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Lineare Abhéngigkeiten von Einheitswurzeln

In seinem Tagebuch ([1]; Nr.40) notiert C. F. Gauss am 9. Oktober 1796 den Satz, dass
firr eine ungerade Primzahl p jede nicht triviale ganzzahlige Linearkombination der
primitiven p-ten Einheitswurzeln von Null verschieden ist. Dies ist offenbar gleichwertig
mit der Irreduzibilitdt des p-ten Kreisteilungspolynoms @,(t) = ¢~ '+ # 2+ --- + ¢+ 1
iiber dem Ko6rper Q der rationalen Zahlen (vgl. [3]). Bezeichnen wir allgemein mit W(f(¢))
den von den Nullstellen eines Polynoms f{¢) erzeugten Q-Teilraum von C, so konnen wir
den Satz von Gauss in der Form aussprechen:

Fir eine Primzahl p ist dim W(®,(¢)) = p — 1 = grad &,(¢).

Wir setzen allgemein dimf{z) = dim W(f{(r)) und sprechen von der Dimension des Poly-
noms f{¢). Wegen @,(t) = (¢t — i) (t + i) ist dim D,(¢) = 1, also dim D(¢) < grad D,(¢) = 2.
Wir wollen in dieser Note fiir jede natiirliche Zahl m die Dimension des m-ten Kreistei-
lungspolynoms @,(t) berechnen. Mit Q,, bezeichnen wir den m-ten Kreisteilungskorper.
Bekanntlich gilt dimQ,, = grad®,(¢) = ¢(m). Ist m = p™p,”2--- p* die kanonische
Primzahlzerlegung von m, so gilt ([2]); Satz 123)

Qm = Qp]”l ® sz"z ® e ® Qp;'.ru

Daraus folgt sofort
W(D,(1)) = W(D,n(D)® ‘- @ W(D,(1)),
also

dim @,(2) = [ ] dim @, (7).
i=1

Wir kénnen uns daher auf den Fall beschrianken, dass m = p” eine Primzahlpotenz ist. Fiir
ie{l,2,...,n} setzen wir W, = W(®1)). Offenbar wird dann W, von den p"~'-ten
Potenzen der primitiven p’-ten Einheitswurzeln erzeugt.

Die Q-Teilrdiume W, sind invariant unter der Galoisgruppe von Q,., und es gilt:

Satz 1
a) QP«=I'V,,®W,,2@"‘@W,
o(p)=p—1 fir i=1I

b) dim®,(t) =
< Emeplts {w(p’)—w(p"")‘—'(P‘U’P'"’ fir i22.
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Beweis: Esist Q.= W,+ W+ - -+ + W,,.
Wegen

dimen= @(p")
=(@@)—e@ N+ @@ H—e@ )+ - +(@0@)— o)+ o)

geniigt es also fiir alle i€{2,3,...,n} zu zeigen:
dmW, < o(@)—9(@'™").

Dabei konnen wir 0.B.d.A. i = n annehmen. Bekanntlich gilt:
D ()= pTle g T

Ist r eine primitive p"-te Einheitswurzel, so folgt fiir alle jmit 1 <j < p"~', die nicht durch
p teilbar sind,

AL T e o AL e | B M

Dies sind ¢(p” ') unabhingige lineare Gleichungen zwischen den ¢(p”) verschiedenen
primitiven p"-ten Einheitswurzeln. Also ist dim W, < ¢(p") — ¢ (p"™").

Aus dem Beweis ergibt sich noch

Folgerung 2. Sei n>2, L= {l|l <I<p"!, pXl} und U, der von den r'*»"~'* fiir
0 <k <p— 1 erzeugte Q-Teilraum. Dann gilt

a) Wa= @ U,
jeL
b) firallejeListdmU=p— 1.

Aus Satz 1 und den Bemerkungen vorher folgt

Satz 3. Die primitiven m-ten Einheitswurzeln sind genau dann linear unabhdngig, falls m
quadratfrei ist.

Als Beispiel fiir eine weitere Anwendung von Satz 1 zeigen wir

Satz 4. Ist r eine primitive p"-te Einheitswurzel, so bilden die Konjugierten des Elementes
s=r 7 T Pty

eine Normalbasis von Q,..

\
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Beweis: Wir fithren den Beweis durch Induktion nach n. Fiir n = 1 ist die Behauptung
gerade der oben zitierte Satz von Gauss. Sein > lundu ="'+ "2+ --- + 1, also
s=u+tr.

Da r* eine primitive p”~ '-te Einheitswurzel ist, konnen wir also mit Induktion annehmen,
dass die Konjugierten von u eine Normalbasis von Q,, -, bilden. Fiirie K = {k|l <k <p",
pAk} sei o, der durch r—r' definierte Automorphismus von Q.. Wir setzen % = u®.

Sei nun

Zcis”‘= Zc,.(u(°+r')= Z c,u® + z cr=0

iek ieK ieK ek

mit irgendwelchen c,e Q. Wegen z cWeW,®oW,® - ®W,-: und z c;r'e W, ist
1€k ieK
also

Y cud=) ¢r=0.

ieK ek

Fiir i,jeK ist u® = u? genau dann, wenn ' = r”, also p(i—j) =0 mod p" oder i=j
mod p” ' ist. Wegen der linearen Unabhéngigkeit der Konjugierten von u folgt

Gt CGam-1F+ G ym-1=0 (2)

firallejeL= {1 <I<p'"', pfl}. Aus Y ¢, =0 ergibt sich mit Folgerung 2

iek

G=Gap—1= 7T T Gupoppn-t A3)
fir alle je L. Aus (2) und (3) zusammen folgt nun ¢, = 0 fiir alle ie K. Also sind die
Konjugierten von s linear unabhingig.

Der Satz 4 ist vielleicht aus historischen Griinden erwdhnenswert. Man gewinnt daraus
fiir alle Kreisteilungskorper und damit nach dem Satz von Kronecker und Weber fiir alle
Abelschen Korper eine Normalbasis. Dies verallgemeinert eine Schlussweise von
D. Hilbert, der im Zahlbericht ([2]; Satz 132) eine Normalbasis fiir Abelsche Korper
m-ten Grades mit zu m teilerfremder Diskriminante nachweist.

Karsten Johnsen, Mathematisches Seminar, Christian Albrechts Universitit, Kiel
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