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Von Polyedern im ganzzahligen Gitter

Einleitung

Ein Polyeder, dessen Ecken Punkte des ganzzahhgen Gitters sind, wird im folgenden
Z3-Polyeder genannt Punkte (und gleichzeitig deren Ortsvektoren) werden mit grossen
Buchstaben bezeichnet und die Koordinaten mit entsprechenden und indizierten kleinen

Buchstaben
Auf der Suche nach einer Darstellung von Z3-Wurfeln und von regulären Z3-Tetra-
edern (wobei angenommen werden kann, dass sich eine Ecke im Ursprung O befindet),
stosst man auf zwei Erweiterungsprobleme Es zeigt sich namhch, dass nicht jedes Z3-

Quadrat zu einem Z3-Wurfel ausgebaut werden kann, wie die Punkte O, (1/5/0),

(- 5/1/0) und (-4/6/0) veranschaulichen Ebensowenig lasst sich jedes gleichseitige
Z3-Dreieck zu einem regulären Z3-Tetraeder erweitern, wie etwa die Punkte O, (3/15/0)
und (— 1/8/13) zeigen Wir untersuchen, wann diese Erweiterungen möglich sind, und
finden damit notwendige Bedingungen fur die Existenz von Z3-Wurfein und von
regulären Z3-Tetraedern Die Losung des Quadratproblems fuhrt zur Frage, ob jede Z3-

Strecke mit ganzzahhger Lange Kante eines Z3-Wurfels ist, d h ob jedes pythagoreische

Quadrupel a2 + b2 + c2 d2(a,b,c,deZ) zu einem Kantenvektor (a/b/c) eines Z3-

Wurfels fuhrt, wie es fur c 0, d h fur ein pythagoreisches Tripel, leicht einsichtig ist
Wir beantworten diese Frage durch die Angabe der Drehung, welche ein gegebenes
Dreibein von pythagoreischen Quadrupeln aus einem dazu kongruenten Koordinaten-
Dreibein entstehen lasst, und gewinnen damit eine Möglichkeit, alle Z3-Wurfel explizit
zu beschreiben
Die Flachendiagonalen eines Z3-Wurfeis bilden die Kanten von zwei regulären Z3-Te-

traedern Wir zeigen, dass auf diese Weise alle regulären Z3-Tetraeder erfasst werden
Die oben erwähnte explizite Beschreibung der Z3-Würfel beinhaltet damit auch die

Beschreibung aller regulären Z3-Tetraeder
1 Wir beginnen unsere Betrachtung mit einem Z3-Quadrat mit den Ecken 0,A,B und

A+B Fur seine Seitenlange s gilt die Beziehung s2 A2, das heisst, s2 ist eine natürliche

Zahl Erweitert man das Quadrat zu einem Würfel, so gilt fur die Wurfelecke C
«uber» O

C - (/lx B) oder C - - (A x B) (11)
s s

Liegt C in Q3, so folgt aus C + 0, dass s eine rationale Zahl sein muss Da aber s2 in N
zu finden ist, muss s selbst eine natürliche Zahl sein
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Um herauszufinden, ob die Ganzzahligkeit von s auch eine hinreichende Bedingung für
die Existenz eines Z3-Würfels ist, betrachten wir die orthonormierte Matrix, deren Zei-

A B C
len von den Koordinaten der Punkte —, — und — gebildet werden. Da auch die Kolon-

s s s

nen dieser Matrix ein orthonormiertes Dreibein bilden, gilt für ie {1,2,3}

a2 + b2 + c2 s2. (1.2)

Ist nun s eine ganze Zahl, so liegt C nach (1.1) sicher in Q3. (1.2) bedingt zusätzlich,
dass c] für jeden Wert von / eine ganze Zahl ist. C liegt daher in Z3. Da die restlichen
Ecken des Würfels in A + C, B + C und A + B + C zu finden sind, gilt somit

Satz 1. Ein 72-Quadrat lässt sich genau dann zu einem 72-Würfel erweitern, wenn die

Quadratseite eine ganzzahlige Länge hat.

Dieser Satz bedingt, dass die Koordinaten von _4, B respektive C jedes Z3-Würfels
zusammen mit s ein pythagoreisches Quadrupel bilden. Alle diese Quadrupel sind
bekannt (vgl. [1] und [2]): mit Hilfe der ganzzahligen Parameter m,n,p und q lässt sich

etwa A (bis auf eine Permutation der Koordinaten) darstellen als (m2 + q2 — (n2 + p2)/
2(mn — pq)/2(mp + nq)), wobei s m2 + n2 + p2 + q2. Tatsächlich lässt sich sogar ein

gleichseitiges orthogonales Z3-Dreibein mit Kante OA konstruieren.
Wir beschreiben eine Drehung um die gerichtete Gerade g durch O mit Hilfe von
Quaternionen. Ist E der Richtungsvektor von g (mit Länge 1) und w der Drehwinkel,
so lässt sich diese Abbildung P-^P' darstellen als P' D( —w)-P-D(w) mit den

w w
Quaternionen D(w) cos — + sin — • E und P O + P, P in R3.

Das Koordinatendreibein mit Kantenlänge s wird in ein orthogonales Z3-Dreibein mit
Kante OA übergeführt, wenn man es der Drehung unterwirft, welche durch folgende
Daten gegeben ist:

w q w m2 + n2+p2 __
1

xcos- —t-, sin- / E i (m/n/p).
2 yjs 2 yj s ^/m2 + n2 + pl

In der Tat gewinnt man so

Satz 2. Die Nachbarecken von O jedes Z3- Würfels lassen sich mit Hilfe der ganzzahligen
Parameter m,n,p und q wie folgt darstellen:

A=(m2 + q2- (n2 + p2)/2(mn -pq)/2(mp + nq)),
B (2(mn + pq)/n2 + q2 - (m2 + p2)/2(np - mq)),
C (2(mp - nq)/2(mq + np)/p2 + q2 - (m2 + n2)).
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2. Wir führen unsere Betrachtungen mit einem gleichseitigen Z3-Dreieck OXY der
Kantenlänge d fort. Es gilt also X2 d2 Y2 und X- Y \d2. Da X und 7 in Z3

liegen, folgt:

d2 Hegt in 2 N. (2.1)

Baut man OXY zu einem regulären Tetraeder aus, so gilt für die vierte Ecke:

z=~r + if(xxY) oder z^^I-2-^{XxY)- (2-2)

Liegt diese vierte Ecke in Q3, so muss —j- eine rationale Zahl sein. Nach (2.1) ist aber

ihr Quadrat eine ganze Zahl. Somit finden wir die Darstellung

d Sy/2, wobei seN. (2.3)

Wiederum fragt man sich, ob diese Bedingung auch hinreichend ist. Mit X (1/1/0)
und Y (1/0/1) findet man ein reguläres Tetraeder mit Z \ (4/ - 1/ - 1), aber auch
mit Z* (0/1/1). Um einzusehen, ob dieses Beispiel typischen Charakter hat, fassen

wir das Tetraeder OXYZ mit Kantenlänge d Sy/2 als Flächendiagonalen-Tetraeder
eines Würfels mit Kantenlänge s auf. Für die zu O benachbarten Würfelecken A, B und
C findet man zum Beispiel

Y+Z-X X+Z-Y X+Y-ZA= —, *=—y—> j (2.4)

Dies ermöglicht uns, wiederum die Kolonnen der orthonormierten Matrix zu betrachten,

die von A, B und C erzeugt wird. Setzt man die Darstellungen (2.4) in (1.2) ein, so

erhält man

3z,(z, ~ 2s) 4s2 - 3x2 - 3y2 + 2xty„ (2.5)

wobei S der Schwerpunkt des Dreiecks OXY ist. Erweitert man (2.5) mit 3, so gewinnt
man durch quadratisches Ergänzen

(3 z, -x- y)2 4(3s2 - 2x] - ly\ + 2xj). (2.6)

Ist nun s eine natürliche Zahl, so sind 3Z und 3Z* nach (2.2) beide in Q3. Da X und Y

in Z3 liegen, bedingt (2.6), dass (3zt- xt- yf eine ganze Zahl ist. Beide Aussagen

zusammen machen klar, dass 3 z, für jeden Wert von / eine ganze Zahl sein muss, das

heisst, 3Z liegt in Z3. Da S in der Mitte von Z und Z* liegt und 3S X + Y ist, so

folgt aus Z + Z* 2S zusammenfassend:

3 Z und 3 Z* liegen in Z3. (2.7)
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Weiter ist (3Z)2 (3Z*)2 ISs2 und (3S)2 (X+ Y)2 6s2. Die Punkte 3Z, 3Z*
und 3S genügen daher den Voraussetzungen des folgenden Hilfssatzes:

Lemma. Ist H in Z3 und ist H2 eine Dreierzahl, so sind entweder alle Koordinaten von H
Dreierzahlen oder überhaupt keine.

Sind nämlich hx und h2 Dreierzahlen, so gilt dies auch für h\, also auch für h3 selbst, ist
doch h3 eine ganze Zahl.
Wäre nur hx eine Dreierzahl, so wären h\ und h\ beide in 3Z + 1 und H2 läge damit in
3Z4-2.
Wir benützen dieses Lemma bei der Diskussion von (2.5), indem wir beachten, dass die
betrachteten Fälle simultan für alle Koordinaten auftreten.
Ist S in Z3, so folgt aus (2.5) und (2.7), dass 3 z] eine ganze Zahl sein muss. Für den
Punkt P 3Z ist damit sogar \p] eine ganze Zahl, das heisst, P liegt in (3Z)3. Damit
ist aber Z selbst in Z3 und ebenso dann Z*( 2S — Z).
Liegt S nicht in Z3, dann (wegen 3SeZ3) auch nicht 2S, und es gibt zwei Möglichkeiten:

— Ist Z in Z3, so liegt Z*(= 2S - Z) nicht in Z3.

— Ist Z nicht in Z3, so müssen die Koordinaten von P alle teilerfremd sein zu 3. (2.5)
lässt sich umschreiben zu

U(A-6^)eZ.

p
Da P in Z3 liegt, nicht aber —, so muss \ (P - 65) in Z3 liegen, also auch 2S - Z,

was aber Z* ist.
Zusammenfassend haben wir damit

Satz 3. Ein gleichseitiges 7?-Dreieck lässt sich genau dann zu einem regulären Tl-Tetraeder

ausbauen, wenn seine Kantenlänge von der Form Sy/2 ist, wobei seN. Ist dabei der

Schwerpunkt S des Dreiecks in Z3, so sind beide Erweiterungen Z7*-Tetraeder. Liegt S
nicht in Z3, so ist nur eine Erweiterung ein Z3-Polyeder. Die andere Erweiterung wird dies

erst, wenn sie von O aus mit dem Faktor 3 gestreckt wird.

Abschliessend stellt sich auch hier die Frage, ob jede Z3-Strecke mit einer Länge in
y/2 N in ein reguläres Z3-Tetraeder eingebettet werden kann. Versucht man eine
Antwort im Sinne der Herleitung von Satz 2 zu finden, so stösst man auf (wie uns scheint)
heikle zahlentheoretische Probleme.
Um doch noch zu einer Aufzählung der regulären Z3-Tetraeder zu gelangen, kann man
prüfen, ob der Ausbau (2.4) aus jedem regulären Z3-Tetraeder einen Z3-Würfel entstehen

lässt. Dabei genügt es zu zeigen, dass die Würfelecke D \ (X + Y + Z) in Z3

liegt, gilt doch/. =D-X,B D- Fund C D-Z.
Da nach (2.1) d2 eine gerade Zahl ist, können die Punkte X, Y und Z nur in den

Teilmengen G\ G x U2, U x G x U und U2 x G von Z3 liegen, wobei G die Menge der
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geraden Zahlen und U die Menge der ungeraden Zahlen bezeichnen. Diese vier
Teilmengen bilden bezüglich der komponentenweisen Paritätsaddition eine Kleinsche
Vierergruppe V.
Liegt etwa X in G3, so ist d2 in 4 N, also müssen auch Y und Z in G3 liegen. Liegt
keiner der Punkte in G3, so dürfen keine zwei Punkte im gleichen Element von V sein,
ist doch (X -Y)2 (X-Z)2 (Y- Z)2 d2 und d2e4 N + 2.

Somit ist in beiden Fällen X + Y + Z in G3:

Satz 4. Ein Flächendiagonalen-Tetraeder eines Würfels kann nur dann ein Z*-Polyeder
sein, wenn der Würfel selbst ein Z*-Polyeder ist.

Mit Hilfe der Sätze 4 und 2 lassen sich somit auch alle regulären Z3-Tetraeder aufzählen.

Abschliessend möchten wir H. Debrunner für wertvolle Hinweise danken.
H. Giger, Bern, und H. Hösli, Ittigen
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