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Kleine Mitteilungen

Einschliessung ebener Kurven

Von einer Kurve in der euklidischen Ebene sagen wir, dass sie die Menge K einschliesst,
wenn K in der konvexen Hülle der Kurve enthalten ist. Für eine geschlossene, rektifizierbare

Kurve K der Länge L (K) bezeichne L * (K) das Infimum der Längen aller rektifizierbaren

Kurven (zusammenhängend, aber nicht notwendig geschlossen), die K einschliessen.

Wir zeigen die Ungleichung

L*(K)=^L(K), (1)
2n

in der Gleichheit genau dann gilt, wenn .rv ein Kreis ist. Dass für Kreise Gleichheit gilt, hat
Joris [2] gezeigt.
Da bei nichtkonvexen geschlossenen Kurven der Rand der konvexen Hülle stets kleinere
Länge hat, dürfen wir uns zum Beweis der Ungleichung (1) auf konvexe Kurven K
beschränken. Für eine solche Kurve ist durch hK(cp) Max«x,^>: xeK} die
Stützfunktion hK definiert; dabei ist in der Ebene ein kartesisches Koordinatensystem eingeführt,

<-, •> bezeichnet das Skalarprodukt und e9 den Einheitsvektor (cos cp, sin cp).

Bekanntlich gilt

L(K)= \hK(cp)dcp. (2)
0

S (cp) sei die Stützgerade an Kmit äusserem Normalenvektor er Für gegebenen Winkel cp

sei s ± der Schnittpunkt von S (cp) mit S (cp ± n/2) und t± der zu s ± nächste Punkt auf
KnS((p ± n/2). Aus den Strecken s +1+,s ~ t" und dem zwischen t+ und t ~ liegenden
Teil der Kurve K, der nicht die Gerade S (cp) berührt, setzen wir die U-förmige Kurve U9

zusammen, die K einschliesst. Sie hat die Länge

3

L(Ur) 2hK(<p)+'}"hK(«)da, (3)

wie man am bequemsten einsieht, wenn man (2) aufdie konvexe Kurve anwendet, die sich

aus der Kurve Uf und ihrem Spiegelbild am Punkt z (s + + s ~)/2 zusammensetzt (zum
Nachweis von (3) darf man etwa z - 0 annehmen, da beide Seiten von (3) nicht von der
Wahl des Ursprungs abhängen). Nach (3) und (2) ist L(UV) + L(U<p + n) 2hK(cp)

+ 2hK(cp + n) + L (K) und folglich

In

\ L(Uf)dcp (2 + n)L(K).
o

Für passendes cp ist daher 2nL (Uf) _§_ (2 + n)L (K)9 woraus die Ungleichung (1) folgt.
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Gilt nun Gleichheit in (1), so muss insbesondere L (Uv) konstant sein. Aus (3) folgt dann
durch Differenzieren (und wegen der Periodizität von hK)

K((p) ^ hK[<P+ 2j Ä*r " 2

für alle cp. Es ist bekannt (Fejes Toth [1], S. 37-38), dass hieraus

hK(cp) a0 + ax costp + bx sin^

mit Konstanten a09ax,bx folgt; .rv ist also ein Kreis.
R. Schneider und J. A. Wieacker, Freiburg i. Br.
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Aufgaben

Aufgabe 910. Die Polynomfolge (pn)neN sei rekursiv definiert durch

px(x) x, pn+x(x) x(l -x)p'n(x), neN.

Man ermittle für jedes n eN die Menge der rationalen Nullstellen \onpn.
H. Müller, Hamburg, BRD

Solution: Let N„ be the set of all rational zeros ofp„. Then clearly Nx {0}, _V_
___ {0,1} for

all n > 1. By induction on n one easily shows that
(1) p„ is an integer polynomial of degree n with n simple real zeros in the interval [0,1].

(2)Pn(l-x) (-iyPn(x)forn>l.
(3)/>„(0) 0and/a0)=l.
For the proofof (1) one uses the mean-value theorem. It follows from (2) that \ eN„ for all
odd n > 1. Consequently \ $_V_ +1 ifn is odd, since all zeros ofpn are simple as mentioned in
(1). Let q„ be defined by qn(x) x"p„(l/x). Then qn is a monic integer polynomial of
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