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Kleine Mitteilungen

Einschliessung ebener Kurven

Von einer Kurve in der euklidischen Ebene sagen wir, dass sie die Menge K einschliesst,
wenn K in der konvexen Hiille der Kurve enthalten ist. Fiir eine geschlossene, rektifizier-
bare Kurve K der Lange L (K) bezeichne L* (K) das Infimum der Lingen aller rektifizier-
baren Kurven (zusammenhdngend, aber nicht notwendig geschlossen), die K einschlies-
sen. Wir zeigen die Ungleichung

2+
n

L*(K) < L(K), (1)

in der Gleichheit genau dann gilt, wenn K ein Kreis ist. Dass fiir Kreise Gleichheit gilt, hat
Joris [2] gezeigt.

Da bei nichtkonvexen geschlossenen Kurven der Rand der konvexen Hiille stets kleinere
Linge hat, diirfen wir uns zum Beweis der Ungleichung (1) auf konvexe Kurven K
beschrianken. Fiir eine solche Kurve ist durch A, (p) = Max {<{x,e,>: xeK} die Stiitz-
funktion A, definiert; dabei ist in der Ebene ein kartesisches Koordinatensystem einge-
fithrt, (-, - > bezeichnet das Skalarprodukt und e, den Einheitsvektor (cosg,sing). Be-
kanntlich gilt

LK) = | h(@)dp. @

S (¢) sei die Stiitzgerade an K mit dusserem Normalenvektor e,. Fiir gegebenen Winkel ¢
sei s * der Schnittpunkt von S (¢) mit S (¢ + n/2) und ¢* der zu s * nichste Punkt auf
KnS(p £ n/2). Aus den Strecken s *¢*,s "¢t~ und dem zwischen ¢ * und ¢~ liegenden
Teil der Kurve K, der nicht die Gerade S (¢) beriihrt, setzen wir die U-férmige Kurve U,
zusammen, die K einschliesst. Sie hat die Liange

p+%n
L(U)=2h(p) + | h(@)da, ©)

¢+3n

wie man am bequemsten einsieht, wenn man (2) auf die konvexe Kurve anwendet, die sich
aus der Kurve U, und ihrem Spiegelbild am Punkt z = (s * + s 7)/2 zusammensetzt (zum
Nachweis von (3) darf man etwa z = 0 annehmen, da beide Seiten von (3) nicht von der
Wahl des Ursprungs abhdngen). Nach (3) und (2) ist L(U,) + L(U,,,) = 2hx(p)
+ 2h,(p + n) + L (K) und folglich

2fL(U,,)dw =2+ n)L(K).

Fiir passendes ¢ ist daher 2zL (U,) < (2 + n) L (K), woraus die Ungléichung (1) folgt.

\
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Gilt nun Gleichheit in (1), so muss insbesondere L (U,) konstant sein. Aus (3) folgt dann
durch Differenzieren (und wegen der Periodizitit von A,)

o =3 w0+ 5) =0 = 5)|

fiir alle ¢. Es ist bekannt (Fejes Toth [1], S.37-38), dass hieraus
hy(p) =a,+ a, cosg + b, sing

mit Konstanten a,, a,, b, folgt; K ist also ein Kreis.
R. Schneider und J. A. Wieacker, Freiburg i. Br.
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Aufgaben
Aufgabe 910. Die Polynomfolge (p,),.x sei rekursiv definiert durch
pi(x)=x, Pui1(x) = x(1 = x)p,(x); neN.

Man ermittle fiir jedes n eN die Menge der rationalen Nullstellen von p,.
H. Miiller, Hamburg, BRD

Solution: Let N, be the set of all rational zeros of p,. Then clearly N, = {0}, N, = {0,1} for
all n > 1. By induction on n one easily shows that

(1) p, is an integer polynomial of degree n with n simple real zeros in the interval [0,1].
) p,(1 —x)=(=1)yp,(x)forn>1.

(3) p.(0)=0and p,(0) = 1.

For the proof of (1) one uses the mean-value theorem. It follows from (2) that ; e N, for all
oddn > 1. Consequently; ¢N, , , if n is odd, since all zeros of p, are simple as mentioned in
(1). Let g, be defined by g,(x) = x"p,(1/x). Then g, is a monic integer polynomial of
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