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Ein elementarer und konstruktiver Beweis fiir die
Zerlegungsgleichheit der Hill’schen Tetraeder mit
einem Quader

Als Antwort auf eine von D. Hilbert aufgeworfene Frage konnte M. Dehn im Jahre
1900 zeigen, dass sich nicht alle Tetraeder-Bereiche in einen prismatischen Bereich —
oder, was auf dasselbe hinauslduft — in einen Quader-Bereich umbauen lassen. Es gibt
Tetraeder-Bereiche, die nicht mit einem Quader zerlegungsgleich sind (vgl. [1-4]).

Bis heute sind nur wenige konkrete Tetraeder-Formen bekannt, die mit einem Quader
zerlegungsgleich sind. Es sind dies zunichst die drei 1-parametrigen Tetraeder-Scharen
von M.J.M. Hill [5] und daneben noch 27 isolierte Tetraeder-Bereiche, die in [4] voll-
stindig aufgelistet sind. Die iiblichen Beweisverfahren sind wohl konstruktiv, sie lassen
aber fiir die praktische Durchfithrung eines Umbaues in einen Quader keine greifbaren
Ansitze entnehmen. Abgesehen von einigen Spezialféllen fehlten jedenfalls bis anhin
einfache Umbauverfahren mit einer iiberschaubaren Anzahl von Zerlegungskomponen-
ten.

Mit der Vorstellung von drei einfachen generellen Konstruktionen fiir den Umbau der
Hill’schen Tetraeder ist daher ein neuer Zugang zur Quader-Zerlegungsgleichheit dieser
besondern Tetraedern freigelegt. Insbesondere ist darin auch ein direkter und elementa-
rer Beweis fiir die Zerlegungsgleichheit der Hill’schen Tetraeder mit einem geraden
Prisma enthalten, der mit hochstens 6 Zerlegungskomponenten auskommt.

In einem ersten Teil werden die Hill’schen Tetraeder aus einem geeigneten Polyeder
gewonnen und einige spiter benétigte Zusammenhénge hergeleitet. Im zweiten Teil
befassen wir uns dann mit der Konstruktion der Zerlegungen, die den Umbau in ge-
rade prismatische Bereiche erlauben. Anschliessend werden in einem dritten Teil einige
konkrete Beispiele behandelt. Insbesondere wird ein nicht auf Grenzprozessen beruhen-
der Beweis fiir die Volumenformel ¥ =!G - h bei den Hill’schen Tetraedern gegeben.

1. Die drei Hill’schen Tetraeder-Scharen

Es gibt verschiedene Moglichkeiten, die Hill’schen Tetraeder einzufiihren. Fiir unsere
Belange ist der urspriinglich von Hill gewdhlte Weg nicht geeignet. Wir stiitzen uns
vielmehr auf eine Konstruktion, die von J. P. Sydler [6] erstmals verwendet wurde.

Ausgangsfigur zur Gewinnung der Hill’schen Tetraeder nach der Idee von Sydler ist
ein Parallel-Epiped-Bereich E, der von drei gleichlangen Vektoren &,5,¢ mit gleichen
Zwischenwinkeln w aufgespannt wird (E wird dann von sechs kongruenten Rhomben-
Seitenfldchen begrenzt; Figur 1.1).

Somit ist
@) =@3b)=@r=s
(a,b) = (b,¢) = (¢,a) = s’cosw
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Epiped-Bereich E

T

“mllllllmuum

|

M Mittelpunkt von {AC]
N Mittelpunkt von {BD -
¢ [AC]-Diagonalebene durch D, D

Figur 1.1

Die drei Punktepaare (B, B),(D, D), (E, E) definieren mit der Kérperdiagonalen [4C] je
eine Ebene. Diese drei Ebenen zerlegen den Epiped-Bereich E in 6 Tetraeder-Bereiche,
von denen wir zeigen werden, dass sie untereinander kongruent sind.

In der Figur 1.1 ist einer der beiden Tetraeder-Bereiche herausgestellt, dic von den
Diagonalebenen durch die Punktepaare (B, B) und (D, D) begrenzt werden:

H,:=[4BCD].

Fiir die folgenden Uberlegungen ist von Vorteil, wenn wir das Prinzip der speziellen
Ansicht beniitzen: Denken wir uns die Punkte B,D,E in einer Ebene parallel zum

Grundriss (1. Hauptebene), so sieht unser Epiped-Bereich E in Grund- und Aufriss
gemdss Figur 1.2 aus.

Aufriss

Grundriss

Figur 1.2
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Der mit den Grundkenntnissen der Darstellenden Geometrie vertraute Leser kann dar-
aus unter Zuhilfenahme von Symmetrieliberlegungen sofort die folgenden, spéter beno-
tigten Fakten entnehmen:

(1) g = BE steht senkrecht auf e.

(2) h= MN schneidet AC und BD senkrecht (Minimaltransversale der beiden).

(3) Die beiden Ebenen BDE und BDE stehen senkrecht auf 4C und zerlegen [AC] in
3 gleiche Teile.

(4) ,b, und ¢ schliessen zu ac je denselben Winkel « ein (@ = a (@)).

Diese Zusammenhinge lassen sich auch leicht rechnerisch bestitigen:
Man beachte, dass nach Voraussetzung iiber 4,b,¢ gilt:

@,a)=B,6)=(,¢)= s’
@,5)=(5,¢) = (¢,a) = s*cosw

(1) }_?_é =4 - é Richtungsvektor von g
AD =a + é Richtungsvektor von AD
AC=a+b+¢ Richtungsvektor von AC
@->ba+b =@a)—5b) =0=>g L AD
@-ba+b+e)=@—-b,a+b)+@—-5,0 =g leg

= 0 +@,¢)— (5,¢)=0=>g LAC

Q) AM=i@+5+¢)

AN=a+1b
b:=NM=AM— AN = 3¢ —a) Richtungsvektor von A
BD =b Richtungsvektor von BD
(®,5) =1@,6)—1(@,b) =0=>h L BD
@,a+b+2)=®Db)+i¢ —a¢+a)

= + 0 =0=h L AC

(3) Ebene BDE: EB=a —b Ebene BDE: BE=a - b
= =
DB=a—¢ BD=a-¢

(@ — b,a + b + ¢) =0 haben wir schon unter (1) gezeigt;
(@—-¢a+b+2¢)=0ffolgt ggglog.
Fiir die Linge des Vektors AC gilt zudem:

la+b+¢=/@+b+e¢a+b+e&)=/3s> (1+2cosw)

und fir die Linge der Projektion von & auf AC:

l@a+b+¢) |5 (1+2cosw) /352 -(1+2cosw)
a+b+él  3s7-(1+2cosw) 3

und daraus folgt, dass unsere beiden Ebenen den Vektor AC dritteln.
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@a+b+2) (Ba+tb+e) (@a+b+?d)
|‘lGa+b+¢| Bl-|a+b+¢l [¢l-[@a+B+el

s?+ 2s’cosw _ s (1+2cosw)
S\/?’s2 -(1+2cosw) - Sz\/3(1 + 2 cosw)

/l + 2cosw
= —3— =:cosd (w);

3 cosa — 1
umgekehrt erhalten wir cosw () = % )

Aus (1) folgt unmittelbar, dass B vermOge der Spiegelung o, in E iibergeht. Daraus
folgt:

[ACDE] = ([ACDB))a,.

Die beiden benachbarten Tetraeder-Bereiche [ACDE] und [ACDB] gehen also durch
eine ungleichsinnige Kongruenztransformation auseinander hervor.

Da die Wahl dieser beiden Nachbarn willkiirlich erfolgte, diirfen wir aus Symmetrie-
griinden auf die ungleichsinnige Kongruenz je zweier solcher benachbarter Tetraeder-
Bereiche im E schliessen; womit die — gleichsinnige oder ungleichsinnige — Kongruenz
aller sechs in unserem Epiped-Bereich E liegenden Tetraeder-Bereiche feststeht. Aus dem
Epiped E ist damit eine wohldefinierte Tetraeder-Form abgeleitet.

Dieses Ergebnis ist gewdhrleistet fiir alle Winkel o im Intervall 0 < w <27 (flirw =27
liegen die drei Vektoren &, 5, ¢ in einer Ebene). Damit ist eine erste I-parametrige Schar
von Tetraeder-Formen festgelegt. Man nennt sie die Hill’schen Tetraeder 1. Art.

Aus dem Epiped-Bereich E(w) lassen sich gleich auch noch die beiden andern 1-para-
metrigen Scharen von Hill’schen Tetraedern gewinnen. Da nach (2) die Strecken [AC]
und [BD] auf h senkrecht stehen und da M und N die Mittelpunkte dieser Strecken
sind, ist [ABDM] das Bild von [CDMB] und [ABCN] das Bild von [CDAN] bei der
Spiegelung an der Geraden g (Drehung mit der Achse g um den Winkel 7). Es ist also

[ABDM] = (CDBM])s, und [ABCN]=(CDAN))g,.

Damit stehen zwei Paare von gleichsinnig kongruenten Tetraedern fest, die — jeweils
zusammengefiigt — gerade den Bereich H, ergeben. Diese Symmetrie-Eigenschaft be-
ziiglich 4 wird uns spéter sehr zustatten kommen.

Wir setzen nun (vgl. Figur 1.3):

H,.=[ABDM]; H,:

[ABCN]

Q|
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Die Bereiche H,(w) werden Hill’sche Tetraeder 2. Art, die Bereiche H,(w) Hill’sche
Tetraeder 3. Art genannt.

In der Figur 1.4 sind die die drei Tetraeder begrenzenden Linien im Ausgangs-Epiped
E (w) eingetragen. In gleicher Weise gezeichnete Linien sind gleich lang (wie sich leicht
aus der Definition und an Hand der Symmetrie-Eigenschaften beziiglich 4 bestitigen
lasst).

Figur 1.4

Die verschiedenen Linien-Typen haben folgende Bedeutung:

Kanten von E
——em = Flichendiagonalen von E (gleichlange)
—— Hauptdiagonale von E

__...__} Strecken, die durch o, paarweise ineinander iibergehen

Hieraus erscheint auch die (hier unbewiesene) Tatsache plausibel, dass die drei
Hill’schen Tetraeder-Klassen bis auf wenige Spezialfille disjunkt sind (Figur 1.5).

H, (w) H, (w) H, (w)
1 Tripel und 1 Paar 2 Paare 1 Paar
gleichlanger Kanten | gleichlanger Kanten | gleichlanger Kanten

Figur 1.5

2. Die konkreten Zerlegungen

Dank den bereits festgestellten inneren Symmetrien der Hill’schen Tetraeder sowie der
symmetriegestiitzten Zusammenhéinge zwischen H, (w), H, (w), H; () bei gemeinsamem
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w werden wir die nachstehend angefiihrten Zerlegungen leicht und allein an Hand von
Symmetrieiiberlegungen begriinden kénnen.

Es sei H, =[ABCD] ein Hill’scher Tetraeder-Bereich 1.Art, wie definiert. 4,B,C,D
sind dann bekanntlich vier Eckpunkte von E, die bei geeigneter Betrachtung
(AC 1.-projizierend) gemaiss Figur 2.1 erscheinen.

Figur 2.1

Fillt man nun von den Eckpunkten B und D aus je eine Orthogonalebene auf die
ausgezeichnete Kante [4C), so wird [AC] gedrittelt (vgl. (3)), und H, zerfillt in 3 Bau-
steine der in Figur 2.2 (Grundriss- und Schrégriss-Ansicht) dargesteliten Art.

' B!

B
4t 4
1'
D

1
D! '

unterer mittlerer oberer
Baustein Baustein Baustein

Ol

Figur 2.2

Es gilt nun zu beachten: Durch Spiegelung an der Geraden 1B (d. h. durch die Punkte
1 und B) geht
— A iiber in D und damit das Dreieck [1BA] in das Dreieck [1BD]; denn es ist
1B = EB = g (vgl. Figur 1.2), und die Seitenfliche ABDE von E ist ein Rhombus.
— Die Kante [24] des unteren Bausteins tiber in eine zur Ebene 1B2 orthogonale
Kante; denn [24] steht orthogonal zu 1B2, und die Ebene geht in sich iiber.
Vollig analoge Uberlegungen lassen sich beziiglich der Spiegelung des oberen Bausteins
an seiner Kantengerade 4D anstellen. Man beriicksichtige ndmlich nur, dass A= MN
Symmetrieachse in [ABCD] ist, wobei [1B] und [4D] bei dieser Symmetrie korrespon-
dieren (vgl. (2) und Figur (1.2)).
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Da im Raum die Spiegelung an einer Geraden s einer Umklappung an s um den Win-
kel n gleichkommt, steht somit fest: Durch Umklappen des unteren Bausteins um 1B
und des oberen Bausteins um 4D gelangt man zu einem geraden prismatischen Bereich
P, iiber einem gleichseitigen Dreieck (Figur 2.3).

2= (2)0,
3": (3)6!40
Figur 2.3

Damit ist aber auch schon die Quader-Zerlegungsgleichheit der Hill’schen Tetraeder-Be-
reiche 1.Art konstruktiv erwiesen (denn P, ldsst sich leicht in einen Quader-Bereich
umbauen'), und die Zerlegungsgleichheit ist transitiv).

Der Umbau von H, in einen geraden prismatischen Bereich P, iiber einem gleichseiti-
gen Dreieck ldsst sich mit nur 3 Bauteilen realisieren. Letztere erhidlt man, indem man
die ausgezeichnete Kante [AC] drittelt und in den beiden mittleren Teilpunkten zu AC
normale Trenn-Ebenen errichtet. — Zum Umbau sind 2 Umklappungen o,; und o,,
vonnoten.

Fiir das Weitere sei nochmals hervorgehoben, dass die beiden eben beniitzten Umbau-
Operationen (Umklappungen) beziiglich der Symmetrieachse # = MN von H, symme-
trisch liegen.

Wir wollen jetzt abklidren, was der Umbau von [4BCD] auf seinem Teil-Tetraeder-Be-
reich H, = [ABDM] induziert (Figur 2.4).

Figur 2.4

1) Bauen wir nimlich die dreieckige Grundflidche von P, um in einen Rechteck-Bereich, so induziert dies fiir die
iiber den einzelnen Umbau-Komponenten liegenden geraden prismatischen Bausteine gerade den Umbau von
P, in einen Quader-Bereich.
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Es gilt nun folgendes zu beachten: Die beiden einander zu [4BCD] ergdnzenden Berei-
che [ABDM] und [CBDM] gehen, wie bereits gezeigt, durch eine Spiegelung an
h = MN auseinander hervor; aber auch samtliche hinsichtlich [4BCD] an diesen beiden
Teil-Bereichen vorgenommenen Umbau-Operationen verlaufen spiegelsymmetrisch be-
ziiglich A (vgl. dazu (2)).

Daraus konnen wir schliessen: Ist 7 die Mittel-Parallelebene von Grund- und Deckfli-
che des vorher aus [ABCD] erhaltenen geraden prismatischen Bereiches P, (d.h. eine
weitere Normalebene zu AC in M), so wird der oberhalb 7 liegende Teil des nun
erhaltenen Bereiches B, durch eine Spiegelung an 4 in einen Baustein libergefiihrt, der
den unterhalb 7 liegenden Teil von B, zu einem geraden prismatischen Bereich P, mit
gleicher Grundfliche und halber Hohe wie P, ergidnzt. Formal lésst sich dieser Sachver-
halt mit der Gleichung o, = a,; - 0, 0,, begriinden, die sich aus

018 = Owpyg, = On " Oap * Oy

ergibt (Figur 2.5).

Figur 2.5

Die eben in zwei Schritten erhaltenen Bausteine konnen sehr einfach auch direkt aus
[ABDM] gewonnen werden (Figur 2.6).

By 2t o
o onon

Figur 2.6

Damit ist auch die Quader-Zerlegungsgleichheit der Hill’schen Tetraeder-Bereiche 2. Art
konstruktiv erwiesen.

Der Umbau von H, in einen geraden prismatischen Bereich P, iiber einem gleichseiti-
gen Dreieck ldsst sich mit nur 4 Bauteilen realisieren. Letztere erhilt man, indem man
die ausgezeichnete Kante [AM] (die Hilfte von [4C]) drittelt und in den beiden
mittleren Teilpunkten und M zu AM normale Trenn-Ebenen errichtet. Zum Umbau
sind 2 nacheinandergeschaltete Umklappungen o, und o, erforderlich.

\
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Analog verfolgen wir nun, was der Umbau von [4BCD] auf seinem Teil-Tetraeder-Be-
reich H, = [ABCN] induziert (Figur 2.7).

Figur 2.7

Da auch die beiden einander zu [ABCD] ergianzenden Bereiche [ABCN] und [ADCN]
durch eine Spiegelung an 2 = MN auseinander hervorgehen, konnen wir fiir das weitere
Vorgehen genau gleich wie bei H, argumentieren:

Mittels der schon vorher verwendeten Trenn-Ebene 7 kann B, durch eine Umklappung
um 4 in einen zu P, kongruenten prismatischen Bereich iibergefiihrt werden (Figur 2.8).

Figur 2.8

Auch hier konnen die in zwei Schritten erhaltenen Bausteine direkt aus dem Ausgangs-
Bereich [ABCN] gewonnen werden (Figur 2.9).

(4) o,
(8) o,
(9) 048
(10)04e
(11)04
(12)0,5 -
(D) 0, ~ 11

Bo < =

Wonowomouonn

0
1

w o)
nouwon
_—
R
~
Q
El

o)
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Es ist also auch die Quader-Zerlegungsgleichheit der Hill’schen Tetraeder-Bereiche 3. Art
erwiesen.

Der Umbau von H, in einen geraden prismatischen Bereich P, iiber einem gleichseiti-
gen Dreieck lisst sich mit nur 6 Bausteinen realisieren. Letztere erhdlt man, indem man
die ausgezeichnete Kante [AC] in sechs gleiche Teile teilt und in den fiinf Zwischen-
Punkten zu AC normale Trenn-Ebenen errichtet. — Zum Umbau sind 3 nacheinanderge-
schaltete Umklappungen 7,5, 6, und g, erforderlich.

Bemerkung: Auf diese Zerlegungen der Hill’schen Tetraeder-Bereiche ist der Autor
gestossen, als er erst einmal den von Sydler [7] zu ihrer Konstruktion benutzten Epiped-
Bereich E geeignet in einen geraden prismatischen Bereich umzubauen versuchte. Er
hoffte dabei, mit Hilfe der auf den sechs kongruenten Teil-Tetraeder-Bereichen H, von
E induzierten Zerlegungs-Bausteinen einen einzelnen Teil-Tetraeder-Bereich in einen
prismatischen umbauen zu konnen.

3. Beispiele

Fir die drei unendlichen Klassen von Tetraeder-Bereichen H, (w),H, (w),H;(w) kann
nun die Volumenformel ¥V = G - h/3 fiir alle moglichen Grundflidchen und ihre entspre-
chenden Hohen auf der Basis der Zerlegungsgleichheit (d.h. ohne Grenzprozesse) herge-
leitet werden.

Wird allgemein ein Tetraeder-Bereich durch drei von einer Ecke ausgehende Vektoren
d,é,f aufgespannt, so findet sich die Grésse G - A stets als halbes Spatprodukt %l[ﬂ, é.fll,
gleich welche der vier Tetraeder-Flichen man als Grundfliche G betrachtet (dies ergibt
sich unmittelbar aus der geometrischen Deutung des Spatproduktes). Folglich muss die
Giiltigkeit der Formel ¥V = G - h/3 nur fiir eine Grundfliche und die entsprechende
Hoéhe nachgewiesen werden. Dazu denken wir uns den Epiped-Bereich E geméss Figur
3.1 in ein kartesisches Koordinaten-System gestellt. Zugleich wihlen wir die Einheit so,

2z " 2z "

cm

COosa
Bre=pm EM™

cos&

E B =Dm

cos ac{ Bm am=¢gm
o

-
w sina Seitenriss

o ist der Winkel von 8,5, ¢
zur Epiped-Hauptdiagonalen AC
(vel. (4)).

yl

x! Grundriss
Figur 3.1
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dass |d| = |b| = |¢] = 1 wird. Uberdies beniitzen wir hier vorteilhafterweise den Winkel
o als Scharparameter, der beim Beweis von (4) eingefiihrt wurde.

Fiir die Grundfliache des Ziel-Prisma-Bereiches erhalten wir dann in allen Fillen:
3 3 - 3
ST >4£ WER = Lina;

Fippp =

und fiir dessen Hohe haben wir im Falle

H: h= cosa,
Hz:} .
H,: h,=h,= 2cosoz.

Fiir die entsprechenden Volumina ergibt sich somit:

sino cosa ,

N
Sin“o COS .

Voo = Viyw = 3

Viiw = 4

H,: Grundfliche ABC
Aus der Figur 3.1 liest man ab

G=F,3c=15|[AC) - |[A'B')| =3 3cosa sina ;
und aus dem Grundriss dieser Figur entnimmt man fiir die entsprechende Hohe

3
h=3|[D'E) = 5 sina

so dass

G-h 3cosasina \/3sina \/5
3 2-2-3 4

H,: Grundfliche ABM

Da hier die Grundfliche gegeniiber H, halbiert ist und die Hohe dieselbe bleibt,

halbiert sich insgesamt der Wert des Volumens.
H,: Grundfliche ABC

Hier ist die Grundfldche gegeniiber H, dieselbe geblieben. Da die Hohe nur halb

so gross ist, wie in H,, ist das Volumen auch die Hélfte des Volumens von H,.
Damit ist die Volumenformel V = G - h/3 fiir alle Hill’schen Tetraeder-Bereiche allein
mit Uberlegungen aus der Theorie der Zerlegungsgleichheit hergeleitet.

sin’a coso

Als letztes sollen nun noch fiir die drei Tetraeder-Klassen die Bausteine in Abhdngig-
keit des Scharparameters w berechnet werden. Dazu normieren wir die allen Scharen
gemeinsame Kante [4B] auf |[4B]|:=1.

Die nachfolgend angefiihrten Streckenverhiltnisse, Symmetrien und Winkel lassen sich
direkt aus den Zerlegungs-Figuren zu den drei Tetraeder-Klassen herauslesen.
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Hill’sche Tetraeder 1. Art (Figur 3.2)

Die eingetragenen Werte bezeichnen die Langen der betreffenden Streckenteile.

Der Kantenwinkel an AC betrdgt bei allen drei Bausteinen ;. Weiter ergibt sich der
Reihe nach:

. W
x=sm-£; u=./1-—x*;

1
Aus 2y)* = y*+ x? folgt y = — x und damit z = J/u>*—y’= [l — —x~

/3

> mfn e o= ol N{N’\’h v @

> ) NN"< I\)IN G M'N =

Figur 3.2 Figur 3.4

Hill’sche Tetraeder 2. Art (Figur 3.3)

Der Kantenwinkel an AC betridgt auch hier ;. Die Streckenldngen x,u, y,z sind diesel-
ben wie vorher.

Zur Berechnung bleiben nur noch (beachte AMRRB):

z\? 4 1 1 1
== 24 (=)= [-x24+=-—=x2= = + 4 x2
v \/(Zy) (2) \/Bx 4 3x 2./1 4x

3t:=|[MN]| =\/vz—(%)z=\/i- + x2— % =Xx.

Hill'sche Tetraeder 3. Art (Figur 3.4)

Der Kantenwinkel an AC betrdgt hier £. Auch hier treten wiederum die fritheren
Strecken x,u, y,z auf.

Aus dem Vergleich mit H, ergibt sich:

Ip=

=>p =

(SRR
R

Weiter folgt:
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u\? x2 1-x* 1
= 24 1=} = [—+ P - 2
’ \/p (2) %74 eV T

Aus der Figur 3.5 kann schliesslich auch noch der Wert von g entnommen werden:

2q =12t.

Wegen 3¢ = x ist somit A1l MR ¢

<
fl
-
]
W=

Figur 3.5

Anschliessend sind noch fiir drei verschiedene Werte von w die Lingen der Baustein-

Kanten tabellarisch zusammengestellt; diese Daten erlauben die Herstellung entspre-
chender Modelle.

X u y z v P r |t=q
<% [#|2|*|#|F ®|E]®
-3 |35 & [2]F]2
o-arenndl & B | 3 | § [2H 2 8] 3

Philipp Schobi, Mathematik-Departement, ETH Ziirich
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