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und Gleichheit kann für ein z0( ^ 0) nur eintreten, wenn/(z) cz3 ist.
Der Beweis ist ganz analog zu jenem von Mortini. Wir setzen

g(z)=l-(f(z)+f(ez)+f(e*z))

und u =f—g. Dann ist g (sz) g (z) und daher
(2) u(z) + u (ez) + u(e2z) 0.
Die Funktion g bildet D in sich ab und hat in 0 die Entwicklung

g(z) a3z3 + a6z6 + •••

Nach der Schlussweise beim Schwarzsehen Lemma ist dann \g(z)\ |z|3,zeD, und
Gleichheit kann für ein z0(^0) nur eintreten, wenn g(z) cz3 und daher

f(z) cz3 + u (z) ist. Es bleibt zu zeigen, dass u (z) identisch verschwindet. Wegen
|cz3 + u (z)\ \f(z)\ < 1 und \c\ 1 folgt durch quadrieren, dass

|z|6 + 2^{cz3-w(z)} + |w(z)|2<l

ist und danach auch

|z|6 + 29te {cz3 • u (ez)} + \u(ez)\2 < 1

und

|z|6 + 2Me {cz3 • u (e2z)} + \u (e2z)\2 < 1.

Addition und Berücksichtigung von (2) ergibt

3|z|6 + \u(z)\2 + \u (ez)\2 + \u(e2z)\2 < 3,

also \u (z)\2 < 3(1 - |z|6). Gemäss dem Maximumprinzip muss u die Konstante Null und
daher/(z) cz3 sein.

Nach diesem Beweis der Variante II ist für jedermann klar, wie man weitergehen könnte.
Albert Pfluger, Zürich

Didaktik und Elementarmathematik

Über ein Trapez aus merkwürdigen Punkten des Dreiecks

Ziel dieser Note ist es, auf einige bemerkenswerte Beziehungen zwischen gewissen
merkwürdigen Punkten des ebenen Dreiecks hinzuweisen. Neben den vier klassischen
merkwürdigen Punkten Schwerpunkt S9 Umkreismittelpunkt M, Inkreismittelpunkt / und
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Höhenschnittpunkt H benötigen wir für unsere Betrachtungen noch einen fünften
merkwürdigen Punkt. Er wird mit Hilfe der Ankreise an die Seiten des Dreiecks erzeugt. Die
Ecktransversalen durch die den Eckpunkten jeweils gegenüberliegenden inneren Berührpunkte

der Ankreise schneiden sich in einem Punkt, dem sog. Nagel-Punkt Nx).
Ist das Ausgangsdreieck weder gleichseitig noch gleichschenklig, so bilden die vier Punkte
H, N9 M, I die Eckpunkte eines Trapezes, und der Schwerpunkt S ist der
Diagonalenschnittpunkt (vgl. [2]).

Bei einem gleichseitigen Dreieck entartet das Trapez zu einem Punkt, bei einem
gleichschenkligen Dreieck zu einer Geraden. Wir wollen jetzt die Längen der Seiten und
Diagonalen des Trapezes aus merkwürdigen Punkten bestimmen.

Seitenlängen des Trapezes

Bezüglich der Längen der Seiten [MI] und [IH] können wir uns auf bekannte Ergebnisse
stützen. Überraschend ist, dass die Längen von drei der vier Trapezseiten nur von dem
Umkreis- und Inkreisradius des Ausgangsdreiecks abhängig sind.
Die Seiten des Dreiecks werden - wie üblich - mit a, b, c, der Umkreisradius mit R, der
Inkreisradius mit r und der Umfang des Dreiecks mit 2s bezeichnet.

a) Seite [MI]: Ein klassisches Ergebnis von Euler besagt:

MI2 R2-^- =R(R-2r).2s

b) Seite [HN]: Für die Teilstrecken der Diagonalen gilt:

SN=2ls und SH=2MS (siehe z. B. [2]).

1) Dieser Punkt wurde erstmals in der im Jahre 1836 erschienenen Arbeit «Untersuchungen über die wichtigsten

zum Dreieck gehörenden Kreise» des kgl.-württ. OStR Chr. Heinrich von Nagel erwähnt.
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Damit erhalten wir aus dem Vierstreckensatz (HN //MI):

HN=2MI, und mit a)

HN2 4M~I2 4R(R- 2r).

c) Seite [NM]: Hierzu benötigen wir weitere Ergebnisse von Euler über die gegenseitigen

Entfernungen der merkwürdigen Punkte H, S, M, I (vgl. z. B. [4]):

iH2 4R2 + m- q~^^, (1)
s

^2=Ä2+ _______ ^ (2)

^ =__!!___£, (3)
9 s

wobei q:=ab + ac + bc und m 4(q - s2) ist.
Der Nagel-Punkt war Euler nicht bekannt. Die Streckenlänge NM können wir mit Hilfe
des Satzes von Stewart (siehe z. B. [1] oder [3]) und den Beziehungen (l)-(3) bestimmen.
Wir erhalten

NM2 R2 + m- -^ • (4)
s

Wir betrachten nun das Dreieck IMH. Der Feuerbachpunkt F ist Mittelpunkt der Seite

[HM], die Gerade IF also Seitenhalbierende. Wiederum mit dem Satz von Stewart und

(l)-(3) erhalten wir:

4ÜF2 2~MI2 + 2HI2 - ~MH2 R2 + m -^ • (5)
s

Aus (4) und (5) folgt:

NM= 2~IF.

Da sich Feuerbachkreis und Inkreis eines Dreiecks berühren, gilt:

lF=l-R-r. (6)

Wegen (6) bekommen wir somit für die Länge der Seite [NM]:

NM R-2r.
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d) Seite [IH]: Die Länge dieser Seite ist nicht nur von Um- und Inkreisradius des
abc A

Dreiecks abhängig. Mit (1) und wegen r —-, R — sowie 4_42 s(sm - 4abc),
4_4 s

wobei A die Fläche des Dreiecks ist, erhalten wir:

~IH2 4R2 + m-q- -^ 4(R + r)2 - q,
s

d. h. es gehen zusätzlich noch die Seitenlängen des Dreiecks mit ein.

Die Länge der Diagonalen des Trapezes

Grundlage für die weiteren Betrachtungen ist folgender

Satz: P sei ein beliebiger Punkt der Ebene und S sei der Schwerpunkt des Dreiecks ABC.
Dann gilt:

PÄ2 + PB2 + PC2 SÄ2 + SB2 + SC2 + 3JS2.

Beweis: Im Unterschied zu [1] führen wir hier den Beweis ausschliesslich durch mehrfache

Anwendung des Satzes von Stewart.

Ä bzw. ff bzw. C seien die Mittelpunkte der Seiten [BC] bzw. [CA] bzw. [AB] des

Dreiecks ABC.
Anwendung des Satzes von Stewart auf APBC liefert (PA' ist Seitenhalbierende von
[BC]):

2PÄ' ~pc2 + Jb2-\ BC2. (1)
2

Jetzt wird der Satz von Stewart auf APAÄ angewendet (S teilt [AA'] im Verhältnis 2:1):

2PÄ' 3PS2 - PÄ2 + ^ SÄ2. (2)

(1) wird mit (2) gleichgesetzt:

3PS2 +lsÄ2+^BC2 PÄ2 + PB2 + PC2. (3)
2 2

Analog erhalten wir mit APAC und APBff:

3PS2 + | SB2 + ~ ÄC2 PA2 + PB2 + PC2, (4)
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und mit APAB und APCC:

3 PS2 +-SC2+^-ÄB2 PÄ2 + PB2 + PC2. (5)
2 2

Addition der drei Gleichungen (3), (4), (5) liefert die Behauptung.

Die Längen der beiden Diagonalen in Abhängigkeit von den Seitenlängen des Dreiecks
und dem Um- bzw. Inkreisradius erhalten wir als Anwendung dieses Satzes.

Diagonale [HM]: Wir setzen P:=M. Dann gilt

SM2 R2 - ^ (SÄ2 + lSB2 + ~SC2)

R2-\ (a2 + b2 + c2).
9 J

Wegen ~HM 3 ~SM folgt somit

HM2 9R2 - (a2 + b2 + c2) 9R2 - k,

mit

k:=a2 + b2 + c2.

Diagonale [IN]: Wir setzen P:=I und erhalten:

lÄ2 + lB2 + lc2=3ls2+^ (a2 + b2 + c2). (6)

Mit 1Ä2 r2 + (s - a)2, ~IB2 r2 + (s - b)2, lc2 r2 + (s - c)2 folgt aus (6):

Js2 r2+^ (a2 + b2 + c2)-^ s2.

Wegen 7n= 3LS gilt:

IN2 9r2 + 2(a2 + b2 + c2) - 3s2 9r2 + 2k - 3s2.

P. Baptist, Math. Institut, Universität Bayreuth
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