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dem Ziel ndher zu kommen, bestimmte praktisch den Repetitionsschritt, ausser (im
bindren Suchen) die Definition von m. Tatsdchlich bleibt der Algorithmus korrekt und
endet nach einer endlichen Zahl von Schritten, wenn nur zugesichert ist, dass im Falle
j =i die Beziehungen m > i und m < j garantiert sind.

Zielgerichtetes Vorgehen wird sich auch im nichsten Beispiel auszahlen. Es stammt
von D. Gries [5] und heisst der Wohlfahrtsschwindler. Im Gegensatz zu den bisherigen
Suchproblemen, ist das Suchargument hier nicht explizit bekannt. Drei geordnete Li-
sten a[0], a[1], ..., a[n — 1], b[0], b[1], ..., b[m — 1] und ¢[0], c[1], ..., c[/ — 1] sind nun im
Spiel. Die erste enthilt die Namen aller Studenten der New York University, die zweite
die Namen aller Angestellten von IBM New York und die dritte die Namen aller
Wohlfahrtsbeziiger von New York. Die Aufgabe besteht darin, ein Programm zu
schreiben, welches eine Person sucht, die auf allen drei Listen registriert ist.

Die Listenelemente sind nun Ketten von Zeichen statt Zahlen. Wir nehmen an, dass sie
lexikographisch geordnet sind. Die Schlussbedingung muss von der Form
a[i] = b[j] = c[k] fiir geeignete Indexwerte i, j und k sein. Die Wachen definieren wir
nach einem Schema, welches sich in einem friiheren Beispiel bewdhrt hat. Ausserdem
fithren wir drei Sentinels a[n], b[m] und c[l] ein:

a[n},b[m]l,c[l],i,j,k := o0, 00, 0,0,0,0;
DOali] > b[j]—i:=j +1

|blj]1> clk]l=k:=k +1

lclk]> ali]—»i:=i+1
OD

Die Schlussbedingung afi] < b[j] < c[k] < a[i] liefert das Resultat. Die Invariante ist hier
leer, falls man nicht die eher technische Bedingung 0 <i<#» und 0<j<m und
0 <k <! als Invariante betrachtet. Der Algorithmus terminiert nach hdochstens
n + m + | Repetitionsschriften, da bei jedem Schritt genau ein Index erhéht wird.
(Fortsetzung im néchsten Heft)

J. Gutknecht, Institut fiir Informatik, ETH Ziirich
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Kleine Mitteilungen

Uber einen Wert, der zwischen dem geometrischen und dem arithmetischen Mittel
zweier Zahlen liegt

In dieser kleinen Mitteilung soll gezeigt werden, dass fiir positive reelle Zahlen a und b
(mit a < b) der Wert (e/a)*(b/e)’ zwischen der (b — a)-ten Potenz des geometrischen
und des arithmetischen Mittels von a und b liegt. (Mit e wird wie liblich die Eulersche
Zahl bezeichnet.)
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Satz. Fiir b > a > 0 gilt:

a b b _|__b b—a
o)

Beweis: Sei a > 0. Wir definieren g: (0, 0)—R und 4: (0, c0)—R durch

x i +
g(x):=log-§; +(a—x) 1+10ga 2x],

L.

X

1
h(x):=log—% +a@a—x)|1+ Elog(ax)],

L

und zeigen, dass
gx)<0<h(x) fir x>a; (2)

setzt man x = b in (2), so folgt (1).
Da g(a) = h(a) =0, ist (2) eine Folgerung von

g'x)<0<h(x) fir x>a. 3)

Und (3) lasst sich auf die elementare Ungleichung

!
— < 1+ <t fi >0
T log(1+¢)<t fir ¢

zuriickfiihren, denn

g’(x)=log<1+ x—a) _ 2

x ta x +a

und
h(x)= ! 1 al + -7
(x 3 oga .

X

Bemerkung: Es lisst sich zeigen, dass (1) zu den beiden Doppelungleichungen:

1\ c+1 1\*! c
+ - <(1+ =] [— (c>0), 4
(1 c) +1<e ( c) c+1 (e>0) @
c+-

2

(I+d)y?<e (1 +d)*i< (1 + 6—21>d d>0) (5)

dquivalent ist.
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Bei (4) handelt es sich um eine Verschiarfung der bekannten Beziehung:

l n 1 n+1
(l+—)<e<(l+—) , neN.
n n

Wir wissen bereits, dass sich aus (1) sowohl (4) als auch (5) ergibt; denn, wenn wir
b=c+1und a=c(c >0)in (1) setzen, so folgt (4); und wenn wir in (1) den Wert b
durch d + 1(d > 0) sowie a durch 1 ersetzen, dann erhalten wir (5).

Nun zeigen wir, dass einerseits (1) aus (5) und andererseits (5) aus (4) folgt.

Dazu setzen wir

a+b\-s
2 ¥
F(a,b):= (g) (l_»)b (@ +0)
a e
und
(b—a)2
G (@,b):= ) (@ +0);

dann koénnen wir die Ungleichungen (1), (4) und (5) wie folgt schreiben:

G(ab)<1<F(ab) (b>a>0), 1)
[G(l,l+i—)]c<l<[F(l,l+%)]c (> 0), @)
G1+d)<1<F(,1+d) (d>0). 5)

Ein einfacher Beweis zeigt die Giiltigkeit von

F(a,b) = —F(l,—z-)]a (@ +0)

G(a,b) = _G(l,g)]a (@ +0).

b 1
Wenn wir d = P 1(b > a > 0) in (5) setzen, so erhalten wir (1); und ¢ = y (d>0)in
(4) liefert uns (5).

und

Horst Alzer, Wuppertal
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