Zeitschrift: Elemente der Mathematik
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 40 (1985)

Heft: 2

Artikel: Elementare Prinzipien der Informatik
Autor: Gutknecht, J.

DOl: https://doi.org/10.5169/seals-38828

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-38828
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

38 El. Math., Vol. 40, 1985

Elementare Prinzipien der Informatik

Wir haben erfahren, dass das Ordnen von Listen ein geeignetes Mittel zur Beschleuni-
gung und Vereinfachung von Suchprozessen ist. Deshalb studieren wir nun Ordnungs-
oder Sortieralgorithmen. Sie gehOren zu den interessantesten und subtilsten Algo-
rithmen iiberhaupt.

Wiederum beginnen wir mit einer einfachen Aufgabe. Es soll ein Programm erstellt
werden, das zwei Elemente a und b ordnet. Falls a > b ist, so miissen die Variablen
vertauscht werden. Ein erster Versuch zur Vertauschung von a und 4 konnte sein

b:=a; a:=b.

Dieser scheitert natiirlich. Die Schlussbedingung ist nimlich a = b. Vertauschen erfor-
dert eine Hilfsvariable u:

u:=a; a:'=b; b:=u

Wenn wir diese Anweisungsfolge mit swap(a,b) abkiirzen, stellt sich unser Programm
wie folgt dar:

DOa> b - swap(a,b) OD.

Die Repetition stoppt offensichtlich nach 0 oder 1 Schritt. Wir erhéhen nun die Anzahl
der zu ordnenden Variablen, sagen wir auf sechs: a,b,c,d, e,f. Wir wollen sie an Ort
ordnen, d.h. ohne Verwendung weiterer Variablen (natiirlich mit Ausnahme von u).
Die Repetition darf sicherlich nicht aufhoren, solange zwei benachbarte Variablen in
der falschen Beziehung zueinander stehen:

DOa >b - swap(a,b)
| b>c¢ — swap(b,c)
| ¢ >b — swap(c,d)
| d>e — swap(de)

| e>f — swap(ef)
OD

Uberraschenderweise ist dies bereits das korrekte Programm. Die Abbruchbedingung,
d.h. die Konjunktion der Negationen aller Wachen, ist ndmlicha <b <c<d <e <f.
Wir erinnern daran, dass gemdss Definition der Repetitionsanweisung die Reihenfolge
der Vertauschungen durch dieses Programm nicht festgelegt ist!

El. Math., Vol.40, 1985 39

Die folgende Tabelle zeigt vier Szenarien, nach denen der Prozess bei gegebenem An-
fangszustand ablaufen kdnnte:

abcdef abcdef abcdef abcdef
6 52143 652143 652143 65214373
56 21 4 3 6 25143 651243 652134
526143 621543 6 51234 651234
5216 43 6214153 561234 615234
2516 43 6214735 516 234 612534
2516 34 612435 156234 61233534
251364 162435 1526134 16233754
215364 162345 152364 12613354
213564 1261345 152346 12363534
123564 123645 125346 1235864
123546 1234615 123546 12354°%6
123456 123456 123456 123425°¢6

Kommt der Prozess stets nach einer endlichen Anzahl von Repetitionsschritten zu ei-
nem Ende? Es geniigt, eine Funktion mit ganzzahligen Werten anzugeben, welche von
oben beschrankt ist und deren Wert bei jedem Repetitionsschritt echt grosser wird. Die
gewohnliche Summe aller Elemente ist konstant. Wir betrachten daher die gewichtete
Summe s:= 0a + 1b + 2c + 3d + 4e + 5f. Die obere Schranke ist s, ausgewertet fiir die
geordnete Liste.

Die Anzahl der Repetitionsschritte hdngt offensichtlich vom Grad der anfinglichen
Ordnung ab. Der Leser mag herausfinden, ob es reiner Zufall ist, dass in unserem
Beispiel alle vier Szenarien die gleiche Zahl von Schritten aufweisen.

Analog zur Situation beim Suchen wurden auch fiir das Ordnen Algorithmen entwik-
kelt, welche eine Grossenordnung effizienter sind als die direkten Losungen. Einen der
erfolgreichsten, ndmlich Quicksort [6], wollen wir kurz vorstellen.

Am besten konnen wir die Arbeitsweise von Quicksort erkldren, wenn wir annehmen,
dass unser Prozessor die Aufgabe des Ordnens der Liste a[0], a[1], ..., a[n — 1] an zwei
Mitarbeiter delegieren mochte. Dazu muss der Prozessor die Liste vorbereiten, d. h. sie
in zwei unabhingige Teile aufteilen. Unabhéngig heisst, dass jeder der beiden Mitarbei-
ter in der Lage ist, seinen Teil der Arbeit zu verrichten, ohne den andern mit einzube-
ziehen. Dies ist tatsdchlich der Fall, wenn der Prozessor die Liste vorgingig in zwei
Teillisten a[0], ..., a[i — 1] und a[i], ..., a[n — 1] aufteilt, so dass jedes Element der ersten
nicht grosser ist als jedes Element der zweiten Teilliste.

Dieser Aufteilungsschritt ist nicht sehr aufwendig. Am besten werden unpassende Ele-
mente paarweise ausgetauscht, wie es die untenstehende Figur andeutet. Natiirlich ist
es wiinschenswert, dass beide Teillisten ungefihr dieselbe Groisse aufweisen. Die
Hauptschwierigkeit besteht in der Bestimmung eines Bezugselementes x, nach welchem
die Einteilung vorgenommen werden kann. Meistens nimmt man, eher aus Verlegen-
heit, ein Element in der Mitte der Liste.

40 El. Math., Vol. 40, 1985

al0] afl] af2] a[3] a?4] al5] a[6] a[7] a[8] a[9]
2 56 31 75 49 19 87 38 17 54

T T
22 17 31 75 49 19 87 38 56 54
T T
22 17 31 38 49 19 87 75 56 54
T 1
22 17 31 38 19 49| 87 75 56 54
af0] afi — 1]| afi] a[n — 1]

Wie im wirklichen Leben hat jeder der beiden Mitarbeiter unseres Prozessors wiederum
zwei Assistenten, an welche er die Arbeit delegieren kann. So kehrt also die urspriingli-
che Situation wieder. Falls die Teilliste nur aus einem Element besteht, so ist nichts
mehr zu delegieren, da die Arbeit schon getan ist. Es ist charakteristisch fiir solche
rekursiven Verfahren, dass die Aufgabe eigentlich nie explizit gelost wird. Vielmehr
wird sie sooft delegiert, bis sie verschwunden ist.

Das Ordnen wird also von mehreren autonomen Prozessen bewerkstelligt. In der Tat
entspricht jedes Delegieren der Aktivierung eines neuen und unabhingigen Prozesses.
Im Prinzip konnten alle diese Prozesse gleichzeitig ablaufen. Dies wiirde offensichtlich
einen betrachtlichen Zeitgewinn fiir das Ordnen der ganzen Liste mit sich bringen.
Diese Eigenschaft des Algorithmus kann jedoch nur dann ausgeniitzt werden, wenn der
zugrundeliegende Computer mit einer entsprechenden Zahl von Hardware-Prozessoren
ausgestattet ist. Betrachtet man den Fortschritt der Elektronik, im speziellen der VLSI-
Technologie (Very Large Scale Integration (von elektronischen Bauelementen)), so
scheinen solche Computer fiir die ndhere Zukunft nicht unrealistisch.

Der Quicksort Algorithmus ist jedoch auch mit nur einem Prozessor attraktiv. Falls
wir Gliick haben mit unseren Bezugselementen, so wird bei jeder Delegation der Auf-
gabe die Grosse der zu ordnenden Liste halbiert. Andererseits stellt sich heraus, dass
das Ordnen zweier Listen von halbem Umfang mit weniger Aufwand verbunden ist als

das direkte Ordnen der ganzen Liste (sogar wenn man die Vorbereitung mit einbe-
zieht).

Eine zweite Serie von Beispielen

Wihrend wir im vorigen Abschnitt den algorithmischen Aspekt von Computerpro-
grammen betont haben, stehen nun die Datenstrukturen im Vordergrund. Normaler-
weise ist eine Datenbank, welche von einem Computerprogramm verwaltet wird, kein
statisches Objekt. Neue Elemente miissen eingefiigt und bestehende geloscht werden
kénnen.

Nehmen wir an, dass wir vor die Aufgabe gestellt werden, ein Programm zur Verwal-
tung einer Rangliste eines Abfahrtsrennens zu entwickeln. Jeder Teilnehmer sei durch
einen Datensatz charakterisiert. Dieser Datensatz enthalte als Komponenten den Na-
men und die im Rennen erreichte Zeit.

Wir wollen eine Maximalzahl von n Teilnehmern zulassen. Dazu deklarieren wir als
Datenbasis einen Bereich p[1], p[2], ..., p[n] von Datensitzen. Den Namen und die Zeit

El. Math., Vol.40, 1985 41

des Teilnehmers i bezeichnen wir mit p[i].name und p[i].time. Unser Programm soll die
beiden Befehle «Fiige neuen Teilnehmer ein» und «Stelle die aktuelle Rangliste dar»
ausfiihren konnen. Indem wir uns selbst in die Lage versetzen, die Teilnehmer einfiigen
zu miissen, konnen wir die prinzipielle Schwierigkeit ausmachen. Entweder gliedern wir
die Teilnehmer in der Folge ihrer Ankunft oder in der Folge der erreichten Zeiten in
unseren Bereich ein.

Im ersteren Falle fiillen wir einfach den Bereich sukzessive auf. Dies bedingt jedoch,
dass, jedesmal wenn der Befehl zur Darstellung der Rangliste gegeben wird, der Bereich
nach den Zeiten geordnet werden muss. Eine wenig befriedigende Losung! Im letzteren
Fall dagegen miissen wir den Bereich jeweils umordnen, um einen neuen Fahrer an die
richtige Stelle bringen zu kdnnen. Umordnen bedeutet Verschieben vorhandener Teil-
nehmer nach hinten, so dass eine Liicke fiir den neuen Fahrer geschaffen wird. Im
schlimmsten Fall (wenn der neue Fahrer die beste Zeit erreicht hat), muss jedes Ele-
ment verschoben werden.

Dies ist offensichtlich ebenfalls keine effiziente Losung (auch wenn sich der Schaden in
unserem Beispiel in Grenzen hilt). Als Ausweg bietet sich das Konzept der Verkettung
an. Dazu filigen wir unseren Datensétzen p[i] ein neues Feld next hinzu, das den Index
des (zeitlichen) Nachfolgers enthdlt. Wir interpretieren next als Zeiger zum néchsten
Element in der Kette. Ferner kommen wir iiberein, den Zeiger 0 als das Ende der Kette
zu deuten. Schliesslich bendtigen wir eine Variable first, welche auf das erste Glied
zeigt.

Real werden die Teilnehmer nun hintereinander in den Bereich eingefiigt. Der Index i
gebe jeweils die ndchste freie Position an. Zusdtzlich muss jedoch jedes Element richtig
in die Kette eingegliedert werden. Nehmen wir an, die Daten des neuen Teilnehmers
seien in den Variablen newname und newtime festgehalten. Dann muss unser Programm
die Kette solange durchlaufen, bis ein Glied x erreicht ist, dessen Zeit grosser als
newtime ist. Wir lassen den Suchprozess ein Glied vorausblicken und nennen das je-
weils untersuchte Glied cur. Als Schlussbedingung des Durchlaufprozesses ergibt sich
somit x = p[cur].next. Das neue Element p[i] wird dann unmittelbarer Vorgdnger von
x. Durch Anpassung der next-Komponenten an der Aufbruchstelle wird die richtige
Verkettung wie folgt hergestellt: p[i] zeigt zu x und p[cur] zeigt zu pli].

Unser Einfiigealgorithmus stellt sich somit wie folgt dar:

{lies newname and newtime ein}

plil.name:=newname; pl[i].time:=newtime;

cur:=first;

DO p[p[cur].next].time < newtime — cur:=p[cur].nextOD;
pli].next:=p[cur].next; p[cur].next:=i;

i=i+1

Ist das Programm korrekt? Es ist im allgemeinen empfehlenswert, Extremfille zu be-
trachten. Hier gibt es zwei. Sie entsprechen den Situationen, in denen das neue Element
zum Kopf bzw. zum Abschluss der Kette wird. Der erste Fall wird sicher nicht richtig
behandelt, da das Element first iiberhaupt nicht ins Spiel kommt. Das Programm ver-
sagt jedoch auch im zweiten Fall. Da die next-Komponente des letzten Gliedes 0 ist,
wird die Wache undefiniert.

42 El. Math., Vol. 40, 1985

Wir konnten versuchen, den Algorithmus zu korrigieren. Es ist jedoch — wie im allerer-
sten Beispiel des letzten Abschnittes — giinstiger, die Datenstruktur anzupassen. Wir
fithren dazu einen definitiv letzten «Pseudoteilnehmer» ein. Ausserdem, verkniipfen
wir diesen Pseudoteilnehmer mit dem momentan ersten Glied in der Kette, schliessen
also die Kette zu einem Ring. Das Element p[1] stellt eine Art Verankerung des Ringes
dar. Die Notwendigkeit des Zeigers first entfillt somit.

Der Initialisierungsteil unseres Programmes wird so zu

next nexn name time next nexn name time
11 11
10 i 10 D4 0%
9 4 | 2 B 126 9 4 B 126
8 7 1 U 123 8 7 1 U 123
7 2 13 K 124 7 2 {10 K 124
6 8 |1 H 121 6 8 |1 H 121
5 l: 3| 4 Q 128 5 314 Q 128
4 5 | 8 R 127 qcur L4110 | 8 R 127
3 1 15 P 129 3 115 P 129
2 9 16 G 125 2 9 16 G 125
1 6 19 Y4 9999 1 6 19 y ¥4 9999

-

Anker Anker

Figur 3. Einfiigen eines neuen Elementes in die Zeit- und Namensringkette.
pll].next:=1; p[l].time:=co0.

Wenden wir uns nun dem zweiten Befehl «Stelle die aktuelle Rangliste dar» zu. Seine
Ausfithrung besteht im wesentlichen im Durchlaufen der Kette:

cur:=p[1].next;
DO plcur].time # oo — {schreibe p[cur].name aus} cur:=p[cur].nextOD.

Die Methode des Verkettens hat sich als dusserst geeignet herausgestellt, um den Kon-
flikt zwischen der Reihenfolge des Einfiigens der Teilnehmer und der Reihenfolge der
erreichten Zeiten aufzuldsen. Sie ist praktisch unentbehrlich, falls eine Datenbank
gleichzeitig nach verschiedenen Kriterien geordnet werden muss.

In unserem Fall kommt eine zusitzliche Ordnung nach den Namen der Teilnehmer in
Frage. Dazu miissen wir lediglich den Datensitzen eine zweite Zeigerkomponente, z. B.
nexn, hinzufiigen. Wir erkldren den Pseudoteilnehmer auch lexikographisch zum letz-
ten und schliessen die Namenskette ebenfalls zu einem Ring. Der Einfiigealgorithmus
muss selbstverstindlich um eine entsprechende Anweisungsfolge zur Eingliederung ei-
nes neuen Teilnehmers in die Namenskette erweitert werden. Dazu kann der zeitliche
Eingliederungsalgorithmus iibernommen werden, wobei next durch nexn ersetzt werden
muss. p[1].name muss mit einem «unendlich grossen Namen» initialisiert werden.

Die Darstellungsprozedur fiir die Namenskette ist dieselbe wie diejenige fiir die Zeit-
kette, wo wieder next durch nexn ersetzt ist. Es sei dem Leser empfohlen, eine Prozedur
zu entwickeln, die einen (disqualifizierten) Fahrer aus der Rangliste (nicht aber aus der
Namenskette) nimmt.

\

El. Math., Vol.40, 1985 43

Figur 3 zeigt die Datenstruktur, die wir gerade besprochen haben. Die zwei Ringketten
variieren laufend ihre Grosse und Ordnungsrelation. Man spricht deshalb von einer
dynamischen Struktur.

Die nichste Illustration, die unsere Beispielreihe beschliesst, geht noch einen Schritt
weiter. Die Textverarbeitung ist zu einem wichtigen Anwendungsbereich in der nicht-
numerischen Informatik geworden. Eine logisch zusammenhédngende Folge von Daten-
elementen heisst File. Ein Text ist also nichts anderes als ein File von Zeichen. Ein
Texteditor ist ein Programm, das einen Text am Bildschirm zeigen und Befehle zu
dessen Bearbeitung ausfiihren kann.

Beschrinken wir uns auf die beiden Befehle «Filige einen Textteil ein» und «Losche
einen Textteil». Die Quelle des einzufiigenden Textes kann die Tastatur oder ein beste-
hendes Textfile sein. Nehmen wir zundchst an, dass diese Befehle direkt auf den Text,
d.h. auf die entsprechende Sequenz von Zeichen wirken. Dann kehrt unser fritheres
Dilemma wieder, welches seine Ursache in der Diskrepanz zwischen der logischen Rei-
henfolge und der Reihenfolge der Eingabe hat. Tatsidchlich erfordert das Einfiigen oder
Loschen einer Folge von Zeichen im allgemeinen die Bewegung eines moglicherweise
grossen Teiles des urspriinglichen Textes.

Das Verkettungskonzept erweist sich auch hier als Ausweg. Unsere Datenstruktur wi-
derspiegelt die Interpretation des zu verarbeitenden Textes als eine Folge von Textstiik-
ken. Ein Textstiick ist eine Sequenz von logisch aufeinanderfolgenden Zeichen, die auf
demselben File gespeichert sind. Wir ordnen jedem Textstiick einen Beschreibungsblock
zu. Dieser gibt das entsprechende Textfile, die Anfangsposition innerhalb des Files und
die Lange (in Anzahl Zeichen) des Textstiickes an. Da der bearbeitete Text als Kette
von Beschreibungsblocken dargestellt wird, beziehen wir zusétzlich einen Zeiger zu
seinem Nachfolger mit ein.

Die Basis unserer Datenstruktur ist somit ein Bereich d[1], d[2], ..., d[n] von Datensit-
zen d[i] mit Komponenten d[i].file, d[i].pos, d[i].len and d[i].next. Anfinglich besteht
der zu bearbeitende Text aus einem einzigen Textstiick. Figur 4 zeigt die Entwicklung
der Kette wihrend des Verarbeitungsprozesses. Wir bemerken, dass im Gegensatz zum
vorigen Beispiel (abgesehen vom Lo&schen eines disqualifizierten Fahrers), die Kette
nun je nach Aktivitit wachsen oder schrumpfen kann.

Wir fiihren deshalb ein Reservoir von momentan freien Datenbldcken ein. Am einfach-
sten ist dieses Reservoir ebenfalls als Kette organisiert. Die Variable free moge zum
Kopf dieser Kette zeigen, welche folgendermassen zu initialisieren ist:

free.=1; i:=I,;
DOi # n — d[i].next:=i + I OD;
next[n]: =0

Die Prozeduren get(i) and return(i), um einen Datenblock (mit Index i) aus dem Reser-
voir zu holen bzw. an das Reservoir zuriickzugeben, sind zueinander invers:

get(i): IF free # 0 — i:=free;free:=d[i].next FI
return(i): d[i].next:=free; free:=i

Als abschliessendes Programmbeispiel arbeiten wir einen Algorithmus aus, der einen
Textteil 16scht. Dieser Teil sei gekennzeichnet durch seine Anfangsposition 4 und seine

4 El. Math., Vol.40, 1985

Linge L. Wir nehmen an, dass 4 > 0 und 4 + L < totale Lange des Textes. Dies ist in
der Praxis garantiert, falls das erste und das letzte Zeichen des Textes als Sentinel
(Textanfang und Textende) deklariert werden. Die Variable first zeige zum ersten Text-
stiick.

B:=A+ L; sum:=0; a:=first;{sum < A4}
DOsum + d[a].len < A — sum:=sum + d[a].len;a:=d[a].next OD;
{sum < 4 < sum + d[a].len}
get(b); d[b].next:=d[a].next; d[a].next:=b;
d[b].len:=sum + d[a].len — 4 ;d[a].len:=A4 — sum{ > 0};
d[b].file:=d[a].file; d[b].pos:=d[a].pos + d[a].len;
{sum < B und b = d[a].next}
DOsum + d[bllen< B —
sum:=sum + d[b].len;d[a].next:=d[b].next; return(b); b:=d[a].next
OD;
{sum < B < sum + d[b].len und b = d[a].next}
d[b].len:=sum + d[b].len — B { > 0};
d[b].pos: = d[b].pos + B — sum;

Ein bemerkenswertes Detail dieses Algorithmus ist die Tatsache, dass er keine Text-
stiicke der Liange 0 erzeugt. Das erste Textstiick p[a], das in die Léschoperation einbe-
zogen ist, wird (zwischen den beiden Repetitionen) explizit in zwei Stiicke p[a] und p[b]
aufgespalten. Daher ist der Algorithmus nicht optimal, wenn der zu l6schende Teil
nicht in einem einzigen Textstiick enthalten ist.

Riickblick

Wir haben gesehen, dass Computer Universalgerite sind, die Daten der verschieden-
sten Art auf verschiedenste Weise verarbeiten konnen. Thre Universalitit liegt im Kon-
zept der Software oder Programme begriindet. Die Entwicklung korrekter und effizien-
ter Programme ist eine hochgradig mathematische Angelegenheit, selbst dann, wenn
die Anwendung nicht-numerischer Art ist. Programmiersprachen und -techniken von
grosser Allgemeinheit sind entwickelt worden. Programmiermethoden erleichtern die
abstrakte Formulierung von dynamischen Abldufen als statische Texte. Ihre modernen
Vertreter unterstiitzen den Software-Ingenieur im Entwurf von moéglicherweise grossen
Programmsystemen.

Obwohl die Programmierung eine zentrale Disziplin der Informatik ist, ist sie nicht die
alleinige. Die Konzipierung von Datenbanken und von Hardware-Architekturen fiir
Computer-Systeme sind weitere Eckpfeiler. Beide Gebiete haben in letzter Zeit stark an
Bedeutung gewonnen: das erste dank der Erschliessung neuer Anwendungsbereiche
(z.B. Datenbanken von geometrischen Objekten), das zweite dank dem ungeheuren
Fortschritt der elektronischen Technologie (VLSI).

\

El. Math., Vol. 40, 1985 45

a) —» d

Losche Text zwischen den Markierungen

b) — dl a2 H
Fiige Text von der Tastatur tas an der markierten Stelle ein
c) —* dil d3 dl2 a2 H
YNy %7
tas A8
Kopiere Text von Textfile f* an die markierte Position
d —+ dl d3 d12 d21 d4 d22 H

s | M
il D2]

Losche Text zwischen den Markierungen

e) — d111

d221 H

A

Figur 4. Entwicklung der Text-Beschreibungskette im Laufe der Verarbeitung.

Es ist ein interessantes Faktum, dass Computer in allen diesen Gebieten nicht nur
Gegenstand, sondern auch Werkzeug sind. Damit hat sich der Kreis geschlossen.

J. Gutknecht, Institut fiir Informatik, ETH-Ziirich

LITERATURVERZEICHNIS

K. Jensen and N. Wirth: Pascal User Manual and Report. Springer Verlag, 1975.

N. Wirth: Programmierung in Modula-2. Springer Verlag, 1982.

The Ada Programming Language, ANSI/MIL-STD-1815A, Amer. Nat. Std. Inst., 1983.
E.W. Dijkstra: A Discipline of Programming. Prentice Hall, 1976.

D. Gries: The Science of Programming. Springer Verlag, 1981.

C.A.R. Hoare: Quicksort. Comp. Journal 5, No. 1, 1962, 10-15.

AN B W —

© 1985 Birkhduser Verlag, Basel 0013-6018/85/060038-0881.50 + 0.20/0

	Elementare Prinzipien der Informatik

