken uns auf endliche Mengen.
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