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Lineare Abhängigkeiten von Einheitswurzeln

In seinem Tagebuch ([1]; Nr. 40) notiert C. F. Gauss am 9. Oktober 1796 den Satz, dass

für eine ungerade Primzahl p jede nicht triviale ganzzahlige Linearkombination der
primitiven p -ten Einheitswurzeln von Null verschieden ist. Dies ist offenbar gleichwertig
mit der Irreduzibilität des/?-ten Kreisteilungspolynoms <Pp(t) - f~x + f~2+ ••• + t+ 1

über dem Körper Q der rationalen Zahlen (vgl. [3]). Bezeichnen wir allgemein mit W(flt))
den von den Nullstellen eines Polynomsflt) erzeugten Q-Teilraum von C, so können wir
den Satz von Gauss in der Form aussprechen:
Für eine Primzahl p ist dim W(<Pp(t)) p - 1 grad 0p(t).

Wir setzen allgemein dimflt) dim W(f(t)) und sprechen von der Dimension des

Polynoms flt). Wegen &4(t) (t- i) (t + i) ist dim &4(t) 1, also dim<f>4(r) < grad<P4(t) 2.

Wir wollen in dieser Note für jede natürliche Zahl m die Dimension des m-ten
Kreisteilungspolynoms <Pm(i) berechnen. Mit Qm bezeichnen wir den m-ten Kreisteilungskörper.
Bekanntlich gilt dimQm grad_£m(f) (p(m). Ist m pxxp22 • • • f* die kanonische
Primzahlzerlegung von m, so gilt ([2]); Satz 123)

Q. QP1«i®Qi,2«2®--- ®QP%.

Daraus folgt sofort

W(0m(t)) W(<Ppnx(t))® • • • <g> W(0pns(t))9

also

dim«P_(/) IIdim^f.(0-

Wir können uns daher aufden Fall beschränken, dass m — f eine Primzahlpotenz ist. Für
/e{l,2,...,/t} setzen wir Wpl= W(&p£f)). Offenbar wird dann W^ von den /?*~-ten
Potenzen der primitivenf-ten Einheitswurzeln erzeugt.
Die Q-Teilräume W? sind invariant unter der Galoisgruppe von Q^, und es gilt:

Satzl
a) QPn~Wp@Wp2®---®Wpn,

(<p(p)=p-l für /=;
dim<PJt) {' itfp'J-tfp-'J-fp-.

[(p(p)^p-l fur i l
b) dim0Jt) \
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Beweis: Es ist Q^ Wp + Wp2 + • • • + W^.

Wegen

dimQp„ <p(pn)

((pQf) - <p(p»-x)) + (<p(p»-x) - <p(jf-2)) +•••+ ((p(p2) - 9(p)) + <p(p)

genügt es also für alle i e {2,3,...,«} zu zeigen:

dimW^KpW-ipQ)1-1).

Dabei können wir o.B.d.A. / n annehmen. Bekanntlich gilt:

^(0 ^,~1(p"1)+^,"1(p"2)+ '- +r"~l + i.

Ist r eine primitive pn-te Einheitswurzel, so folgt für alley mit 1 <j < p1'l, die nicht durch

p teilbar sind,

Dies sind <pQf~l) unabhängige lineare Gleichungen zwischen den (p(jf) verschiedenen

primitivenpn-ten Einheitswurzeln. Also ist dim Wp„ < <p(pn) - q>(pn~l).

Aus dem Beweis ergibt sich noch

Folgerung 2. Sei n>2, L= {l\l <l<pn~l, p\t\ und U} der von den rJ+pn~Ik für
0 <k <p— 1 erzeugte Q-Teilraum. Dann gilt

a) »> ®UJf
jeL

b) für allejeL ist dim U} p— 1.

Aus Satz 1 und den Bemerkungen vorher folgt

Satz 3. Die primitiven m-ten Einheitswurzeln sind genau dann linear unabhängig, falls m

quadratfrei ist.

Als Beispiel für eine weitere Anwendung von Satz 1 zeigen wir

Satz 4. Ist r eine primitive pn-te Einheitswurzel, so bilden die Konjugierten des Elementes

s^rP»-1 + rp»-2+ •.. + rp + r

eine Normalbasis von Q^.
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Beweis: Wir führen den Beweis durch Induktion nach n. Für n 1 ist die Behauptung
gerade der oben zitierte Satz von Gauss. Sei n > 1 und «=rpW~1 + rp""2+ ••• +rp9 also
s u + r.

Da r9 eine primitive jf " '-te Einheitswurzel ist, können wir also mit Induktion annehmen,
dass die Konjugierten von u eine Normalbasis von Q^ -1 bilden. Für ieK {k\ 1 < k < f,
p\k} sei al der durch r-*rl definierte Automorphismus von Q^. Wir setzen u°l w(0.

Sei nun

Z cts« Z ct(u{i) + r1) Z ctui0 +lclrl 0
teK leK teK teK

mit irgendwelchen cteQ. Wegen £ c.w^e W,® fP-_® • • • ® W^-i und Z C/G ^ *st
teK teK

also

1^ 1^ 0.
ieK ieK

Für /je^T ist w(0 w0) genau dann, wenn r*1 r*", also p(i—j) 0 mod /7n oder i=j
modpn~l ist. Wegen der linearen Unabhängigkeit der Konjugierten von u folgt

Cj + CJ+pn-\+ '" +cJ + ip_X)pn-i=0 (2)

für alleyeL {l\ 1 < / <f ~ \ p\l}. Aus JJc,r' 0 ergibt sich mit Folgerung 2
ieK

cj= Cj+p»-\ ~ ' ' ' ~ Cj + {p- l)p"~ 1 W/

für alle 7'eL. Aus (2) und (3) zusammen folgt nun cx 0 für alle ie/fT. Also sind die

Konjugierten von s linear unabhängig.

Der Satz 4 ist vielleicht aus historischen Gründen erwähnenswert. Man gewinnt daraus
für alle Kreisteilungskörper und damit nach dem Satz von Kronecker und Weber für alle
Abelschen Körper eine Normalbasis. Dies verallgemeinert eine Schlussweise von
D. Hilbert, der im Zahlbericht ([2]; Satz 132) eine Normalbasis für Abelsche Körper
m-ten Grades mit zu m teilerfremder Diskriminante nachweist.

Karsten Johnsen, Mathematisches Seminar, Christian Albrechts Universität, Kiel
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