
Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 40 (1985)

Heft: 2

Artikel: Elementare Prinzipien der Informatik

Autor: Gutknecht, J.

DOI: https://doi.org/10.5169/seals-38828

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-38828
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

38 El Math Vol 40, 1985

Elementare Prinzipien der Informatik

Wir haben erfahren, dass das Ordnen von Listen em geeignetes Mittel zur Beschleunigung

und Vereinfachung von Suchprozessen ist Deshalb studieren wir nun Ordnungsoder

Sortieralgorithmen Sie gehören zu den interessantesten und subtilsten
Algonthmen überhaupt
Wiederum beginnen wir mit einer einfachen Aufgabe Es soll ein Programm erstellt
werden, das zwei Elemente a und b ordnet Falls a > b ist, so müssen die Vanablen
vertauscht werden Ein erster Versuch zur Vertauschung von a und b konnte sein

b — a, a—b

Dieser scheitert naturlich Die Schlussbedingung ist namhch a b Vertauschen erfordert

eine Hilfsvanable u

u — a, a—b, b —u

Wenn wir diese Anweisungsfolge mit swap(a,b) abkurzen, stellt sich unser Programm
wie folgt dar

DOa > b -? swap(a,b) OD

Die Repetition stoppt offensichtlich nach 0 oder 1 Schritt Wir erhohen nun die Anzahl
der zu ordnenden Variablen, sagen wir auf sechs a, b, c, d, e,f Wir wollen sie an Ort
ordnen, d h ohne Verwendung weiterer Vanablen (natürlich mit Ausnahme von u)
Die Repetition darf sicherlich nicht aufhören, solange zwei benachbarte Variablen in
der falschen Beziehung zueinander stehen

DOa > b -> swap(a,b)
| b > c -» swap(b,c)
| c > b -» swap(c,d)
| d > e -* swap(d,e)
| e >f -*> swap(ef)

OD

Überraschenderweise ist dies bereits das korrekte Programm Die Abbruchbedingung,
d h die Konjunktion der Negationen aller Wachen, ist namhch a <b <c <d <e <f
Wir ennnern daran, dass gemäss Definition der Repetitionsanweisung die Reihenfolge
der Vertauschungen durch dieses Programm nicht festgelegt ist*

El. Math., Vol. 40, 1985 39

Die folgende Tabelle zeigt vier Szenarien, nach denen der Prozess bei gegebenem
Anfangszustand ablaufen könnte:

abcdef abcdef abcdef abcdef
652143 652143 652143 652143562143 625143 651243 652134526143 621543 651234 651234521643 621453 561234 615234251643 621435 516234 612534251634 612435 156234 612354
2 5 1 3 6 4 1 6 2 4 3 5 1 5 2 6 3 4 1 6 2 3 5 4
2 1 5 3 6 4 1 6 2 3 4 5 1 5 2 3 6 4 1 2 6 3 5 4
2 1 3 5 6 4 1 2 6 3 4 5 1 5 2 3 4 6 1 2 3 6 5 4
1 2 3 5 6 4 1 2 3 6 4 5 1 2 5 3 4 6 1 2 3 5 6 4
1 2 3 5 4 6 1 2 3 4 6 5 1 2 3 5 4 6 1 2 3 5 4 6

123456 123456 123456 123456
Kommt der Prozess stets nach einer endlichen Anzahl von Repetitionsschritten zu
einem Ende? Es genügt, eine Funktion mit ganzzahligen Werten anzugeben, welche von
oben beschränkt ist und deren Wert bei jedem Repetitionsschritt echt grösser wird. Die
gewöhnliche Summe aller Elemente ist konstant. Wir betrachten daher die gewichtete
Summe s:= 0a+ lb + 2c + 3d+ 4e + 5f Die obere Schranke ist s, ausgewertet für die
geordnete Liste.
Die Anzahl der Repetitionsschritte hängt offensichtlich vom Grad der anfanglichen
Ordnung ab. Der Leser mag herausfinden, ob es reiner Zufall ist, dass in unserem
Beispiel alle vier Szenarien die gleiche Zahl von Schritten aufweisen.

Analog zur Situation beim Suchen wurden auch für das Ordnen Algorithmen entwik-
kelt, welche eine Grössenordnung effizienter sind als die direkten Lösungen. Einen der

erfolgreichsten, nämlich Quicksort [6], wollen wir kurz vorstellen.
Am besten können wir die Arbeitsweise von Quicksort erklären, wenn wir annehmen,
dass unser Prozessor die Aufgabe des Ordnens der Liste a[0], a[l], a[n - 1] an zwei
Mitarbeiter delegieren möchte. Dazu muss der Prozessor die Liste vorbereiten, d. h. sie

in zwei unabhängige Teile aufteilen. Unabhängig heisst, dass jeder der beiden Mitarbeiter

in der Lage ist, seinen Teil der Arbeit zu verrichten, ohne den andern mit einzube-
ziehen. Dies ist tatsächlich der Fall, wenn der Prozessor die Liste vorgängig in zwei
Teillisten a[0],..., a[i - 1] und a[i],..., a[n - 1] aufteilt, so dass jedes Element der ersten
nicht grösser ist als jedes Element der zweiten Teilliste.
Dieser Aufteilungsschritt ist nicht sehr aufwendig. Am besten werden unpassende
Elemente paarweise ausgetauscht, wie es die untenstehende Figur andeutet. Natürlich ist
es wünschenswert, dass beide Teillisten ungefähr dieselbe Grösse aufweisen. Die
Hauptschwierigkeit besteht in der Bestimmung eines Bezugselementes x, nach welchem
die Einteilung vorgenommen werden kann. Meistens nimmt man, eher aus Verlegenheit,

ein Element in der Mitte der Liste.

40 El. Math., Vol. 40, 1985

a[0] a[l] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]
22 56 31 75 49 19 87 38 17 54

T

22 17 31 75 49 19 87 38 56 54

75 49 19 87 38 17

t
75 49 19 87 38 56

T T

38 49
T

19

T

87 75 56

38 19 491 87 75 56

a[i--1]| a[i] a[r

22 17 31 38 49 19 87 75 56 54

T T

22 17 31 38 19 491 87 75 56 54

a[0]

Wie im wirklichen Leben hat jeder der beiden Mitarbeiter unseres Prozessors wiederum
zwei Assistenten, an welche er die Arbeit delegieren kann. So kehrt also die ursprüngliche

Situation wieder. Falls die Teilliste nur aus einem Element besteht, so ist nichts
mehr zu delegieren, da die Arbeit schon getan ist. Es ist charakteristisch für solche
rekursiven Verfahren, dass die Aufgabe eigentlich nie explizit gelöst wird. Vielmehr
wird sie sooft delegiert, bis sie verschwunden ist.
Das Ordnen wird also von mehreren autonomen Prozessen bewerkstelligt. In der Tat
entspricht jedes Delegieren der Aktivierung eines neuen und unabhängigen Prozesses.

Im Prinzip könnten alle diese Prozesse gleichzeitig ablaufen. Dies würde offensichtlich
einen beträchtlichen Zeitgewinn für das Ordnen der ganzen Liste mit sich bringen.
Diese Eigenschaft des Algorithmus kann jedoch nur dann ausgenützt werden, wenn der
zugrundeliegende Computer mit einer entsprechenden Zahl von Hardware-Prozessoren

ausgestattet ist. Betrachtet man den Fortschritt der Elektronik, im speziellen der VLSI-
Technologie (Very Large Scale Integration (von elektronischen Bauelementen)), so
scheinen solche Computer für die nähere Zukunft nicht unrealistisch.
Der Quicksort Algorithmus ist jedoch auch mit nur einem Prozessor attraktiv. Falls
wir Glück haben mit unseren Bezugselementen, so wird bei jeder Delegation der
Aufgabe die Grösse der zu ordnenden Liste halbiert. Andererseits stellt sich heraus, dass

das Ordnen zweier Listen von halbem Umfang mit weniger Aufwand verbunden ist als
das direkte Ordnen der ganzen Liste (sogar wenn man die Vorbereitung mit
einbezieht).

Eine zweite Serie von Beispielen

Während wir im vorigen Abschnitt den algorithmischen Aspekt von Computerprogrammen

betont haben, stehen nun die Datenstrukturen im Vordergrund. Normalerweise

ist eine Datenbank, welche von einem Computerprogramm verwaltet wird, kein
statisches Objekt. Neue Elemente müssen eingefügt und bestehende gelöscht werden
können.
Nehmen wir an, dass wir vor die Aufgabe gestellt werden, ein Programm zur Verwaltung

einer Rangliste eines Abfahrtsrennens zu entwickeln. Jeder Teilnehmer sei durch
einen Datensatz charakterisiert. Dieser Datensatz enthalte als Komponenten den

Namen und die im Rennen erreichte Zeit.
Wir wollen eine Maximalzahl von n Teilnehmern zulassen. Dazu deklarieren wir als

Datenbasis einen Bereich p[l], p[2], p[n] von Datensätzen. Den Namen und die Zeit

El. Math., Vol. 40, 1985 41

des Teilnehmers / bezeichnen wir mit p[i].name und p[i].time. Unser Programm soll die
beiden Befehle «Füge neuen Teilnehmer ein» und «Stelle die aktuelle Rangliste dar»
ausführen können. Indem wir uns selbst in die Lage versetzen, die Teilnehmer einfügen
zu müssen, können wir die prinzipielle Schwierigkeit ausmachen. Entweder gliedern wir
die Teilnehmer in der Folge ihrer Ankunft oder in der Folge der erreichten Zeiten in
unseren Bereich ein.
Im ersteren Falle füllen wir einfach den Bereich sukzessive auf. Dies bedingt jedoch,
dass, jedesmal wenn der Befehl zur Darstellung der Rangliste gegeben wird, der Bereich
nach den Zeiten geordnet werden muss. Eine wenig befriedigende Lösung! Im letzteren
Fall dagegen müssen wir den Bereich jeweils umordnen, um einen neuen Fahrer an die
richtige Stelle bringen zu können. Umordnen bedeutet Verschieben vorhandener
Teilnehmer nach hinten, so dass eine Lücke für den neuen Fahrer geschaffen wird. Im
schlimmsten Fall (wenn der neue Fahrer die beste Zeit erreicht hat), muss jedes
Element verschoben werden.
Dies ist offensichtlich ebenfalls keine effiziente Lösung (auch wenn sich der Schaden in
unserem Beispiel in Grenzen hält). Als Ausweg bietet sich das Konzept der Verkettung
an. Dazu fügen wir unseren Datensätzen p[i] ein neues Feld next hinzu, das den Index
des (zeitlichen) Nachfolgers enthält. Wir interpretieren next als Zeiger zum nächsten
Element in der Kette. Ferner kommen wir überein, den Zeiger 0 als das Ende der Kette
zu deuten. Schliesslich benötigen wir eine Variable first, welche auf das erste Glied
zeigt.
Real werden die Teilnehmer nun hintereinander in den Bereich eingefügt. Der Index /
gebe jeweils die nächste freie Position an. Zusätzlich muss jedoch jedes Element richtig
in die Kette eingegliedert werden. Nehmen wir an, die Daten des neuen Teilnehmers
seien in den Variablen newname und newtime festgehalten. Dann muss unser Programm
die Kette solange durchlaufen, bis ein Glied x erreicht ist, dessen Zeit grösser als

newtime ist. Wir lassen den Suchprozess ein Glied vorausblicken und nennen das
jeweils untersuchte Glied cur. Als Schlussbedingung des Durchlaufprozesses ergibt sich
somit jc p[cur].next. Das neue Element p[i] wird dann unmittelbarer Vorgänger von
x. Durch Anpassung der «exf-Komponenten an der Aufbruchstelle wird die richtige
Verkettung wie folgt hergestellt: p[i] zeigt zu x und p[cur] zeigt zu p[i].
Unser Einfügealgorithmus stellt sich somit wie folgt dar:

{lies newname and newtime ein}
p[i].name:=newname; p[i]. time: newtime;
cur :=first;
DOp[p[cur].next].time < newtime -> cur:=p[cur].nextOD;
p[i].next :=p[cur].next; p[cur].next := i,
/:=/ + 1

Ist das Programm korrekt? Es ist im allgemeinen empfehlenswert, Extremfalle zu
betrachten. Hier gibt es zwei. Sie entsprechen den Situationen, in denen das neue Element

zum Kopf bzw. zum Abschluss der Kette wird. Der erste Fall wird sicher nicht richtig
behandelt, da das Element first überhaupt nicht ins Spiel kommt. Das Programm
versagt jedoch auch im zweiten Fall. Da die next -Komponente des letzten Gliedes 0 ist,
wird die Wache Undefiniert.

42 El Math Vol 40, 1985

Wir könnten versuchen, den Algorithmus zu korrigieren. Es ist jedoch - wie im allerersten

Beispiel des letzten Abschnittes - günstiger, die Datenstruktur anzupassen. Wir
führen dazu einen definitiv letzten «Pseudoteilnehmer» ein. Ausserdem, verknüpfen
wir diesen Pseudoteilnehmer mit dem momentan ersten Glied in der Kette, schhessen
also die Kette zu einem Ring. Das Element p[l] stellt eine Art Verankerung des Ringes
dar. Die Notwendigkeit des Zeigers first entfällt somit.
Der Initialisierungsteil unseres Programmes wird so zu

next nexn name time next nexn
11

10
9
8

7

6
5

4
3

2

1

4 2 E 126
7 1 U 123

2 3 K 124

8 7 H 121

3 4 0 128

5 8 R 127

1 5 P 129

9 6 G 125

6 9 zz 9999

11 1

10
9
8
7
6
5
4 cur i—

3

2

l H

10

10
u

H

zz

Urne

126
123
124
121
128
127
129
125

9999

Anker Anker

Figur 3 Einfugen eines neuen Elementes in die Zeit- und Namensringkette

p[l].next:=l; p[l].time:=oo.

Wenden wir uns nun dem zweiten Befehl «Stelle die aktuelle Rangliste dar» zu. Seine

Ausführung besteht im wesentlichen im Durchlaufen der Kette:

cur:=p[l].next;
DOp[cur].time # oo {schreibe p[cur].name aus}cur:=p[cur].nextOD.

Die Methode des Verkettens hat sich als äusserst geeignet herausgestellt, um den Konflikt

zwischen der Reihenfolge des Einfügens der Teilnehmer und der Reihenfolge der
erreichten Zeiten aufzulösen. Sie ist praktisch unentbehrlich, falls eine Datenbank
gleichzeitig nach verschiedenen Kriterien geordnet werden muss.
In unserem Fall kommt eine zusätzliche Ordnung nach den Namen der Teilnehmer in
Frage. Dazu müssen wir lediglich den Datensätzen eine zweite Zeigerkomponente, z. B.

nexn, hinzufügen. Wir erklären den Pseudoteilnehmer auch lexikographisch zum letzten

und schhessen die Namenskette ebenfalls zu einem Ring. Der Einfügealgorithmus
muss selbstverständlich um eine entsprechende Anweisungsfolge zur Eingliederung
eines neuen Teilnehmers in die Namenskette erweitert werden. Dazu kann der zeitliche
Eingliederungsalgorithmus übernommen werden, wobei next durch nexn ersetzt werden
muss. p[l].name muss mit einem «unendlich grossen Namen» initialisiert werden.
Die Darstellungsprozedur für die Namenskette ist dieselbe wie diejenige für die
Zeitkette, wo wieder next durch nexn ersetzt ist. Es sei dem Leser empfohlen, eine Prozedur
zu entwickeln, die einen (disqualifizierten) Fahrer aus der Rangliste (nicht aber aus der
Namenskette) nimmt.

El. Math., Vol. 40, 1985 43

Figur 3 zeigt die Datenstruktur, die wir gerade besprochen haben. Die zwei Ringketten
variieren laufend ihre Grösse und Ordnungsrelation. Man spricht deshalb von einer
dynamischen Struktur.
Die nächste Illustration, die unsere Beispielreihe beschliesst, geht noch einen Schritt
weiter. Die Textverarbeitung ist zu einem wichtigen Anwendungsbereich in der
nichtnumerischen Informatik geworden. Eine logisch zusammenhängende Folge von
Datenelementen heisst File. Ein Text ist also nichts anderes als ein File von Zeichen. Ein
Texteditor ist ein Programm, das einen Text am Bildschirm zeigen und Befehle zu
dessen Bearbeitung ausführen kann.
Beschränken wir uns auf die beiden Befehle «Füge einen Textteil ein» und «Lösche
einen Textteil». Die Quelle des einzufügenden Textes kann die Tastatur oder ein
bestehendes Textfile sein. Nehmen wir zunächst an, dass diese Befehle direkt auf den Text,
d.h. auf die entsprechende Sequenz von Zeichen wirken. Dann kehrt unser früheres
Dilemma wieder, welches seine Ursache in der Diskrepanz zwischen der logischen
Reihenfolge und der Reihenfolge der Eingabe hat. Tatsächlich erfordert das Einfügen oder
Löschen einer Folge von Zeichen im allgemeinen die Bewegung eines möglicherweise

grossen Teiles des ursprünglichen Textes.
Das Verkettungskonzept erweist sich auch hier als Ausweg. Unsere Datenstruktur
widerspiegelt die Interpretation des zu verarbeitenden Textes als eine Folge von Textstük-
ken. Ein Textstück ist eine Sequenz von logisch aufeinanderfolgenden Zeichen, die auf
demselben File gespeichert sind. Wir ordnen jedem Textstück einen Beschreibungsblock
zu. Dieser gibt das entsprechende Textfile, die Anfangsposition innerhalb des Files und
die Länge (in Anzahl Zeichen) des Textstückes an. Da der bearbeitete Text als Kette
von Beschreibungsblöcken dargestellt wird, beziehen wir zusätzlich einen Zeiger zu
seinem Nachfolger mit ein.
Die Basis unserer Datenstruktur ist somit ein Bereich d[l], d[2], d[n] von Datensätzen

d[i] mit Komponenten d[i].file, d[i].pos, d[i].len and d[i].next. Anfänglich besteht
der zu bearbeitende Text aus einem einzigen Textstück. Figur 4 zeigt die Entwicklung
der Kette während des Verarbeitungsprozesses. Wir bemerken, dass im Gegensatz zum
vorigen Beispiel (abgesehen vom Löschen eines disqualifizierten Fahrers), die Kette
nun je nach Aktivität wachsen oder schrumpfen kann.
Wir führen deshalb ein Reservoir von momentan freien Datenblöcken ein. Am einfachsten

ist dieses Reservoir ebenfalls als Kette organisiert. Die Variable free möge zum
Kopf dieser Kette zeigen, welche folgendermassen zu initialisieren ist:

free:=/; /:=/;
DOi # n -> d[i].next:=/ + / OD;
next[n]: 0

Die Prozeduren get(i) and return(i), um einen Datenblock (mit Index /) aus dem Reservoir

zu holen bzw. an das Reservoir zurückzugeben, sind zueinander invers:

get(i): IF free # 0 -+ i:=free;free:=dp].next FI
return(i): dp],next :=free; free:=/

Als abschliessendes Programmbeispiel arbeiten wir einen Algorithmus aus, der einen
Textteil löscht. Dieser Teil sei gekennzeichnet durch seine Anfangsposition A und seine

44 El. Math., Vol. 40, 1985

Länge L. Wir nehmen an, dass A > 0 und A + L < totale Länge des Textes. Dies ist in
der Praxis garantiert, falls das erste und das letzte Zeichen des Textes als Sentinel
(Textanfang und Textende) deklariert werden. Die Variable first zeige zum ersten
Textstück.

B.—A + L; sum:=0; a:— first;{sum < A}
DOsum + d[a].len < A -? sum:=sum + d[a].len;a:=d[a].next OD;
{sum < A < sum 4- d[a].len}
get(b); d[b].next:=d[a].next; d[a].next:=6;
d[b].len:=sum 4- d[a].len - A ;d[a].len:=_4 - sum{ > 0};
d[b].file:=d[a].file; d[b].pos:=d[a].pos + d[a].len;
{sum < B und b d[a].next}
DOsum 4- d[b].len < B -»

sum:=sum + d[b].len;d[a].next:=d[b].next; return(b); b :=d[a].next
OD;
{sum < B < sum + d[b].len und b d[a].next}
d[b].len:=sum + d[b].len - B { > 0};
d[b].pos: d[b].pos + B - sum;

Ein bemerkenswertes Detail dieses Algorithmus ist die Tatsache, dass er keine
Textstücke der Länge 0 erzeugt. Das erste Textstück p[a], das in die Löschoperation einbezogen

ist, wird (zwischen den beiden Repetitionen) explizit in zwei Stücke p[a] und p[b]
aufgespalten. Daher ist der Algorithmus nicht optimal, wenn der zu löschende Teil
nicht in einem einzigen Textstück enthalten ist.

Rückblick

Wir haben gesehen, dass Computer Universalgeräte sind, die Daten der verschiedensten

Art auf verschiedenste Weise verarbeiten können. Ihre Universalität liegt im Konzept

der Software oder Programme begründet. Die Entwicklung korrekter und effizienter

Programme ist eine hochgradig mathematische Angelegenheit, selbst dann, wenn
die Anwendung nicht-numerischer Art ist. Programmiersprachen und -techniken von
grosser Allgemeinheit sind entwickelt worden. Programmiermethoden erleichtern die
abstrakte Formulierung von dynamischen Abläufen als statische Texte. Ihre modernen
Vertreter unterstützen den Software-Ingenieur im Entwurf von möglicherweise grossen
Programmsystemen.
Obwohl die Programmierung eine zentrale Disziplin der Informatik ist, ist sie nicht die

alleinige. Die Konzipierung von Datenbanken und von Hardware-Architekturen für
Computer-Systeme sind weitere Eckpfeiler. Beide Gebiete haben in letzter Zeit stark an
Bedeutung gewonnen: das erste dank der Erschliessung neuer Anwendungsbereiche
(z.B. Datenbanken von geometrischen Objekten), das zweite dank dem ungeheuren
Fortschritt der elektronischen Technologie (VLSI).

El. Math., Vol. 40, 1985 45

a) H d h

Lösche Text zwischen den Markierungen

b) dl d2

Füge Text von der Tastatur tas an der markierten Stelle ein

c) dll d3 dl2 d2

Kopiere Text von Textfile f an die markierte Position

d) dll d3 d!2 d21 d4 d22* *

Lösche Text zwischen den Markierungen

e) dlll > d221

ffl4fi w__ai

Figur 4. Entwicklung der Text-Beschreibungskette im Laufe der Verarbeitung.

Es ist ein interessantes Faktum, dass Computer in allen diesen Gebieten nicht nur
Gegenstand, sondern auch Werkzeug sind. Damit hat sich der Kreis geschlossen.

J. Gutknecht, Institut für Informatik, ETH-Zürich

LITERATURVERZEICHNIS

1 K. Jensen and N. Wirth: Pascal User Manual and Report. Springer Verlag, 1975.

2 N. Wirth: Programmierung in Modula-2. Springer Verlag, 1982.

3 The Ada Programming Language, ANSI/MIL-STD-1815A, Amer. Nat. Std. Inst., 1983.

4 E.W. Dijkstra: A Discipline of Programming. Prentice Hall, 1976.

5 D. Gries: The Science of Programming. Springer Verlag, 1981.

6 C.A.R. Hoare: Quicksort. Comp. Journal 5, No. 1, 1962, 10-15.

1985 Birkhauser Verlag, Basel 0013-6018/85/060038-08$1.50 + 0.20/0

	Elementare Prinzipien der Informatik

