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Ein elementarer und konstruktiver Beweis für die
Zerlegungsgleichheit der HilPschen Tetraeder mit
einem Quader
Als Antwort auf eine von D. Hilbert aufgeworfene Frage konnte M. Dehn im Jahre
1900 zeigen, dass sich nicht alle Tetraeder-Bereiche in einen prismatischen Bereich -
oder, was auf dasselbe hinausläuft - in einen Quader-Bereich umbauen lassen. Es gibt
Tetraeder-Bereiche, die nicht mit einem Quader zerlegungsgleich sind (vgl. [1-4]).
Bis heute sind nur wenige konkrete Tetraeder-Formen bekannt, die mit einem Quader
zerlegungsgleich sind. Es sind dies zunächst die drei 1-parametrigen Tetraeder-Scharen
von M.J.M. Hill [5] und daneben noch 27 isolierte Tetraeder-Bereiche, die in [4]
vollständig aufgelistet sind. Die üblichen Beweisverfahren sind wohl konstruktiv, sie lassen
aber für die praktische Durchführung eines Umbaues in einen Quader keine greifbaren
Ansätze entnehmen. Abgesehen von einigen Spezialfällen fehlten jedenfalls bis anhin
einfache Umbauverfahren mit einer überschaubaren Anzahl von Zerlegungskomponenten.

Mit der Vorstellung von drei einfachen generellen Konstruktionen für den Umbau der
Hill'sehen Tetraeder ist daher ein neuer Zugang zur Quader-Zerlegungsgleichheit dieser
besondern Tetraedern freigelegt. Insbesondere ist darin auch ein direkter und elementarer

Beweis für die Zerlegungsgleichheit der HilPschen Tetraeder mit einem geraden
Prisma enthalten, der mit höchstens 6 Zerlegungskomponenten auskommt.
In einem ersten Teil werden die Hill'schen Tetraeder aus einem geeigneten Polyeder
gewonnen und einige später benötigte Zusammenhänge hergeleitet. Im zweiten Teil
befassen wir uns dann mit der Konstruktion der Zerlegungen, die den Umbau in
gerade prismatische Bereiche erlauben. Anschliessend werden in einem dritten Teil einige
konkrete Beispiele behandelt. Insbesondere wird ein nicht auf Grenzprozessen beruhender

Beweis für die Volumenformel V l3 G • h bei den Hill'schen Tetraedern gegeben.

1. Die drei HilPschen Tetraeder-Scharen

Es gibt verschiedene Möglichkeiten, die Hill'schen Tetraeder einzuführen. Für unsere
Belange ist der ursprünglich von Hill gewählte Weg nicht geeignet. Wir stützen uns
vielmehr auf eine Konstruktion, die von J.P. Sydler [6] erstmals verwendet wurde.

Ausgangsfigur zur Gewinnung der Hill'schen Tetraeder nach der Idee von Sydler ist
ein Parallel-Epiped-Bereich E, der von drei gleichlangen Vektoren a,$,c mit gleichen
Zwischenwinkeln co aufgespannt wird (E wird dann von sechs kongruenten Rhomben-
Seitenflächen begrenzt; Figur 1.1).

\ä\ 0\ \c\=:s, *(2,Ä)= *(£,2)= *(c,a) :co

Somit ist

(M) (5,g) (c,c) *2

(a,i) — (B,c) (c,ä) s2cosco
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Epiped-Bereich E

M Mittelpunkt von [ACj
N Mittelpunkt von [BDJ
£ [AC]-Diagonalebene durch D D

Figur 1 1

Die drei Punktepaare (B9B)9(D,D),(E,E) definieren mit der Körperdiagonalen [AC] je
eine Ebene. Diese drei Ebenen zerlegen den Epiped-Bereich E in 6 Tetraeder-Bereiche,
von denen wir zeigen werden, dass sie untereinander kongruent sind.
In der Figur 1.1 ist einer der beiden Tetraeder-Bereiche herausgestellt, die von den
Diagonalebenen durch die Punktepaare (B,B) und (D9D) begrenzt werden:

HX:=[ABCD].

Für die folgenden Überlegungen ist von Vorteil, wenn wir das Prinzip der speziellen
Ansicht benützen: Denken wir uns die Punkte B,D,E in einer Ebene parallel zum
Grundriss (1. Hauptebene), so sieht unser Epiped-Bereich E in Grund- und Aufriss
gemäss Figur 1.2 aus.

\

Grundriss

h'\

g'- - " Ft

Figur 1.2



El. Math., Vol. 40, 1985 87

Der mit den Grundkenntnissen der Darstellenden Geometrie vertraute Leser kann daraus

unter Zuhilfenahme von Symmetrieüberlegungen sofort die folgenden, später
benötigten Fakten entnehmen:

(1) g BE steht senkrecht auf e.

(2) h MN schneidet AC und BD senkrecht (Minimaltransversale der beiden).
(3) Die beiden Ebenen BDE und BDE stehen senkrecht auf AC und zerlegen [AC] in

3 gleiche Teile.
(4) a,l, und c schhessen zu ÄC je denselben Winkel a ein (a a (co)).

Diese Zusammenhänge lassen sich auch leicht rechnerisch bestätigen:
Man beachte, dass nach Voraussetzung über ä,l,c gilt:

(a,a) (l,B) (c,c) s2

(ä,b) (b,c) (c,ä) s2 cosco

(1) EB ä — b Richtungsvektor von g
AD a+l Richtungsvektor von AD
AC ä + 1 + c Richtungsvektor von AC
(a~l,a+l) (a,a)-(l,l)

^
=0=>g±AD\

(ä - l,ä + l + c) (ä — $,ä + b) + (ä- 5,c) > =>g le
0 +(a,c)-(i,c) 0=*g±AC)

(2) AM \(a+b+c)
Ifi=ä+\i
v := NM AM - AN \{c - ä) Richtungsvektor von h

BD =b Richtungsvektor von BD
(v,$) \(c,l) - \(a,l) 0=>Ä 1BD
(v,ä + l + c) (v,l) + \(c - ä,c + ä)

0 + 0 =0=>h±AC

(3) Ebene BDE: Eff= a-l Ebene BDE: BE>= a-l
ßB a-c BD ä-c

(ä - l,ä + l + c) 0 haben wir schon unter (1) gezeigt;
(ä -c,ä +1 +c) 0 folgt analog.
Für die Länge des Vektors AC gilt zudem:

\ä + l + c\ y/(ä +1 + c,a + l + c) y/3s2(l + 2 cosco)

und für die Länge der Projektion von ä auf ÄC:

\(a,a+l+c)\ _ \s2-(14-2cosco)] ^J3s1-(1 + 2coscö)

\ä + l+c\ y/3s2-(l+2cosco) 3

und daraus folgt, dass unsere beiden Ebenen den Vektor ÄC dritteln.
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(4)
(ä,a+l + c) (l,a+l+c) (c,a+l + c)

\a\ • \a + l + c\ \l\-\a + l + c\ \c\ • \a + l + c\

s2 + 2s2 cosco s2-(l + 2 cosco)

Jy^j2-(1+2 cosco) s2s/2>(l+2cosco)
1+2 cos co

=:cosa (co);

3cos2a - 1

umgekehrt erhalten wir cosco (a)
_.

Aus (1) folgt unmittelbar, dass B vermöge der Spiegelung oe in E übergeht. Daraus
folgt:

[ACDE] ([ACDB])oE.

Die beiden benachbarten Tetraeder-Bereiche [ACDE] und [ACDB] gehen also durch
eine ungleichsinnige Kongruenztransformation auseinander hervor.
Da die Wahl dieser beiden Nachbarn willkürlich erfolgte, dürfen wir aus Symmetriegründen

auf die ungleichsinnige Kongruenz je zweier solcher benachbarter Tetraeder-
Bereiche im E schhessen; womit die - gleichsinnige oder ungleichsinnige - Kongruenz
aller sechs in unserem Epiped-Bereich E liegenden Tetraeder-Bereiche feststeht. Aus dem
Epiped E ist damit eine wohldefinierte Tetraeder-Form abgeleitet.
Dieses Ergebnis ist gewährleistet für alle Winkel co im Intervall 0 < co < \ n (für co \n
liegen die drei Vektoren a,l,c in einer Ebene). Damit ist eine erste 1-parametrige Schar

von Tetraeder-Formen festgelegt. Man nennt sie die HilTschen Tetraeder l.Art.
Aus dem Epiped-Bereich E(co) lassen sich gleich auch noch die beiden andern
1-parametrigen Scharen von Hill'schen Tetraedern gewinnen. Da nach (2) die Strecken [AC]
und [BD] auf h senkrecht stehen und da M und _V die Mittelpunkte dieser Strecken
sind, ist [ABDM] das Bild von [CDMB] und [ABCN] das Bild von [CDAN] bei der
Spiegelung an der Geraden g (Drehung mit der Achse g um den Winkel n). Es ist also

[ABDM] ([CDBM])ah und [ABCN] ([CDAN])ah.

Damit stehen zwei Paare von gleichsinnig kongruenten Tetraedern fest, die - jeweils
zusammengefügt - gerade den Bereich Hx ergeben. Diese Symmetrie-Eigenschaft
bezüglich h wird uns später sehr zustatten kommen.
Wir setzen nun (vgl. Figur 1.3):

H2:=[ABDM];

HoMA<r "2

H3:=[_4_9C_V]
C a

H3(«)

Figur 1.3
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Die Bereiche H2(co) werden Hillsehe Tetraeder 2. Art, die Bereiche H3(co) Hillsehe

Tetraeder 3. Art genannt.

In der Figur 1.4 sind die die drei Tetraeder begrenzenden Linien im Ausgangs-Epiped
E(co) eingetragen. In gleicher Weise gezeichnete Linien sind gleich lang (wie sich leicht
aus der Definition und an Hand der Symmetrie-Eigenschaften bezüglich h bestätigen
lässt).

B«

!*¦ D*

A

Figur 1.4

Die verschiedenen Linien-Typen haben folgende Bedeutung:

____________ Kanten von E
Flächendiagonalen von E (gleichlange)
Hauptdiagonale von E

W
oE

JL—
Mn:^

/i//z

.} Strecken, die durch ah paarweise ineinander übergehen

Hieraus erscheint auch die (hier unbewiesene) Tatsache plausibel, dass die drei
Hill'schen Tetraeder-Klassen bis auf wenige Spezialfälle disjunkt sind (Figur 1.5).

A

1 Tripel und 1 Paar
gleichlanger Kanten

2 Paare
gleichlanger Kanten

Figur 1.5

H3(w)

1 Paar
gleichlanger Kanten

2. Die konkreten Zerlegungen

Dank den bereits festgestellten inneren Symmetrien der HiU'sChen Tetraeder sowie der
symmetriegestützten Zusammenhänge zwischen Hj(co),H2(co),H3(co) bei gemeinsamem
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co werden wir die nachstehend angeführten Zerlegungen leicht und allein an Hand von
Symmetrieüberlegungen begründen können.
Es sei HX [ABCD] ein Hill'scher Tetraeder-Bereich l.Art, wie definiert. A,B,C,D
sind dann bekanntlich vier Eckpunkte von E, die bei geeigneter Betrachtung
(AC 1.-projizierend) gemäss Figur 2.1 erscheinen.

A'=C

Figur 2.1

Fällt man nun von den Eckpunkten B und D aus je eine Orthogonalebene auf die
ausgezeichnete Kante [AC], so wird [AC] gedrittelt (vgl. (3)), und Hx zerfällt in 3

Bausteine der in Figur 2.2 (Grundriss- und Schrägriss-Ansicht) dargestellten Art.

B'

unterer
Baustein

V
2'=3'

mittlerer
Baustein

-A3'

oberer
Baustein

Figur 2.2

Es gilt nun zu beachten: Durch Spiegelung an der Geraden IB (d.h. durch die Punkte
1 und ff) geht
— A über in D und damit das Dreieck [IBA] in das Dreieck [IBD]; denn es ist

IB EB g (vgl. Figur 1.2), und die Seitenfläche ABDE von E ist ein Rhombus.
— Die Kante [2A] des unteren Bausteins über in eine zur Ebene IB2 orthogonale

Kante; denn [2A] steht orthogonal zu IB29 und die Ebene geht in sich über.

Völlig analoge Überlegungen lassen sich bezüglich der Spiegelung des oberen Bausteins

an seiner Kantengerade 4D anstellen. Man berücksichtige nämlich nur, dass h MN
Symmetrieachse in [ABCD] ist, wobei [IB] und [4D] bei dieser Symmetrie korrespondieren

(vgl. (2) und Figur (1.2)).
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Da im Raum die Spiegelung an einer Geraden s einer Umklappung an s um den Winkel

n gleichkommt, steht somit fest: Durch Umklappen des unteren Bausteins um 1_9

und des oberen Bausteins um 4D gelangt man zu einem geraden prismatischen Bereich
Px über einem gleichseitigen Dreieck (Figur 2.3).

2-= (2)Ou
3« (3)0<rt,

Figur 2.3

Damit ist aber auch schon die Quader-Zerlegungsgleichheit der Hill'schen Tetraeder-Bereiche

l.Art konstruktiv erwiesen (denn Px lässt sich leicht in einen Quader-Bereich
umbauen1), und die Zerlegungsgleichheit ist transitiv).
Der Umbau von H, in einen geraden prismatischen Bereich P, über einem gleichseitigen

Dreieck lässt sich mit nur 3 Bauteilen realisieren. Letztere erhält man, indem man
die ausgezeichnete Kante [AC] drittelt und in den beiden mittleren Teilpunkten zu AC
normale Trenn-Ebenen errichtet. - Zum Umbau sind 2 Umklappungen oXB und a4D

vonnöten.
Für das Weitere sei nochmals hervorgehoben, dass die beiden eben benützten Umbau-
Operationen (Umklappungen) bezüglich der Symmetrieachse h MN von Hx symmetrisch

liegen.
Wir wollen jetzt abklären, was der Umbau von [ABCD] auf seinem Teil-Tetraeder-Bereich

H2 [ABDM] induziert (Figur 2.4).

Figur 2.4

l) Bauen wir nämlich die dreieckige Grundfläche von Pt um in einen Rechteck-Bereich, so induziert dies für die

über den einzelnen Umbau-Komponenten liegenden geraden prismatischen Bausteine gerade den Umbau von

Pj in einen Quader-Bereich.
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Es gilt nun folgendes zu beachten: Die beiden einander zu [ABCD] ergänzenden Bereiche

[ABDM] und [CBDM] gehen, wie bereits gezeigt, durch eine Spiegelung an
h MN auseinander hervor; aber auch sämtliche hinsichtlich [ABCD] an diesen beiden
Teil-Bereichen vorgenommenen Umbau-Operationen verlaufen spiegelsymmetrisch
bezüglich h (vgl. dazu (2)).
Daraus können wir schhessen: Ist t die Mittel-Parallelebene von Grund- und Deckfläche

des vorher aus [ABCD] erhaltenen geraden prismatischen Bereiches P, (d.h. eine
weitere Normalebene zu AC in M), so wird der oberhalb t liegende Teil des nun
erhaltenen Bereiches B2 durch eine Spiegelung an h in einen Baustein übergeführt, der
den unterhalb t liegenden Teil von B2 zu einem geraden prismatischen Bereich P2 mit
gleicher Grundfläche und halber Höhe wie Pj ergänzt. Formal lässt sich dieser Sachverhalt

mit der Gleichung ah - aXB • ah • o4D begründen, die sich aus

<?XB ~ a(4D)«h ~ °h ' a4D ' <*h

ergibt (Figur 2.5).
(5)0

(6)Öh

Figur 2.5

Die eben in zwei Schritten erhaltenen Bausteine können sehr einfach auch direkt aus

[ABDM] gewonnen werden (Figur 2.6).

5 (5)öu
Z (6)d1B
N (N)01B
% (A)Ö1B D

Figur 2.6

(6)öh (5)0h

^

Damit ist auch die Quader-Zerlegungsgleichheit der Hill'schen Tetraeder-Bereiche 2. Art
konstruktiv erwiesen.

Der Umbau von H2 in einen geraden prismatischen Bereich P2 über einem gleichseitigen

Dreieck lässt sich mit nur 4 Bauteilen realisieren. Letztere erhält man, indem man
die ausgezeichnete Kante [AM] (die Hälfte von [AC]) drittelt und in den beiden

mittleren Teilpunkten und M im AM normale Trenn-Ebenen errichtet. Zum Umbau
sind 2 nacheinandergeschaltete Umklappungen aXB und ah erforderlich.
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Analog verfolgen wir nun, was der Umbau von [ABCD] auf seinem Teil-Tetraeder-Bereich

H3 [ABCN] induziert (Figur 2.7).

(3)0

A=D

(2)ö7B=2

Figur 2 7

Da auch die beiden einander zu [ABCD] ergänzenden Bereiche [ABCN] und [ADCN]
durch eine Spiegelung an h MN auseinander hervorgehen, können wir für das weitere

Vorgehen genau gleich wie bei H2 argumentieren:
Mittels der schon vorher verwendeten Trenn-Ebene t kann B3 durch eine Umklappung
um h in einen zu P2 kongruenten prismatischen Bereich übergeführt werden (Figur 2.8).

^5

Figur 2 8

Auch hier können die in zwei Schritten erhaltenen Bausteine direkt aus dem Ausgangs-
Bereich [ABCN] gewonnen werden (Figur 2.9).

1 (4)0h
7 (8)0h
9 (9)048

10 (1O)048 (S)0h
11 =(11)048 (5)0h
12 (12)07B (§) 0h _B (D) 0h

Figur 2.9
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Es ist also auch die Quader-Zerlegungsgleichheit der Hill'schen Tetraeder-Bereiche 3. Art
erwiesen.

Der Umbau von H3 in einen geraden prismatischen Bereich P3 über einem gleichseitigen

Dreieck lässt sich mit nur 6 Bausteinen realisieren. Letztere erhält man, indem man
die ausgezeichnete Kante [AC] in sechs gleiche Teile teilt und in den fünf Zwischen-
Punkten zmAC normale Trenn-Ebenen errichtet. - Zum Umbau sind 3 nacheinandergeschaltete

Umklappungen alß, a4% und ah erforderlich.
Bemerkung: Auf diese Zerlegungen der Hill'schen Tetraeder-Bereiche ist der Autor
gestossen, als er erst einmal den von Sydler [7] zu ihrer Konstruktion benutzten Epiped-
Bereich E geeignet in einen geraden prismatischen Bereich umzubauen versuchte. Er
hoffte dabei, mit Hilfe der auf den sechs kongruenten Teil-Tetraeder-Bereichen Hx von
E induzierten Zerlegungs-Bausteinen einen einzelnen Teil-Tetraeder-Bereich in einen

prismatischen umbauen zu können.

3. Beispiele

Für die drei unendlichen Klassen von Tetraeder-Bereichen H!(co),H2(co),H3(co) kann
nun die Volumenformel V— G • h/3 für alle möglichen Grundflächen und ihre
entsprechenden Höhen auf der Basis der Zerlegungsgleichheit (d.h. ohne Grenzprozesse) hergeleitet

werden.
Wird allgemein ein Tetraeder-Bereich durch drei von einer Ecke ausgehende Vektoren
3,i,jaufgespannt, so findet sich die Grösse G • h stets als halbes Spatprodukt \\[3,e,f]\,
gleich welche der vier Tetraeder-Flächen man als Grundfläche G betrachtet (dies ergibt
sich unmittelbar aus der geometrischen Deutung des Spatproduktes). Folglich muss die

Gültigkeit der Formel V=Gh/3 nur für eine Grundfläche und die entsprechende
Höhe nachgewiesen werden. Dazu denken wir uns den Epiped-Bereich E gemäss Figur
3.1 in ein kartesisches Koordinaten-System gestellt. Zugleich wählen wir die Einheit so,

B"%=Dm

B'n =Dm

cosct

Seitenriss

ot ist der Winkel von a E", c

zur Epiped-Hauptdiagonalen AC

(vgl. (4)).

D'1 fB'
c^•"N-A1' ^a'^\v. y»

I' < _• > D»

/
x' Grundriss

Figur 3.1
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dass \ä\ \B\ \c\ 1 wird. Überdies benützen wir hier vorteilhafterweise den Winkel
a als Scharparameter, der beim Beweis von (4) eingeführt wurde.

Für die Grundfläche des Ziel-Prisma-Bereiches erhalten wir dann in allen Fällen:

und für dessen Höhe haben wir im Falle

Hj! hx cosa,

ti h2 h3= -cosa.
2

Für die entsprechenden Volumina ergibt sich somit:

_/_•
^Hl(«)- ^

__.^H2(«) *H3(a)
g

H,: Grundfläche ABC
Aus der Figur 3.1 liest man ab

G FAABC | |MC]| • P'ffH J 3cosa sina ;

und aus dem Grundriss dieser Figur entnimmt man für die entsprechende Höhe

h=\\[D'E']\ Ysina
so dass

Gh 3 cosa sina y/3 sina J3
:=_ 2t ;_= _Y Cir

3 2-2-3 4

H2: Grundfläche ABM
Da hier die Grundfläche gegenüber H, halbiert ist und die Höhe dieselbe bleibt,
halbiert sich insgesamt der Wert des Volumens.

H3: Grundfläche ABC
Hier ist die Grundfläche gegenüber H, dieselbe geblieben. Da die Höhe nur halb
so gross ist, wie in H„ ist das Volumen auch die Hälfte des Volumens von H,.

Damit ist die Volumenformel V= G • h/3 für alle Hill'schen Tetraeder-Bereiche allein
mit Überlegungen aus der Theorie der Zerlegungsgleichheit hergeleitet.

Als letztes sollen nun noch für die drei Tetraeder-Klassen die Bausteine in Abhängigkeit

des Scharparameters co berechnet werden. Dazu normieren wir die allen Scharen

gemeinsame Kante [AB] auf |[_4_9]|:= 1.

Die nachfolgend angeführten Streckenverhältnisse, Symmetrien und Winkel lassen sich

direkt aus den Zerlegungs-Figuren zu den drei Tetraeder-Klassen herauslesen.
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HilTsche Tetraeder l.Art (Figur 3.2)
Die eingetragenen Werte bezeichnen die Längen der betreffenden Streckenteile.
Der Kantenwinkel an AC beträgt bei allen drei Bausteinen f. Weiter ergibt sich der
Reihe nach:

co
x sin—;

2
U=y/T X2',

Aus (2y)2 v2 + x2 folgt v —p x und damit z Ju1 - y1 \ 1 — - x2.
v/3 V 3

YT.

r^

JL
-i. ^ H

JL

3y/2

-S- "3

Figur 3.2 Figur 3.3 Figur 3.4

HilTsche Tetraeder 2. Art (Figur 3.3)
Der Kantenwinkel an AC beträgt auch hier f. Die Streckenlängen x,u,y,z sind dieselben

wie vorher.
Zur Berechnung bleiben nur noch (beachte AMRB):

v=l(2y)2 + 3X 4 3

3t

x'--J\+4x>

*
+ '-i-'-

HilTsche Tetraeder 3. Art (Figur 3.4)
Der Kantenwinkel an AC beträgt hier |. Auch hier treten wiederum die früheren
Strecken x9u9y9z auf.
Aus dem Vergleich mit H, ergibt sich:

a x x
3P=2^=6

Weiter folgt:
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' />2+U ~ +
X-x2 X

4 =gV^^2) V 36

Aus der Figur 3 5 kann schliesslich auch noch der Wert von q entnommen werden

2q 2t

Wegen 31 x ist somit
A'r-C^M^R1

X

_-r-3
Figur 3 5

Anschliessend sind noch fur drei verschiedene Werte von co die Langen der Baustein-
Kanten tabellarisch zusammengestellt, diese Daten erlauben die Herstellung
entsprechender Modelle

X u y z V p r t=q

_=i 1 1 l 1 _T
2

1
£7? f 1

37?

_.-i 1
2 2

l
2?T ff t[_T

l
12

1

T
co 2arcsirrtifr

1
w VF i

3 3 if 57? -if 1
37?

Philipp Schobi, Mathematik-Departement, ETH Zürich
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