
Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 40 (1985)

Heft: 1

Artikel: Elementare Prinzipien der Informatik

Autor: Gutknecht, J.

DOI: https://doi.org/10.5169/seals-38826

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-38826
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

El. Math., Vol. 40, 1985

Elementare Prinzipien der Informatik

Situation

Die Informatik befindet sich zurzeit in einer bemerkenswerten Lage. Während ihre
grundsätzliche Bedeutung unumstritten ist, bestehen über ihren eigentlichen Inhalt zum
Teil beträchtliche Meinungsverschiedenheiten. Diese Situation tritt besonders ausgeprägt

im Ausbildungsbereich zutage. Während das Fach Informatik durchwegs
Eingang in die Lehrpläne der höheren Schulen findet, divergieren die Ansichten über Lehrziele

und Lehrinhalte radikal.
Indessen haben sich zwei Grund-Richtungen herauskristallisiert. Die eine verficht die
Stellung der Informatik als Hilfswissenschaft der Mathematik, die andere stellt sie in
engen Zusammenhang mit kommerziellen und wirtschaftlichen Anwendungen. Es ist
der Zweck dieses Aufsatzes zu zeigen, dass keine dieser Ansichten den Kern der Sache

trifft.
Zweifellos ist die Informatik aus der Mathematik herausgewachsen. Der Begriff
Computer für das wichtigste Instrument der Informatik ist dafür Zeuge. Computer wurden
ursprünglich erdacht, um die Mathematiker von zeitaufwendigen, aber im Prinzip
uninteressanten Berechnungen zu entlasten.
Andererseits dominieren heute die nicht-numerischen Computeranwendungen klar.
Weshalb war eine derart weitgehende Verbreiterung des Anwendungsspektrums
überhaupt möglich? Hauptsächlich dank dem genial einfachen, aber universellen
Grundkonzept der «Rechenmaschinen». Tatsächlich sind Computer eher Universalgeräte als

Maschinen im herkömmlichen Sinne. Gewöhnliche Maschinen sind a priori auf eine

spezielle Anwendung zugeschnitten. Computer hingegen werden dazu entworfen,
irgendwelche Daten in irgendeinem Sinne zu verarbeiten.
Ein zweites Charakteristikum der Computer ist von nicht geringerer Bedeutung für die

Erschliessung neuer Horizonte: ihre Fähigkeit, Daten zu speichern. In vielen Anwendungen

bedeutet Verarbeiten tatsächlich nichts anderes als Speichern und wieder
Hervorholen einer (typischerweise enormen) Menge von Informationen.

Computer als Universalgeräte

Wenden wir uns nun den Hauptkomponenten eines Computers heute üblicher Bauart
zu. Es sind im wesentlichen zwei: der sogenannte Prozessor und der Speicher. Der
Prozessor beherrscht eine wohldefinierte Menge von elementaren Instruktionen. Der
Speicher ist in eine Folge von elementaren Zellen gegliedert und dient dem Computer
als Gedächtnis. Sowohl Prozessor als auch Speicher sind in Form von elektronischen

Komponenten und Schaltungen realisiert, sie gehören zur Hardware.
Die Speicherzellen können durch die Ausführung von Instruktionen inspiziert und
verändert werden. In einem gewissen Sinne übernehmen sie die Rolle von Variablen.
Entscheidend ist, dass die Daten innerhalb einer Speicherzelle auf sehr verschiedene Art
und Weise interpretiert werden können. Die Daten sind als Folge von Binärziffern

12 El. Math., Vol. 40, 1985

(bits) dargestellt und müssen dem jeweiligen Kontext entsprechend decodiert werden.
Beispielsweise interpretieren arithmetische Instruktionen den Inhalt der betreffenden
Speicherzellen als Zahlen.
Das zweite Beispiel, wie Daten interpretiert werden können, ist unter dem Namen von
Neumannsches Prinzip bekannt. Es stammt von John von Neumann, einem der
Pioniere der Computerwissenschaften. Dieses Prinzip hat der Kombination von Prozessor
und Speicher letztlich zum Durchbruch verholfen. Ein Programm P ist eine Folge von
Instruktionen, welche auf einer Menge von Daten operiert. Wenn jetzt jeder Instruktion

ein Code zugeordnet ist, kann das Programm selbst, d. h. die Folge der
Instruktionscodes, als Daten im Speicher gespeichert werden.
Von diesem Gesichtspunkt aus ist das Ausführen eines Programmes P ein universeller
Prozess. Das zugehörige Universalprogramm U kann als eine ständige Wiederholung
der Sequenz

Decodiere nächste Instruktion; Führe die Instruktion aus

formuliert werden.
Die Hardware eines Prozessors hängt offensichtlich vom Satz der elementaren Instruktionen

und damit vom Universalprogramm U ab. Tatsächlich ist die Ausführung von
U normalerweise von der Hardware kontrolliert. Bemerkenswert ist hingegen, dass die
Hardware von nichts anderem abhängt, im besonderen nicht vom Programm P. P
spielt die Rolle eines Parameters für U und kann daher durch irgendein Programm P'
ersetzt werden, ohne dass eine Anpassung der Hardware nötig wäre. Programme wie P
und F werden daher als Software bezeichnet. Es liegt auf der Hand, dass die Universalität

der Computer zum grossen Teil dem Softwarekonzept zu verdanken ist.
Greifen wir ein scheinbares Detail des Universalprogrammes auf. Was bedeutet nächste

Instruktion? Normalerweise ist es die Instruktion in der nächsten Speicherzelle. Es ist
jedoch ebensogut möglich, ja sogar unvermeidlich, dass diese Regel gelegentlich
durchbrochen werden muss.
Nehmen wir zum Beispiel an, dass die nächste Instruktion vom momentanen Zustand
des Programmes abhängt. In diesem Fall muss der Prozessor möglicherweise an eine

neue Stelle «springen» und dort die lineare Ausführung wieder aufnehmen. Ein anderes

Beispiel ist das Universalprogramm selbst. Wenn immer eine Instruktion ausgeführt
worden ist, muss die Decodierung der nächsten in Angriff genommen werden, d. h. der
Prozessor muss zum Beginn der «Universalschleife» zurückspringen.
Wir werden sehen, dass Alternativen und Repetitionen wesentliche Bausteine eines

Programmes sind. Daher sind Sprungbefehle in der Menge der elementaren Instruktionen
unentbehrlich. Sie bieten dem verarbeiteten Programm die bemerkenswerte Möglichkeit,

seinen Verarbeiter zu dirigieren.
Externe Geräte vervollständigen einen Computer zu einem Computersystem. Wir können

zwei Klassen unterscheiden: Geräte, welche die Kommunikation mit dem Computer
ermöglichen (meistens eine Tastatur, über welche Daten eingegeben, und ein
Bildschirm, auf den Meldungen und Resultate geschrieben werden können) und Geräte, die
als Massenspeicher dienen (z. B. magnetisierbare Plattenspeicher). Die externen Geräte
sind gewöhnlich direkt mit dem Computerspeicher verbunden. Daher können Daten
direkt in Speicherzellen gelesen bzw. aus Speicherzellen geschrieben werden.

El. Math., Vol. 40, 1985 13

Programmierung

Im vorangehenden Abschnitt haben wir gesehen, dass ein Computer U durch Vorgabe
eines Programmes P auf eine bestimmte Anwendung zugeschnitten werden kann, ja
sogar zugeschnitten werden muss. Im Laufe der Zeit stellte sich heraus, dass die Tätigkeit

des Programmierens bestimmten Gesetzen gehorcht und Gedankengänge erfordert,

die weitgehend unabhängig von der speziellen, ins Auge gefassten Anwendung
sind.
Als Folge davon entstanden Regeln, Methoden und Techniken, welche die Wissenschaft

der Programmierung an sich begründeten. Die Programmierung im allgemeinsten

Sinne hat sich geradezu zum Kern der Informationsverarbeitung oder Informatik
entwickelt. Was also ist Programmieren?
Wir haben ein Programm bereits als eine Folge von Befehlen erklärt, die auf eine
bestimmte Menge von Daten wirkt. Natürlich verbindet sich mit dem Begriff
Programm die Vorstellung seiner Ausführung. Tatsächlich läuft Programmieren darauf
hinaus, einen dynamischen Prozess als statischen Text zu formulieren. Die Verhältnisse
werden jedoch noch komplizierter. Im allgemeinen erwartet ein Programm Eingabedaten

oder Parameter, welche seine Ausführung steuern. (Das Universalprogramm U
beispielsweise erwartet ein Programm P als Parameter.)
Deshalb beschreibt ein Programmtext im allgemeinen nicht nur einen, sondern eine

ganze Klasse von Prozessen. Ein Programm als korrekt zu bezeichnen bedeutet
offensichtlich, dass alle diese Prozesse korrekt ablaufen, d. h. (in endlicher Zeit) die korrekten

Resultate erzeugen. Korrekte Programme zu schreiben ist mehr als nur ein edles

Ziel, falls diese Programme zur Steuerung von Flugzeugen oder Atomkraftwerken
vorgesehen sind.
In den meisten Fällen ist das «Auffächern» eines Programmes in alle Prozesse, die es

beschreibt, hoffnungslos kompliziert. Eine vielversprechende Methode zum Beweis der
Korrektheit sind Absicherungen im (statischen) Programmtext selbst. Programmieren
in diesem rigorosen Sinne ist eine hochgradig mathematische Tätigkeit. Interessanterweise

sind die Rollen im Laufe der Zeit vertauscht worden: die Mathematik ist zu
einem Instrument der Informatik geworden.
Bevor wir diese Konzepte an Beispielen illustrieren, wollen wir kurz beim Thema
Programmiernotationen verweilen. Wie wir gesehen haben, muss das Programm P
letztendlich im Computerspeicher als Folge von Binärziffern vorliegen. Als Notation zur
Formulierung von Programmen ist diese Darstellung aber ganz ungeeignet.
Nehmen wir an, dass jeder Elementarinstruktion ein Name zugeordnet sei, der die

Wirkung der Instruktion in abgekürzter Form wiedergibt. Wenn wir überdies voraussetzen,

dass jede Speicherzelle unter einem frei gewählten Namen angesprochen werden
kann, so lassen sich Programme in lesbarer Form als Text schreiben.
Wie aber wird dieser Text in eine Folge von Binärziffern übersetzt? Natürlich gehorcht
der Übersetzungsvorgang wohldefinierten Regeln. Man könnte deshalb ein Programm
C entwickeln, das jeden wohlformulierten Programmtext P übersetzt. Wir nennen ein
solches Programm C Compiler. Die Idee der Compiler hat sich als äusserst fruchtbar
erwiesen.
Sie hat eine Entwicklung eingeleitet, die bis heute nicht zum Abschluss gekommen ist.
Der wohl naheliegendste Schritt in dieser Entwicklung war die Einführung von Pro-

14 El. Math., Vol. 40, 1985

grammiernotationen, die unabhängig von der zugrundeliegenden Maschine sind. Diese

Programmiernotationen, oder Programmiersprachen, wie sie üblicherweise genannt
werden, eröffneten die Möglichkeit der maschinenunabhängigen oder anwendungsorien-
tierten Programmierung. Im Gegensatz dazu zählt der Compiler C für eine solche
Programmiersprache, der inhärent maschinenabhängig ist, zur System-Software.
Die weiteren Schritte in der Entwicklung von Programmiersprachen können am besten
durch «Erhöhung des Abstraktionsniveaus» charakterisiert werden. Das Entscheidende

der Abstraktion ist die Loslösung von unwesentlichen oder sogar störenden
Details. In unserem Zusammenhang bedeutet dies die Möglichkeit, maschinengegebene
Einheiten durch eigene «Moleküle» von verschiedener Art und Komplexität ersetzen

zu können. Wir weisen an dieser Stelle auf eine zentrale Dualität zwischen den Daten
hin, auf welchen die Instruktionen operieren, und den Instruktionen, die mit diesen

Daten arbeiten. Erstere werden zur Datenstruktur, letztere zum algorithmischen Teil
eines Programmes zusammengesetzt.
Die elementaren Speicherzellen sind die «Atome» der Datenstrukturen, die elementaren

Instruktionen die «Atome» der Algorithmen. Während der Abstraktionsprozess
zur Formulierung von Algorithmen sehr früh eingesetzt hat (notwendigerweise, da
keine universelle Menge von elementaren Instruktionen existiert), ist der Einbezug der
Datenstrukturen in diesem Abstraktionsprozess zum grossen Teil das Verdienst der
Sprache Pascal [1]. Im speziellen hat Pascal den Begriff des Typs von Datenelementen
eingeführt. Ein Datentyp beschreibt die Struktur von Dateneinheiten und steckt den
Bereich ihrer möglichen Werte ab. Zahlen und Buchstaben sind Beispiele von Grundtypen,

Listen und Ketten Beispiele von zusammengesetzten Strukturen.
Überdies hat durch Pascal die Methode der strukturierten Programmierung, d.h. die
Methode der sukzessiven Verfeinerung der einzelnen Aktionen eines Prozesses, grössere
Verbreitung gefunden. Damit trat ein grundsätzlich neuer Aspekt der Programmiersprachen

in Erscheinung: die Programmiersprache als Werkzeug zur Konzipierung und
Entwicklung, nicht nur zur Formulierung, von Programmen.
Moderne Sprachen wie Modula-2 [2] oder Ada [3] gehen noch einen Schritt weiter,
indem sie die Entwicklung ganzer Programmsysteme unterstützen. Die Grundidee ist
eine klare Trennung zwischen der funktionalen Definition eines Programmteiles und
den Methoden und Techniken, die bei der Implementierung zur Anwendung gelangen.
In einem grossen Software-Projekt, in welchem mehrere Programmierer mitwirken,
können so die globale Struktur und die Schnittstellen zwischen den einzelnen
Programmteilen zentral und zum vornherein festgelegt werden.

Eine erste Serie von Beispielen

Wir haben vorher gesagt, dass der Programmierung allgemeine Gesetze und Regeln
zugrundeliegen. Diese sowie die auftretenden Schwierigkeiten und Methoden zu deren
Überwindung können wir am besten anhand kurzer, aber typischer Beispiele illustrieren.

Wir führen dazu eine Programmiernotation ein, die auf E. W. Dijkstra [4] zurückgeht.
Zuerst definieren wir ihre «Instruktionen», in der Folge als Anweisungen bezeichnet.
Eine Anweisungsliste ist eine Sequenz von Anweisungen, die durch Strichpunkte ge-

El. Math., Vol. 40, 1985 15

trennt sind. Variablen (eines für den Moment nicht näher spezifierten Typs) werden mit
al9 a2, Ausdrücke mit Ex, E2, Bedingungen mit C„ C2, und Anweisungslisten
mit S„ S2, bezeichnet.

Die leere Anweisung

skip

Die Wertzuweisung

Springe zur nächsten Anweisung

a,, a2, an:= E„ E2, En Weise (gleichzeitig) den Wert von Ex der Variablen ax,
den Wert von En der Variablen an zu

Die Alternative

IFQ-^S,
I c2-+s2

cn^sn
FI

Falls keine der Bedingungen erfüllt ist, Fehlerhalt
sonst wähle irgendeine erfüllte Bedingung C,

und führe die Anweisungsliste S, aus

Die Repetition

doq-s,
I c2-*s2

Solange irgendeine der Bedingungen erfüllt ist,
wähle eine, C„ und führe die Anweisungsliste S, aus

I cn-*sn
OD

Wir bemerken, dass diese Notation weniger harmlos ist, als sie aussieht. Die Tatsache

nämlich, dass innerhalb der IF- und DO-Anweisung selbst wieder Anweisungen oder

sogar Anweisungslisten vorkommen dürfen, hat weitreichende Konsequenzen. Es lassen

sich komplexe Hierarchien von geschachtelten Alternativen und Repetitionen
konstruieren.

Die Bedingungen C, wirken als eine Art Wachen. S, kann nur ausgeführt werden, wenn
die Wache C, passiert wurde. Man nennt deshalb die Liste der C.'s und S,'s oft
bewachte Anweisung.
In unserem ersten Programmierbeispiel wollen wir uns dem Problem zuwenden, eine

rechteckige Fläche der Breite a und Höhe b (a und b natürliche Zahlen) mit möglichst
grossen Quadraten auszulegen.
Nehmen wir an, dass eine der Seiten grösser als die andere sei, z. B. a > b. Dann ist das

ursprüngliche Problem offensichtlich äquivalent damit, die reduzierte Fläche mit den
Seiten a-b und b mit möglichst grossen Quadraten auszulegen (s. Fig. 1). Dieser Schritt
kann wiederholt werden, wobei jedesmal ein kleineres Rechteck entsteht.

16 El. Math., Vol. 40, 1985

a a-b

Figur 1. Auslegen eines Rechteckes mit Quadraten.

Kommt der Prozess des fortgesetzten Reduzierens zu einem natürlichen Ende? Höchstens

dann, wenn keine Seite des Rechtecks grösser als die andere ist, d.h. wenn ein
Quadrat vorliegt. Falls zu Beginn a > 0 und b > 0 ist, muss diese Konstellation
überraschenderweise stets eintreten. Bei jedem Schritt wird nämlich a oder b um eine positive
ganze Zahl reduziert, und zwar unter Invarianz der Bedingung a > 0 und b > 0. (Was
passiert, wenn anfangliche a 0 oder b - 0 ist?) Die Konstruktion muss daher abbrechen.

Nach dem letzten Schritt stimmt das maximale Quadrat mit dem Rechteck überein.

Wir sind nun in der Lage, unseren Algorithmus in der Notation von Dijkstra zu
formulieren. In geschweiften Klammern fügen wir sogenannte Zusicherungen in Form von
logischen Prädikaten hinzu.

{a > 0 und b > 0}
DOa>b~*a: a - b {a > 0 und b > 0}

\b > a->b : b - a {a > 0 und b > 0}
OD
{a b, Seite des gesuchten Quadrates}

Wir betonen, dass der Erfolg dieses Vorgehens entscheidend auf der Tatsache beruht,
dass sich die Grösse des gesuchten Quadrates bei einem Reduktionsschritt nicht ändert.
Das Prädikat «a > 0 und b > 0 und w ist Seite des gesuchten Quadrates» ist eine
Invariante der Repetition. Falls ihre Gültigkeit beim Eintritt in die Repetition als
Eingangsbedingung garantiert ist, so ist die Schlussbedingung (die das Resultat impliziert) die

Konjunktion der Invarianten und aller Negationen der Wachen.
Als nächstes wollen wir das Auslegeproblem auf kompliziertere Gebiete, wie etwa in
Figur 2 dargestellt, ausdehnen. Falls wir gemäss Figur 2 den Seiten Zahlen a, b, c, d
zuordnen, können wir die vorherige Idee der sukzessiven Reduktion zur Bestimmung
des maximalen Quadrates übernehmen.
Der Reduktionsprozess muss solange weitergeführt werden, als mindestens zwei der
vier Zahlen verschieden sind. Wir müssen also die Wachen so anordnen, dass die
Gültigkeit aller ihrer Negationen impliziert, dass die vier Werte gleich sind. Das folgende
Programm zeigt feine einfache Lösung. / steht für die Invariante

El. Math., Vol. 40, 1985

d

17

¦ 1

m
c

db-c

a a-b a-b

Figur 2 Auslegen eines horizontal und vertikal begrenzten Gebietes mit Quadraten.

I: a > 0 und b > 0 und c > 0 und d > 0 und vv ist Seite des gesuchten Quadrates

{1}
DOa >b^a : a -b {1}

|* >c-»6: =b -c {1}
\c > d-^c: c -d {1}
\d >a-+d: d-a{\}

OD
{a _-.£>=_£=£/ w9 Seite des gesuchten Quadrates}

Es ist klar, dass die gleiche Prozedur auch für noch kompliziertere Flächen und sogar
für dreidimensionale Objekte, die durch maximale Kuben auszufüllen sind, funktioniert.

Der in der elementaren Zahlentheorie bewanderte Leser hat sicherlich bemerkt,
dass die mathematische Lösung unseres Problems gerade der grosste gemeinsame Teiler

(ggt) der betreffenden Zahlen ist.
Diese Interpretation liegt der nächsten Erweiterung unseres Algorithmus zugrunde.
Bekanntlich kann ggt(_4,2?) stets als ganzzahlige Linearkombination von A und B dargestellt

werden:

ggt(A9B) xA+yB

Die Schlüsselidee bei der Entwicklung eines Algorithmus zur Bestimmung der ganzzahligen

Koeffizienten x und y ist die Erweiterung der Invarianten um zwei Gleichungen,
welche am Schluss mit ggt(A,B) — xA + yB übereinstimmen.
Diese invarianten Gleichungen sind a xA + yB und b uA + vB, wo a und b

Hilfsvariablen sind, die den Konstanten A und B entsprechen. Unser Programm lautet nun

a,b,x9y9u,v : _4,_9,1,0,0,1;
DOa > b -+a : a — b; x : x — «; y : y — v

\b > a-+b := b — a; u :— u — x; v := v — y
OD

18 El. Math., Vol. 40, 1985

Die bewachte Anweisung bewahrt die Gültigkeit des Prädikates

a > 0 und b > 0 und a xA + yB und b - uA + vB,

welches daher eine Invariante ist. Diese und die Schlussbedingung a b ggt(A,B)
implizieren, dass (x,y) und (u,v) Lösungen sind. Da wir schon gesehen haben, dass der
Algorithmus nach einer endlichen Zahl von Schritten stoppt, haben wir einen eigentlichen

mathematischen Beweis unserer Eingangsbehauptung geliefert. Im Falle
ggt(_4,2?) 1 kann der Algorithmus dazu verwendet werden, ein multiplikatives Inverses

modulo B von A zu bestimmen.
Mit unserem nächsten Beispiel betreten wir ein Feld, welches vor allem in der
nicht-numerischen Informatik eine dominierende Rolle spielt, nämlich das des Suchens und
Wiederfindens von Daten.
Wir beginnen mit einer äusserst einfachen Aufgabe. Gegeben sei eine Liste a[0], a[l],

a[n - 1] und ein Wert x. Die Aufgabe des zu entwickelnden Programmes bestehe

darin, ein Element a[i] zu finden, dessen Wert x ist. Die naheliegendste Methode, ein
solches Element zu suchen, ist das Durchkämmen der Liste, z. B. von links nach rechts,
bis der Wert von a[i] mit x übereinstimmt. Wir nennen dieses Prozedere lineares
Suchen:

i: 0;

DOfl[i]#jt-»i:=i + lOD.

Das Zeichen « # » ist eine Abkürzung für «ungleich». Ferner bewirkt die Anweisung
i := i + l natürlich, dass / um 1 erhöht wird. Die Schlussbestimmung ist gerade die

Negation der Wache, d. h. a[i] x. Unser Programm findet also sicherlich ein
gewünschtes Element. Ist das Programm korrekt? Nehmen wir an, dass der Wert x
überhaupt nicht in der Liste vorkommt. Dann wird die Repetitionsbedingung nie ungültig.
Hingegen ist sie Undefiniert, wenn / > n ist. Der Prozess wird deshalb nach n Durchläufen

mit Fehler abbrechen.
Wir können unsere Lösung retten, indem wir die Wache verstärken:

i: 0;
DOi #n and a[i] # *->i: i + 1 OD
{i n oder a[i] — x}

Nach der de Morganschen Regel ist die Schlussbedingung nun eine Disjunktion. Falls
i n ist, so tritt der Wert in der Liste nicht auf, andernfalls ist / der Index eines

gewünschten Elementes. Indessen ist eine neue Schwierigkeit aufgetaucht. Im Falle
i n ist der zweite Teil der Wache Undefiniert. Vom Standpunkt der gewöhnlichen
Logik ist in diesem Falle also die ganze Konjunktion Undefiniert.
Moderne Programmiersprachen (wie Modula-2) umgehen diese Art von Schwierigkeit,
indem sie den und- und oder -Operator als bedingtes und und bedingtes oder auffassen.
Das bedingte und ordnet, falls das erste Argument den Wert falsch hat, unabhängig
vom zweiten Argument, dem Ausdruck den Wert falsch zu. Dual dazu ergibt das
bedingte oder den Wert wahr, falls das erste Argument den Wert wahr besitzt, unabhängig
vom zweiten Argument. Die bedingten Operatoren sind natürlich nicht kommutativ!

El. Math., Vol. 40, 1985 19

Der Leser möge eine korrekte Wache für die konventionelle Logik suchen. Wir hingegen

schlagen nun einen neuen Weg ein. Korrektheit ist eine wesentliche, aber nicht die
einzige Qualität, die ein Programm aufweisen muss. Effizienz ist ebenso wichtig. Es ist
irgendwie unbefriedigend, dass bei jedem Repetitionsschritt geprüft werden muss, ob
i # n ist. Ein eleganter und typischer Ausweg besteht darin, statt des Algorithmus die
Datenstruktur zu ändern. Falls wir ein Element a[n] hinzufügen, welches den Wert x
besitzt, so schhessen wir den Fall, der alle Schwierigkeiten auslöste, endgültig aus.
So erweist sich die erste Variante unseres Algorithmus, allerdings erweitert um die
Zuweisung a[n]: x, als optimal. Der Wert x tritt in der ursprünglichen Liste nicht auf,
genau wenn die Repetition mit i n endet. Das Element a[n] wirkt also ebenfalls als
eine Art Wache oder Hüter. Solche Elemente werden deshalb gelegentlich Sentinel
genannt.

In den meisten Fällen ist es wünschenswert, dass der Algorithmus alle Elemente innerhalb

der Liste findet, die den Wert des Suchargumentes besitzen. Das nächste

Programm trägt diesem Anliegen Rechnung:

a[n]: x; i := 0;

DOi#n + l->DOa[/]#;c ->/:=/ + lOD
{Verarbeitete a[i]} i: i + 1

OD

Wir nehmen nun an, dass die Elemente unserer Liste a[0], a[l], a[n -1] Messwerte
darstellen. Wir wollen ein Programm entwickeln, das den kleinsten und den grossten
dieser Messwerte findet. Konzentrieren wir uns vorerst auf den kleinsten Wert. Wir
führen eine Variable min ein, welche das jeweils aktuelle Minimum angibt. Damit wird
die Invariante der Repetition

I: min Minimum (a[0], a[i — 1]).

Zusammen mit / n impliziert / das Resultat.

min: a[0]; /:= 1; {1}
DO/ # n->IFa[i] < min->min: a[i]\ a[i] ^ min->skip FI;

i:=i + 1{I}
OD
{I und i n}

Falls wir eine analoge Variable max einbeziehen, erhalten wir die folgende Lösung
unseres Problems:

I: min Minimum(a[0], a[i - 1]) und max Maximum(a[0], a[i - 1])

min: a[0]; max: a[0]; i:= 1;{1}
DO i # n-*IFa[i] < min-?min: a[/]|a[i] ^ min->skip FI;

IFa[i] > max-*max: a[/]|a[/] < max->skipFI;
i:=i + 1{I}

OD
{I und / n}

20 El. Math., Vol. 40, 1985

Bei diesem Algorithmus werden für jedes Listenelement zwei Vergleiche durchgeführt.
Insgesamt sind also 2« Vergleiche erforderlich. Auf den ersten Blick geht es nicht mit
weniger Vergleichen. Falls a[i] kleiner als das aktuelle Minimum ist, kann a[i] natürlich
nicht gleichzeitig grösser als das aktuelle Maximum sein. Es ist jedoch wenig einträglich,

diesen selten auftretenden Fall zu optimieren.
Wenn wir die Grössenbeziehung zwischen zwei Elementen a[i] und a[j] unserer Liste
kennen würden, würde es genügen, das kleinere gegen min und das grössere gegen max
zm testen. Da wir die Grössenbeziehung zwischen a[i] und a[j] mit einem Vergleich
feststellen können, benötigen wir mit dieser Methode drei Vergleiche für jedes Paar,
insgesamt also nur 3(«/2) Vergleiche, falls n gerade ist. Wir betrachten deshalb die
Paare a[i], a[nl - i], wobei nl die Konstante n-l bezeichnet. Die Invariante ist jetzt

I: min Minimum^[0],...,a[/ — l]9a[n - i],...9a[n - 1]) und
max Maximum(fl [0],..., a [i — l],a[n — i],...,a[n — 1])

Unter Berücksichtigung von I ist das Resultat etabliert, sobald i^n - i, d. h. wenn
i (n + l) DIV 2, wobei DIV die ganzzahlige Division (nicht-ganzzahliger Teil
abgeschnitten) bedeutet. Wir bezeichnen ferner mit n2 die Konstante (n + l) DIV 2. Der
Gewinn an Effizienz muss mit einem Verlust an Einfachheit bezahlt werden. Wir betonen

jedoch, dass das folgende Programm unabhängig von der Parität von n ist.

IF#[0] ^ a[n l]~>min: a[0]; max: a[n 1]

\a[0] ^a[nl]-+min: a[nl]; max: a[0]
FI;
*:=1;{I}
DO/ #n2~+IFa[i]^a[nl - /]->

IFa[/] < min-?min: a[i] \ a[i] > min-»skip FI;
IFa[nl - i] > max->max: a[nl - i]\ a[nl - i] ^max-»skipFI;
I a[i] ^a[nl — /]-?
IFa[nl - i] < min-*min: a[nl - i]\ a[nl - i] ^min-»skipFI;
IFa[i] > max-?max: a[i]|#[i] ^ max-*skipFI
FI;
/:=/ + l{I}

OD

Wenden wir uns als nächstes einer Variante des Problems zu, ein Element a[i] mit
einem bestimmten Wert x zu finden. Wir interpretieren nun die Werte der a[i] als

Abfahrtszeiten von Eisenbahnzügen. Die Aufgabe besteht darin, ein Programm zu
entwerfen, welches die Zeit der nächsten Zugsabfahrt liefert. Der Testwert x ist hier die
aktuelle Uhrzeit. Der Leser versuche die Aufgabe ohne weitere Annahmen über die
Liste a[0], a[l], a[n - 1] zu lösen. Das Problem wird viel einfacher, falls wir verlangen,

dass die Liste geordnet sei, d.h. dass a[0] ^ a[l] < < a[n - 1] gelte.
Das gewünschte Resultat ist a[i - 1] < x ^ a[i], wobei wir ein Element a[- 1] (in
Gedanken) mit dem Wert -oo und ein Element a[n] mit dem Wert oo hinzugefügt haben.

El. Math., Vol. 40, 1985 21

Wir versuchen I: a[i - 1] < x invariant zu halten. Falls wir dann die Wache als a[i] < x
erklären, garantiert die Schlussbedingung das Resultat:

a[n]:= oo; / : 0;{I}
DOa[/] < x -?/:=/+ 1 {1} OD
{I und x ^a[i]}

Es stellt sich heraus, dass der Lösungsalgorithmus nur eine Variante des oben beschriebenen

linearen Suchens ist. Er löst ebenso unser ursprüngliches Problem, ein Element
mit dem Wert x zu finden.
Unter der Annahme einer geordneten Liste a[0], a[l], a[n - 1] gibt es jedoch eine
Methode, die das lineare Suchen signifikant übertrifft. Sie heisst binäres Suchen. Die
Grundidee ist das fortgesetzte Halbieren der Anzahl derjenigen Elemente, deren Wert
möglicherweise mit x übereinstimmt.
Als naheliegende Invariante erweist sich eine Relation der Form a[i] < x ^ a[j].
Unglücklicherweise können wir jedoch diese Relation nicht verankern, da x nicht
notwendigerweise im Intervall [a[0], a[n - 1]] enthalten ist. Wir ergänzen deshalb die Liste um
zwei Elemente a[—1] (in Gedanken, da nicht wirklich auf das Element zugegriffen wird)
und a[n], die mit — oo und oo initialisiert seien. Wenn wir /: 0 und j: n — 1 setzen,
so etablieren wir die Eingangsbedingung I: a[i - 1] < x ^ a[j + 1]. Aus diesem Prädikat
lässt sich zusammen mit j' — i < 0 umittelbar das Resultat gewinnen. / und j — i < 0

implizieren nämlich j + 1 /. Wir versuchen daher, unter Beibehaltung der Relation /,
die Differenz j — i sukzessive zu verkleinern:

i:=0;j:=n-l;{I}
DOy - i ^ 0-^m : (/ +y)DIV 2;

IFa[m]<x->i:=m + 1(1}| a[m]^x-+j: m - 1{I}FI
OD
{Iundy-/<0}

Die Schlussbedingung besagt, dass a[i - 1] < x < a[i] ist. Ein abschliessender Test
unterscheidet die beiden Ausfälle: Wenn x a[i] ist, dann wurde ein Element mit dem
Wert x gefunden, andernfalls ist x nicht in der Liste enthalten, und die Werte der
Listenelemente a[i - 1] und a[i] sind am nächsten bei x.
Untersuchen wir nun die Termination unseres Algorithmus. Wenny ^ /, dann ist m ^ /
und m <y, d.h. j - (m + 1) <j - i. Also wird j - i tatsächlich bei jedem Repetitions-
schritt echt verkleinert.
Was ist der Gewinn, wenn das binäre anstelle des linearen Suchens eingesetzt wird?
Lineares Suchen in einer Liste von n Elementen erfordert im Mittel n/2 Vergleiche.
Falls unsere Variante des binären Suchens verwendet wird, so werden stets log n

Vergleiche benötigt (log bezeichne den Logarithmus zur Basis 2). Wir haben dabei
angenommen, dass n eine Zweierpotenz sei. Um den Gewinn zu veranschaulichen, erinnern
wir daran, dass für n 1024 n/2 512 und log n 10 ist.
Anhand der beiden Beispiele des linearen und des binären Suchens haben wir zu zeigen
versucht, dass Programmieren eine zielorientierte Aktivität ist. Das Resultat legte
jeweils die Invariante und die Wache nahe. Die Invariante ihrerseits und das Bestreben,

22 El. Math., Vol. 40, 1985

dem Ziel näher zu kommen, bestimmte praktisch den Repetitionsschritt, ausser (im
binären Suchen) die Definition von m. Tatsächlich bleibt der Algorithmus korrekt und
endet nach einer endlichen Zahl von Schritten, wenn nur zugesichert ist, dass im Falle

j ^ i die Beziehungen m ^ / und m ^y garantiert sind.

Zielgerichtetes Vorgehen wird sich auch im nächsten Beispiel auszahlen. Es stammt
von D. Gries [5] und heisst der Wohlfahrtsschwindler. Im Gegensatz zu den bisherigen
Suchproblemen, ist das Suchargument hier nicht explizit bekannt. Drei geordnete
Listen a[0], a[l],..., a[n - 1], b[0], b[l], b[m - 1] und c[0], c[l], c[/ - 1] sind nun im
Spiel. Die erste enthält die Namen aller Studenten der New York University, die zweite
die Namen aller Angestellten von IBM New York und die dritte die Namen aller
Wohlfahrtsbezüger von New York. Die Aufgabe besteht darin, ein Programm zu
schreiben, welches eine Person sucht, die auf allen drei Listen registriert ist.
Die Listenelemente sind nun Ketten von Zeichen statt Zahlen. Wir nehmen an, dass sie

lexikographisch geordnet sind. Die Schlussbedingung muss von der Form
a[i] b[j] c[k] für geeignete Indexwerte /, y" und k sein. Die Wachen definieren wir
nach einem Schema, welches sich in einem früheren Beispiel bewährt hat. Ausserdem
führen wir drei Sentinels a[n], b[m] und c[l] ein:

a[n],b[m],c[l],i,j,k := 00,00,00,0,0,0;
DOa[i]>blj]->i:=j + l

\b\j]>c[k]-+k: k+l
\c[k] >a[i]-+i: i + l

OD

Die Schlussbedingung a[i] ^ b[j] ^ c[k] ^ a[i] liefert das Resultat. Die Invariante ist hier
leer, falls man nicht die eher technische Bedingung 0 < / < /? und 0 <y < m und
0 ^ k < / als Invariante betrachtet. Der Algorithmus terminiert nach höchstens

n + m + l Repetitionsschriften, da bei jedem Schritt genau ein Index erhöht wird.
(Fortsetzung im nächsten Heft)

J. Gutknecht, Institut für Informatik, ETH Zürich

1985 Birkhauser Verlag, Basel 0013-6018/85/060011-12$1.50 + 0.20/0

Kleine Mitteilungen
Über einen Wert, der zwischen dem geometrischen und dem arithmetischen Mittel
zweier Zahlen liegt

In dieser kleinen Mitteilung soll gezeigt werden, dass für positive reelle Zahlen a und b

(mit a<b) der Wert (e/a)a(b/e)b zwischen der (b - a)-ten Potenz des geometrischen
und des arithmetischen Mittels von a und b hegt. (Mit e wird wie üblich die Eulersche
Zahl bezeichnet.)

	Elementare Prinzipien der Informatik

