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Kleine Mitteilungen

Varianten des Schwarzsehen Lemma

Die Aufgabe 901 (El. Math., Vol. 38, Nr. 5, 1983) und deren Lösung (El. Math., Vol. 39,

Nr. 5,1984) haben mich auf einige Varianten des Schwarzsehen Lemma gebracht, die ich
nachfolgend beschreiben möchte.
Es bezeichne D die Kreisscheibe {\z\ < 1} und c eine komplexe Zahl vom Betrag 1 ;f(z) ist
stets eine holomorphe Funktion von D in D, die im Nullpunkt verschwindet und daher
die Entwicklung/(z) axz + a2z2 + • • • besitzt.
Das Schwarzsehe Lemma besagt, dass \f(z)\ \z\ in D und Gleichheit für ein z0 / 0 nur
eintreten kann, wenn/(z) cz ist. Durch Integration folgt daraus sofort |J f(x)dx\ < 1,

aber die Schranke 1 ist nicht scharf. Nach der von P. von Siebenthal gestellten Aufgabe
901 ist 2A die genaue Schranke, die nur durch die Funktionen/(z) cz2 erreicht wird. In
der von R. Mortini gegebenen Lösung ist nun (implizit) die folgende Variante des

Schwarzsehen Lemma enthalten.

I. Es ist
(1) \f(z)+f(-z)\ 2\z\2 in D,
und für ein z0( # 0) kann Gleichheit nur eintreten, wenn/(z) cz2 ist.

Mit der dortigen Bezeichnungsweise ist nämlich

l-\f(z)+f(~z)\ \w(z)\^\z\2 und f(z) cz2 + v(z),

falls für ein z0(#0) Gleichheit besteht. Gleich wie dort schliesst man, dass v(z) die
Konstante Null sein muss. Aus (1) folgt dann durch Integration sofort die Aussage in
Aufgabe 901, dass

\fj(x)dx\ \h(f(x) +f( - x))dx\ 2\\x2dx 2/3

ist und Gleichheit nur eintreten kann für/(z) cz2.

Dies ist aber nur der erste Schritt zu einer Reihe von Varianten. Zur Formulierung einer
zweiten setzen wir

2/i/
e exp — •

Sie lautet dann:

II. Es ist

\f(z)+f(ez)+f(B2z)\^3\z\i in D
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und Gleichheit kann für ein z0( ^ 0) nur eintreten, wenn/(z) cz3 ist.
Der Beweis ist ganz analog zu jenem von Mortini. Wir setzen

g(z)=l-(f(z)+f(ez)+f(e*z))

und u =f—g. Dann ist g (sz) g (z) und daher
(2) u(z) + u (ez) + u(e2z) 0.
Die Funktion g bildet D in sich ab und hat in 0 die Entwicklung

g(z) a3z3 + a6z6 + •••

Nach der Schlussweise beim Schwarzsehen Lemma ist dann \g(z)\ |z|3,zeD, und
Gleichheit kann für ein z0(^0) nur eintreten, wenn g(z) cz3 und daher

f(z) cz3 + u (z) ist. Es bleibt zu zeigen, dass u (z) identisch verschwindet. Wegen
|cz3 + u (z)\ \f(z)\ < 1 und \c\ 1 folgt durch quadrieren, dass

|z|6 + 2^{cz3-w(z)} + |w(z)|2<l

ist und danach auch

|z|6 + 29te {cz3 • u (ez)} + \u(ez)\2 < 1

und

|z|6 + 2Me {cz3 • u (e2z)} + \u (e2z)\2 < 1.

Addition und Berücksichtigung von (2) ergibt

3|z|6 + \u(z)\2 + \u (ez)\2 + \u(e2z)\2 < 3,

also \u (z)\2 < 3(1 - |z|6). Gemäss dem Maximumprinzip muss u die Konstante Null und
daher/(z) cz3 sein.

Nach diesem Beweis der Variante II ist für jedermann klar, wie man weitergehen könnte.
Albert Pfluger, Zürich

Didaktik und Elementarmathematik

Über ein Trapez aus merkwürdigen Punkten des Dreiecks

Ziel dieser Note ist es, auf einige bemerkenswerte Beziehungen zwischen gewissen
merkwürdigen Punkten des ebenen Dreiecks hinzuweisen. Neben den vier klassischen
merkwürdigen Punkten Schwerpunkt S9 Umkreismittelpunkt M, Inkreismittelpunkt / und
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