Zeitschrift: Elemente der Mathematik
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 40 (1985)

Heft: 1

Artikel: Elementare Prinzipien der Informatik
Autor: Gutknecht, J.

DOl: https://doi.org/10.5169/seals-38826

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-38826
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

El. Math., Vol. 40, 1985 11

Elementare Prinzipien der Informatik

Situation

Die Informatik befindet sich zurzeit in einer bemerkenswerten Lage. Wahrend ihre
grundsitzliche Bedeutung unumstritten ist, bestehen iiber ihren eigentlichen Inhalt zum
Teil betrichtliche Meinungsverschiedenheiten. Diese Situation tritt besonders ausge-
pragt im Ausbildungsbereich zutage. Wiahrend das Fach Informatik durchwegs Ein-
gang in die Lehrplidne der hoheren Schulen findet, divergieren die Ansichten iiber Lehr-
ziele und Lehrinhalte radikal.

Indessen haben sich zwei Grund-Richtungen herauskristallisiert. Die eine verficht die
Stellung der Informatik als Hilfswissenschaft der Mathematik, die andere stellt sie in
engen Zusammenhang mit kommerziellen und wirtschaftlichen Anwendungen. Es ist
der Zweck dieses Aufsatzes zu zeigen, dass keine dieser Ansichten den Kern der Sache
trifft.

Zweifellos ist die Informatik aus der Mathematik herausgewachsen. Der Begriff Com-
puter fiir das wichtigste Instrument der Informatik ist dafiir Zeuge. Computer wurden
urspriinglich erdacht, um die Mathematiker von zeitaufwendigen, aber im Prinzip un-
interessanten Berechnungen zu entlasten.

Andererseits dominieren heute die nicht-numerischen Computeranwendungen klar.
Weshalb war eine derart weitgehende Verbreiterung des Anwendungsspektrums tiber-
haupt moglich? Hauptsichlich dank dem genial einfachen, aber universellen Grund-
konzept der «Rechenmaschinen». Tatsdchlich sind Computer eher Universalgerdte als
Maschinen im herkémmlichen Sinne. Gewdhnliche Maschinen sind a priori auf eine
spezielle Anwendung zugeschnitten. Computer hingegen werden dazu entworfen, ir-
gendwelche Daten in irgendeinem Sinne zu verarbeiten.

Ein zweites Charakteristikum der Computer ist von nicht geringerer Bedeutung fiir die
Erschliessung neuer Horizonte: ihre Fahigkeit, Daten zu speichern. In vielen Anwen-
dungen bedeutet Verarbeiten tatsidchlich nichts anderes als Speichern und wieder Her-
vorholen einer (typischerweise enormen) Menge von Informationen.

Computer als Universalgeriite

Wenden wir uns nun den Hauptkomponenten eines Computers heute iiblicher Bauart
zu. Es sind im wesentlichen zwei: der sogenannte Prozessor und der Speicher. Der
Prozessor beherrscht eine wohldefinierte Menge von elementaren Instruktionen. Der
Speicher ist in eine Folge von elementaren Zellen gegliedert und dient dem Computer
als Gedichtnis. Sowohl Prozessor als auch Speicher sind in Form von elektronischen
Komponenten und Schaltungen realisiert, sie gehdren zur Hardware.

Die Speicherzellen konnen durch die Ausfithrung von Instruktionen inspiziert und ver-
dndert werden. In einem gewissen Sinne libernehmen sie die Rolle von Variablen. Ent-
scheidend ist, dass die Daten innerhalb einer Speicherzelle auf sehr verschiedene Art
und Weise interpretiert werden konnen. Die Daten sind als Folge von Bindrziffern

12 El. Math., Vol. 40, 1985

(bits) dargestellt und miissen dem jeweiligen Kontext entsprechend decodiert werden.
Beispielsweise interpretieren arithmetische Instruktionen den Inhalt der betreffenden
Speicherzellen als Zahlen.

Das zweite Beispiel, wie Daten interpretiert werden konnen, ist unter dem Namen von
Neumannsches Prinzip bekannt. Es stammt von John von Neumann, einem der Pio-
niere der Computerwissenschaften. Dieses Prinzip hat der Kombination von Prozessor
und Speicher letztlich zum Durchbruch verholfen. Ein Programm P ist eine Folge von
Instruktionen, welche auf einer Menge von Daten operiert. Wenn jetzt jeder Instruk-
tion ein Code zugeordnet ist, kann das Programm selbst, d.h. die Folge der Instruk-
tionscodes, als Daten im Speicher gespeichert werden.

Von diesem Gesichtspunkt aus ist das Ausfithren eines Programmes P ein universeller
Prozess. Das zugehorige Universalprogramm U kann als eine stindige Wiederholung
der Sequenz

Decodiere nichste Instruktion; Fiihre die Instruktion aus

formuliert werden.

Die Hardware eines Prozessors hdngt offensichtlich vom Satz der elementaren Instruk-
tionen und damit vom Universalprogramm U ab. Tatsédchlich ist die Ausfithrung von
U normalerweise von der Hardware kontrolliert. Bemerkenswert ist hingegen, dass die
Hardware von nichts anderem abhéngt, im besonderen nicht vom Programm P. P
spielt die Rolle eines Parameters fiir U und kann daher durch irgendein Programm P’
ersetzt werden, ohne dass eine Anpassung der Hardware notig wére. Programme wie P
und P’ werden daher als Software bezeichnet. Es liegt auf der Hand, dass die Universa-
litdt der Computer zum grossen Teil dem Softwarekonzept zu verdanken ist.

Greifen wir ein scheinbares Detail des Universalprogrammes auf. Was bedeutet ndchste
Instruktion? Normalerweise ist es die Instruktion in der ndchsten Speicherzelle. Es ist
jedoch ebensogut maglich, ja sogar unvermeidlich, dass diese Regel gelegentlich durch-
brochen werden muss.

Nehmen wir zum Beispiel an, dass die nidchste Instruktion vom momentanen Zustand
des Programmes abhdngt. In diesem Fall muss der Prozessor mdglicherweise an eine
neue Stelle «springen» und dort die lineare Ausfiihrung wieder aufnehmen. Ein anderes
Beispiel ist das Universalprogramm selbst. Wenn immer eine Instruktion ausgefiihrt
worden ist, muss die Decodierung der ndchsten in Angriff genommen werden, d.h. der
Prozessor muss zum Beginn der «Universalschleife» zuriickspringen.

Wir werden sehen, dass Alternativen und Repetitionen wesentliche Bausteine eines Pro-
grammes sind. Daher sind Sprungbefehle in der Menge der elementaren Instruktionen
unentbehrlich. Sie bieten dem verarbeiteten Programm die bemerkenswerte Moglich-
keit, seinen Verarbeiter zu dirigieren.

Externe Gerite vervollstindigen einen Computer zu einem Computersystem. Wir kon-
nen zwei Klassen unterscheiden: Gerite, welche die Kommunikation mit dem Computer
ermoglichen (meistens eine Tastatur, iber welche Daten eingegeben, und ein Bild-
schirm, auf den Meldungen und Resultate geschrieben werden konnen) und Gerite, die
als Massenspeicher dienen (z. B. magnetisierbare Plattenspeicher). Die externen Gerite
sind gewOhnlich direkt mit dem Computerspeicher verbunden. Daher konnen Daten
direkt in Speicherzellen gelesen bzw. aus Speicherzellen geschrieben werden.

El. Math., Vol.40, 1985 13
Programmierung

Im vorangehenden Abschnitt haben wir gesehen, dass ein Computer U durch Vorgabe
eines Programmes P auf eine bestimmte Anwendung zugeschnitten werden kann, ja
sogar zugeschnitten werden muss. Im Laufe der Zeit stellte sich heraus, dass die Tatig-
keit des Programmierens bestimmten Gesetzen gehorcht und Gedankenginge erfor-
dert, die weitgehend unabhéingig von der speziellen, ins Auge gefassten Anwendung
sind.

Als Folge davon entstanden Regeln, Methoden und Techniken, welche die Wissen-
schaft der Programmierung an sich begriindeten. Die Programmierung im allgemein-
sten Sinne hat sich geradezu zum Kern der Informationsverarbeitung oder Informatik
entwickelt. Was also ist Programmieren?

Wir haben ein Programm bereits als eine Folge von Befehlen erklirt, die auf eine
bestimmte Menge von Daten wirkt. Natiirlich verbindet sich mit dem Begriff Pro-
gramm die Vorstellung seiner Ausfiihrung. Tatsachlich lduft Programmieren darauf hin-
aus, einen dynamischen Prozess als statischen Text zu formulieren. Die Verhiltnisse
werden jedoch noch komplizierter. Im allgemeinen erwartet ein Programm Eingabeda-
ten oder Parameter, welche seine Ausfithrung steuern. (Das Universalprogramm U bei-
spielsweise erwartet ein Programm P als Parameter.)

Deshalb beschreibt ein Programmtext im allgemeinen nicht nur einen, sondern eine
ganze Klasse von Prozessen. Ein Programm als korrekt zu bezeichnen bedeutet offen-
sichtlich, dass alle diese Prozesse korrekt ablaufen, d.h. (in endlicher Zeit) die korrek-
ten Resultate erzeugen. Korrekte Programme zu schreiben ist mehr als nur ein edles
Ziel, falls diese Programme zur Steuerung von Flugzeugen oder Atomkraftwerken vor-
gesehen sind.

In den meisten Fillen ist das « Auffiachern» eines Programmes in alle Prozesse, die es
beschreibt, hoffnungslos kompliziert. Eine vielversprechende Methode zum Beweis der
Korrektheit sind Absicherungen im (statischen) Programmtext selbst. Programmieren
in diesem rigorosen Sinne ist eine hochgradig mathematische Tétigkeit. Interessanter-
weise sind die Rollen im Laufe der Zeit vertauscht worden: die Mathematik ist zu
einem Instrument der Informatik geworden.

Bevor wir diese Konzepte an Beispielen illustrieren, wollen wir kurz beim Thema Pro-
grammiernotationen verweilen. Wie wir gesehen haben, muss das Programm P letzt-
endlich im Computerspeicher als Folge von Binirziffern vorliegen. Als Notation zur
Formulierung von Programmen ist diese Darstellung aber ganz ungeeignet.

Nehmen wir an, dass jeder Elementarinstruktion ein Name zugeordnet sei, der die
Wirkung der Instruktion in abgekiirzter Form wiedergibt. Wenn wir iiberdies voraus-
setzen, dass jede Speicherzelle unter einem frei gewédhlten Namen angesprochen werden
kann, so lassen sich Programme in lesbarer Form als Text schreiben.

Wie aber wird dieser Text in eine Folge von Bindrziffern iibersetzt? Natiirlich gehorcht
der Ubersetzungsvorgang wohldefinierten Regeln. Man kdnnte deshalb ein Programm
C entwickeln, das jeden wohlformulierten Programmtext P iibersetzt. Wir nennen ein
solches Programm C Compiler. Die Idee der Compiler hat sich als dusserst fruchtbar
erwiesen.

Sie hat eine Entwicklung eingeleitet, die bis heute nicht zum Abschluss gekommen ist.
Der wohl naheliegendste Schritt in dieser Entwicklung war die Einfiihrung von Pro-

14 El. Math., Vol. 40, 1985

grammiernotationen, die unabhdngig von der zugrundeliegenden Maschine sind. Diese
Programmiernotationen, oder Programmiersprachen, wie sie iiblicherweise genannt
werden, eréffneten die Moglichkeit der maschinenunabhdngigen oder anwendungsorien-
tierten Programmierung. Im Gegensatz dazu zédhlt der Compiler C fiir eine solche Pro-
grammiersprache, der inhdrent maschinenabhdngig ist, zur System-Software.

Die weiteren Schritte in der Entwicklung von Programmiersprachen kénnen am besten
durch «Erh6hung des Abstraktionsniveaus» charakterisiert werden. Das Entschei-
dende der Abstraktion ist die Loslosung von unwesentlichen oder sogar storenden De-
tails. In unserem Zusammenhang bedeutet dies die Moglichkeit, maschinengegebene
Einheiten durch eigene «Molekiile» von verschiedener Art und Komplexitit ersetzen
zu konnen. Wir weisen an dieser Stelle auf eine zentrale Dualitdt zwischen den Daten
hin, auf welchen die Instruktionen operieren, und den Instruktionen, die mit diesen
Daten arbeiten. Erstere werden zur Datenstruktur, letztere zum algorithmischen Teil
eines Programmes zusammengesetzt.

Die elementaren Speicherzellen sind die «Atome» der Datenstrukturen, die elementa-
ren Instruktionen die «Atome» der Algorithmen. Wahrend der Abstraktionsprozess
zur Formulierung von Algorithmen sehr friih eingesetzt hat (notwendigerweise, da
keine universelle Menge von elementaren Instruktionen existiert), ist der Einbezug der
Datenstrukturen in diesem Abstraktionsprozess zum grossen Teil das Verdienst der
Sprache Pascal [1]. Im speziellen hat Pascal den Begriff des Typs von Datenelementen
eingefiihrt. Ein Datentyp beschreibt die Struktur von Dateneinheiten und steckt den
Bereich ihrer moglichen Werte ab. Zahlen und Buchstaben sind Beispiele von Grundty-
pen, Listen und Ketten Beispiele von zusammengesetzten Strukturen.

Uberdies hat durch Pascal die Methode der strukturierten Programmierung, d.h. die
Methode der sukzessiven Verfeinerung der einzelnen Aktionen eines Prozesses, grossere
Verbreitung gefunden. Damit trat ein grundsitzlich neuer Aspekt der Programmier-
sprachen in Erscheinung: die Programmiersprache als Werkzeug zur Konzipierung und
Entwicklung, nicht nur zur Formulierung, von Programmen.

Moderne Sprachen wie Modula-2 [2] oder Ada [3] gehen noch einen Schritt weiter,
indem sie die Entwicklung ganzer Programmsysteme unterstiitzen. Die Grundidee ist
eine klare Trennung zwischen der funktionalen Definition eines Programmteiles und
den Methoden und Techniken, die bei der Implementierung zur Anwendung gelangen.
In einem grossen Software-Projekt, in welchem mehrere Programmierer mitwirken,
konnen so die globale Struktur und die Schnittstellen zwischen den einzelnen Pro-
grammteilen zentral und zum vornherein festgelegt werden.

Eine erste Serie von Beispielen

Wir haben vorher gesagt, dass der Programmierung allgemeine Gesetze und Regeln
zugrundeliegen. Diese sowie die auftretenden Schwierigkeiten und Methoden zu deren
Uberwindung kénnen wir am besten anhand kurzer, aber typischer Beispiele illustrie-
ren.

Wir fithren dazu eine Programmiernotation ein, die auf E. W. Dijkstra [4] zuriickgeht.
Zuerst definieren wir ihre «Instruktionen», in der Folge als Anweisungen bezeichnet.
Eine Anweisungsliste ist eine Sequenz von Anweisungen, die durch Strichpunkte ge-

El. Math., Vol.40, 1985 15

trennt sind. Variablen (eines fiir den Moment nicht niher spezifierten Typs) werden mit

a,, a, ..., Ausdriicke mit E,, E,,, Bedingungen mit C,, C,, ... und Anweisungslisten
mit §,, S,, ... bezeichnet.

Die leere Anweisung

skip Springe zur ndchsten Anweisung

Die Wertzuweisung

a,a, .., a,:=E_, E, .., E Weise (gleichzeitig) den Wert von E, der Variablen q,,
..., den Wert von E, der Variablen a, zu

Die Alternative

IFC,-S, Falls keine der Bedingungen erfiillt ist, Fehlerhalt
| C,-S, sonst wihle irgendeine erfiillte Bedingung C;
und fihre die Anweisungsliste S; aus
| C.—S,
FI

Die Repetition

DOC,-S§, Solange irgendeine der Bedingungen erfiillt ist,
| C,-8S, wihle eine, C,, und fithre die Anweisungsliste S, aus
| C.—S,

OD

Wir bemerken, dass diese Notation weniger harmlos ist, als sie aussieht. Die Tatsache
nidmlich, dass innerhalb der IF- und DO-Anweisung selbst wieder Anweisungen oder
sogar Anweisungslisten vorkommen diirfen, hat weitreichende Konsequenzen. Es las-
sen sich komplexe Hierarchien von geschachtelten Alternativen und Repetitionen kon-
struieren.

Die Bedingungen C; wirken als eine Art Wachen. S, kann nur ausgefiihrt werden, wenn
die Wache C, passiert wurde. Man nennt deshalb die Liste der C’s und S;’s oft be-
wachte Anweisung.

In unserem ersten Programmierbeispiel wollen wir uns dem Problem zuwenden, eine
rechteckige Flidche der Breite a und Hohe b (a und b natiirliche Zahlen) mit moglichst
grossen Quadraten auszulegen.

Nehmen wir an, dass eine der Seiten grosser als die andere sei, z. B. a > b. Dann ist das
urspriingliche Problem offensichtlich dquivalent damit, die reduzierte Fliche mit den
Seiten a—b und b mit moglichst grossen Quadraten auszulegen (s. Fig. 1). Dieser Schritt
kann wiederholt werden, wobei jedesmal ein kleineres Rechteck entsteht.

16 El. Math., Vol. 40, 1985

a a-b w

Figur 1. Auslegen eines Rechteckes mit Quadraten.

Kommt der Prozess des fortgesetzten Reduzierens zu einem natiirlichen Ende? Ho6ch-
stens dann, wenn keine Seite des Rechtecks grosser als die andere ist, d.h. wenn ein
Quadrat vorliegt. Falls zu Beginn @ > 0 und 4 > 0 ist, muss diese Konstellation iiberra-
schenderweise stets eintreten. Bei jedem Schritt wird ndmlich a oder b um eine positive
ganze Zahl reduziert, und zwar unter Invarianz der Bedingung a > 0 und » > 0. (Was
passiert, wenn anféangliche a = 0 oder b = 0 ist?) Die Konstruktion muss daher abbre-
chen. Nach dem letzten Schritt stimmt das maximale Quadrat mit dem Rechteck iiber-
ein.

Wir sind nun in der Lage, unseren Algorithmus in der Notation von Dijkstra zu for-
mulieren. In geschweiften Klammern fligen wir sogenannte Zusicherungen in Form von
logischen Priddikaten hinzu.

{a>0und b > 0}

DOa >b—-a:=a—b{a>0und b >0}
|b>a—-b:=b—a{a>0undb >0}

OD

{a = b, Seite des gesuchten Quadrates}

Wir betonen, dass der Erfolg dieses Vorgehens entscheidend auf der Tatsache beruht,
dass sich die Grosse des gesuchten Quadrates bei einem Reduktionsschritt nicht dndert.
Das Priadikat «a > 0 und b > 0 und w ist Seite des gesuchten Quadrates» ist eine Inva-
riante der Repetition. Falls ihre Giiltigkeit beim Eintritt in die Repetition als Eingangs-
bedingung garantiert ist, so ist die Schlussbedingung (die das Resultat impliziert) die
Konjunktion der Invarianten und aller Negationen der Wachen.

Als nichstes wollen wir das Auslegeproblem auf kompliziertere Gebiete, wie etwa in
Figur 2 dargestelit, ausdehnen. Falls wir gemdss Figur 2 den Seiten Zahlen a, b, ¢, d
zuordnen, konnen wir die vorherige Idee der sukzessiven Reduktion zur Bestimmung
des maximalen Quadrates libernehmen.

Der Reduktionsprozess muss solange weitergefithrt werden, als mindestens zwei der
vier Zahlen verschieden sind. Wir miissen also die Wachen so anordnen, dass die Giil-
tigkeit aller ihrer Negationen impliziert, dass die vier Werte gleich sind. Das folgende
Programm zeigt eine einfache Losung. 7 steht fiir die Invariante

El. Math,, Vol. 40, 1985

I:a>0und » >0 und ¢ > 0 und d > 0 und w ist Seite des gesuchten Quadrates

-
.

a-b

Figur 2. Auslegen eines horizontal und vertikal begrenzten Gebietes mit Quadraten.

b-c

a-b

{1}
DOa>b—-a:=a—-b{l}
b >c—-b: =b—c {1}
lc >d-oc:=c—d{l}
|d >a—d:=d —a {I}
OD

{a =b =c =d =w, Seite des gesuchten Quadrates}

Es ist klar, dass die gleiche Prozedur auch fiir noch kompliziertere Flichen und sogar
fir dreidimensionale Objekte, die durch maximale Kuben auszufiillen sind, funktio-
niert. Der in der elementaren Zahlentheorie bewanderte Leser hat sicherlich bemerkt,
dass die mathematische Losung unseres Problems gerade der grosste gemeinsame Teiler
(ggt) der betreffenden Zahlen ist.

Diese Interpretation liegt der ndchsten Erweiterung unseres Algorithmus zugrunde. Be-
kanntlich kann ggt(4,B) stets als ganzzahlige Linearkombination von 4 und B darge-
stellt werden:

ggt(4,B) = xA + yB

Die Schliisselidee bei der Entwicklung eines Algorithmus zur Bestimmung der ganzzah-
ligen Koeffizienten x und y ist die Erweiterung der Invarianten um zwei Gleichungen,
welche am Schluss mit ggz(A4,B) = xA + yB iibereinstimmen.

Diese invarianten Gleichungen sind @ = x4 + yB und b = uA + vB, wo a und b Hilfs-
variablen sind, die den Konstanten 4 und B entsprechen. Unser Programm lautet nun

a,b,x,y,u,v:=A4,B,1,0,0,1;
DOa>b—-a:=a—-b;x:=x—u,y:=y—v

|b>a-b:=b-a,u:=u—x;vi=v—y
oD

18 El. Math., Vol.40, 1985
Die bewachte Anweisung bewahrt die Giiltigkeit des Préidikates
a>0 und b>0 und a=x4 +yB und b =ud + vB,

welches daher eine Invariante ist. Diese und die Schlussbedingung a = b = ggt(4,B)
implizieren, dass (X,y) und (u,v) Losungen sind. Da wir schon gesehen haben, dass der
Algorithmus nach einer endlichen Zahl von Schritten stoppt, haben wir einen eigentli-
chen mathematischen Beweis unserer Eingangsbehauptung geliefert. Im Falle
ggt(A4,B) = 1 kann der Algorithmus dazu verwendet werden, ein multiplikatives Inver-
ses modulo B von A4 zu bestimmen.

Mit unserem néchsten Beispiel betreten wir ein Feld, welches vor allem in der nicht-nu-
merischen Informatik eine dominierende Rolle spielt, nimlich das des Suchens und
Wiederfindens von Daten.

Wir beginnen mit einer dusserst einfachen Aufgabe. Gegeben sei eine Liste a[0], a[l],
..., a[n — 1] und ein Wert x. Die Aufgabe des zu entwickelnden Programmes bestehe
darin, ein Element a[i] zu finden, dessen Wert x ist. Die naheliegendste Methode, ein
solches Element zu suchen, ist das Durchkdmmen der Liste, z. B. von links nach rechts,
bis der Wert von afi] mit x iibereinstimmt. Wir nennen dieses Prozedere lineares Su-
chen:

i:=0;
DOali]# x—i:=i+ 10D.

Das Zeichen « # » ist eine Abkiirzung fiir «ungleich». Ferner bewirkt die Anweisung
i:=i+ 1 natiirlich, dass i um 1 erhoht wird. Die Schlussbestimmung ist gerade die
Negation der Wache, d.h. a[i] = x. Unser Programm findet also sicherlich ein ge-
wiinschtes Element. Ist das Programm korrekt? Nehmen wir an, dass der Wert x liber-
haupt nicht in der Liste vorkommt. Dann wird die Repetitionsbedingung nie ungiiltig.
Hingegen ist sie undefiniert, wenn i > n ist. Der Prozess wird deshalb nach » Durchléu-
fen mit Fehler abbrechen.

Wir kénnen unsere Losung retten, indem wir die Wache verstarken:

i:=0;
DOi #nand alil]#x—i:=i+ 10D
{i = n oder a[i] = x}

Nach der de Morganschen Regel ist die Schlussbedingung nun eine Disjunktion. Falls
| = n ist, so tritt der Wert in der Liste nicht auf, andernfalls ist i der Index eines
gewiinschten Elementes. Indessen ist eine neue Schwierigkeit aufgetaucht. Im Falle
i =n ist der zweite Teil der Wache undefiniert. Vom Standpunkt der gewohnlichen
Logik ist in diesem Falle also die ganze Konjunktion undefiniert.

Moderne Programmiersprachen (wie Modula-2) umgehen diese Art von Schwierigkeit,
indem sie den und- und oder-Operator als bedingtes und und bedingtes oder auffassen.
Das bedingte und ordnet, falls das erste Argument den Wert falsch hat, unabhéngig
vom zweiten Argument, dem Ausdruck den Wert falsch zu. Dual dazu ergibt das be-
dingte oder den Wert wahr, falls das erste Argument den Wert wahr besitzt, unabhéngig
vom zweiten Argument. Die bedingten Operatoren sind natiirlich nicht kommutativ!

El. Math., Vol.40, 1985 19

Der Leser moge eine korrekte Wache fiir die konventionelle Logik suchen. Wir hinge-
gen schlagen nun einen neuen Weg ein. Korrektheit ist eine wesentliche, aber nicht die
einzige Qualitét, die ein Programm aufweisen muss. Effizienz ist ebenso wichtig. Es ist
irgendwie unbefriedigend, dass bei jedem Repetitionsschritt gepriift werden muss, ob
i # n ist. Ein eleganter und typischer Ausweg besteht darin, statt des Algorithmus die
Datenstruktur zu dndern. Falls wir ein Element a[n] hinzufiigen, welches den Wert x
besitzt, so schliessen wir den Fall, der alle Schwierigkeiten ausloste, endgiiltig aus.

So erweist sich die erste Variante unseres Algorithmus, allerdings erweitert um die
Zuweisung a[n] : = x, als optimal. Der Wert x tritt in der urspriinglichen Liste nicht auf,
genau wenn die Repetition mit i = n endet. Das Element a[n] wirkt also ebenfalls als
eine Art Wache oder Hiiter. Solche Elemente werden deshalb gelegentlich Sentinel ge-
nannt.

In den meisten Fillen ist es wiinschenswert, dass der Algorithmus alle Elemente inner-
halb der Liste findet, die den Wert des Suchargumentes besitzen. Das néchste Pro-
gramm tragt diesem Anliegen Rechnung:

aln]l:=x;i:=0;

DOi#n +1-DOalil#x—i:=i+ 10D
{Verarbeitete a[i]} i: =i +1

oD

Wir nehmen nun an, dass die Elemente unserer Liste a[0}], a[l], ..., a[n — 1] Messwerte
darstellen. Wir wollen ein Programm entwickeln, das den kleinsten und den grdssten
dieser Messwerte findet. Konzentrieren wir uns vorerst auf den kleinsten Wert. Wir
fiihren eine Variable min ein, welche das jeweils aktuelle Minimum angibt. Damit wird
die Invariante der Repetition

I: min = Minimum (a[0], ..., a[i —1]).
Zusammen mit i = n impliziert / das Resultat.

min:=q[0}; i : = 1; {I}

DO # n—-IFa[i] < min—min : = a[i]| a[i] =2 min—skip FI;
i=i+1{1}

oD

{Tund i =n}

Falls wir eine analoge Variable max einbeziehen, erhalten wir die folgende Ldsung
unseres Problems:

I: min = Minimum(a[0], ..., a[i — 1]) und max = Maximum(a[0], ..., a[i — 1])
min: = g[0]; max:= a[0]; i : = 1;{I}
DO i # n—1Fa[i] < min—min : = a[i]|a[i] > min—skip FI;
IF a[i] > max—max: = ali]|a[i] < max—skipFI;
ii=i+1{I}
oD
{Iund i =n}

20 El. Math., Vol. 40, 1985

Bei diesem Algorithmus werden fiir jedes Listenelement zwei Vergleiche durchgefiihrt.
Insgesamt sind also 2n Vergleiche erforderlich. Auf den ersten Blick geht es nicht mit
weniger Vergleichen. Falls a[i] kleiner als das aktuelle Minimum ist, kann a[i] natiirlich
nicht gleichzeitig grosser als das aktuelle Maximum sein. Es ist jedoch wenig eintrag-
lich, diesen selten auftretenden Fall zu optimieren.

Wenn wir die Grossenbeziehung zwischen zwei Elementen a[i] und a[j] unserer Liste
kennen wiirden, wiirde es geniigen, das kleinere gegen min und das grossere gegen max
zu testen. Da wir die Grossenbeziechung zwischen afi] und afj] mit einem Vergleich
feststellen konnen, bendtigen wir mit dieser Methode drei Vergleiche fiir jedes Paar,
insgesamt also nur 3(n/2) Vergleiche, falls n gerade ist. Wir betrachten deshalb die
Paare ali], a[nl — i}, wobei nl die Konstante n — 1 bezeichnet. Die Invariante ist jetzt

I: min = Minimum(a|[0], ...,a[i — 1],a[n — i],...,a[n — 1]) und
max = Maximum(a[0],...,a[i — 1},a[n — i],...,a[n — 1))

Unter Beriicksichtigung von I ist das Resultat etabliert, sobald i >»n — i, d.h. wenn
i=(n+1) DIV 2, wobei DIV die ganzzahlige Division (nicht-ganzzahliger Teil abge-
schnitten) bedeutet. Wir bezeichnen ferner mit n2 die Konstante (n + 1) DIV 2. Der
Gewinn an Effizienz muss mit einem Verlust an Einfachheit bezahlt werden. Wir beto-
nen jedoch, dass das folgende Programm unabhdngig von der Paritdt von n ist.

IFa[0] < a[n1]-min:= a[0]; max:= a[nl]
|a[0] = a[n1]->min: = a[nl]; max:= a[0]

FI;

i:=1;{I}

DOi # n2-1Falil<a[nl — i]-
IF a[i] < min—min : = ali]| a[i] > min—skip FI;
IFa[nl — i] > max—max:= a[nl —i]| a[n1 — i] < max—skip FI;
| a[il= a[nl —i]->
IFafnl — i] <min-min:=a[nl — i]| a[n1 — i] > min—>skip FI;
IF a[i] > max—max : = a[i]|a[i] < max—skip FI
FI;
i=i+1{I}

oD

Wenden wir uns als ndchstes einer Variante des Problems zu, ein Element afi] mit
einem bestimmten Wert x zu finden. Wir interpretieren nun die Werte der afi] als
Abfahrtszeiten von Eisenbahnziigen. Die Aufgabe besteht darin, ein Programm zu ent-
werfen, welches die Zeit der ndchsten Zugsabfahrt liefert. Der Testwert x ist hier die
aktuelle Uhrzeit. Der Leser versuche die Aufgabe ohne weitere Annahmen tiber die
Liste a[0], a[l], ..., a[n — 1] zu 16sen. Das Problem wird viel einfacher, falls wir verlan-
gen, dass die Liste geordnet sei, d. h. dass a[0] < a[l] < ... < a[n — 1] gelte.

Das gewiinschte Resultat ist afi — 1] < x < a[i], wobei wir ein Element a[— 1] (in Ge-
danken) mit dem Wert —oo und ein Element a[n] mit dem Wert oo hinzugefiigt haben.

El. Math., Vol.40, 1985 21

Wir versuchen I: a[i — 1] < x invariant zu halten. Falls wir dann die Wache als ai] < x
erkldren, garantiert die Schlussbedingung das Resultat:

aln]:= oo; i:=0;{I}
DOali] < x—i:=i+ 1{I}OD
{I und x < ali]}

Es stellt sich heraus, dass der Losungsalgorithmus nur eine Variante des oben beschrie-
benen linearen Suchens ist. Er 16st ebenso unser urspriingliches Problem, ein Element
mit dem Wert x zu finden.

Unter der Annahme einer geordneten Liste a[0], a[l], ..., a[n — 1] gibt es jedoch eine
Methode, die das lineare Suchen signifikant iibertrifft. Sie heisst bindres Suchen. Die
Grundidee ist das fortgesetzte Halbieren der Anzahl derjenigen Elemente, deren Wert
moglicherweise mit x iibereinstimmt.

Als naheliegende Invariante erweist sich eine Relation der Form a[i] < x < a[j]. Un-
gliicklicherweise konnen wir jedoch diese Relation nicht verankern, da x nicht notwen-
digerweise im Intervall [a[0], a[n — 1]] enthalten ist. Wir erginzen deshalb die Liste um
zwei Elemente a[—1] (in Gedanken, da nicht wirklich auf das Element zugegriffen wird)
und a[n], die mit —oo und oo initialisiert seien. Wenn wir i := 0 und j:=n — 1 setzen,
so etablieren wir die Eingangsbedingung I: a[i — 1] < x < a[j + 1]. Aus diesem Pradikat
lasst sich zusammen mit j — i < 0 umittelbar das Resultat gewinnen. / und j —i <0
implizieren ndmlich j + 1 = i. Wir versuchen daher, unter Beibehaltung der Relation 7,
die Differenz j — i sukzessive zu verkleinern:

i:=0;j:=n—1{I}
DOj—-iz20-m:=(@G+j)DIV 2;
IFaml<x—i:=m+ 1{I}|am]=2x—j:=m — 1{I} FI
oD
{Tundj—i <0}

Die Schlussbedingung besagt, dass a[i — 1] < x < a][i] ist. Ein abschliessender Test un-
terscheidet die beiden Ausfille: Wenn x = a[i] ist, dann wurde ein Element mit dem
Wert x gefunden, andernfalls ist x nicht in der Liste enthalten, und die Werte der
Listenelemente afi — 1] und a[i] sind am nichsten bei x.

Untersuchen wir nun die Termination unseres Algorithmus. Wenn j > i, dann ist m > i
und m <j, d.h. j — (m + 1) <j — i. Also wird j — i tatsdchlich bei jedem Repetitions-
schritt echt verkleinert.

Was ist der Gewinn, wenn das bindre anstelle des linearen Suchens eingesetzt wird?
Lineares Suchen in einer Liste von n Elementen erfordert im Mittel n/2 Vergleiche.
Falls unsere Variante des bindrén Suchens verwendet wird, so werden stets log n Ver-
gleiche bendtigt (log bezeichne den Logarithmus zur Basis 2). Wir haben dabei ange-
nommen, dass » eine Zweierpotenz sei. Um den Gewinn zu veranschaulichen, erinnern
wir daran, dass fiir n = 1024 n/2 = 512 und log n = 10 ist.

Anhand der beiden Beispiele des linearen und des bindren Suchens haben wir zu zeigen
versucht, dass Programmieren eine zielorientierte Aktivitit ist. Das Resultat legte je-
weils die Invariante und die Wache nahe. Die Invariante ihrerseits und das Bestreben,

22 El. Math., Vol. 40, 1985

dem Ziel ndher zu kommen, bestimmte praktisch den Repetitionsschritt, ausser (im
bindren Suchen) die Definition von m. Tatsdchlich bleibt der Algorithmus korrekt und
endet nach einer endlichen Zahl von Schritten, wenn nur zugesichert ist, dass im Falle
j =i die Beziehungen m > i und m < j garantiert sind.

Zielgerichtetes Vorgehen wird sich auch im nichsten Beispiel auszahlen. Es stammt
von D. Gries [5] und heisst der Wohlfahrtsschwindler. Im Gegensatz zu den bisherigen
Suchproblemen, ist das Suchargument hier nicht explizit bekannt. Drei geordnete Li-
sten a[0], a[1], ..., a[n — 1], b[0], b[1], ..., b[m — 1] und ¢[0], c[1], ..., c[/ — 1] sind nun im
Spiel. Die erste enthilt die Namen aller Studenten der New York University, die zweite
die Namen aller Angestellten von IBM New York und die dritte die Namen aller
Wohlfahrtsbeziiger von New York. Die Aufgabe besteht darin, ein Programm zu
schreiben, welches eine Person sucht, die auf allen drei Listen registriert ist.

Die Listenelemente sind nun Ketten von Zeichen statt Zahlen. Wir nehmen an, dass sie
lexikographisch geordnet sind. Die Schlussbedingung muss von der Form
a[i] = b[j] = c[k] fiir geeignete Indexwerte i, j und k sein. Die Wachen definieren wir
nach einem Schema, welches sich in einem friiheren Beispiel bewdhrt hat. Ausserdem
fithren wir drei Sentinels a[n], b[m] und c[l] ein:

a[n},b[m]l,c[l],i,j,k := o0, 00, 0,0,0,0;
DOali] > b[j]—i:=j +1

|blj]1> clk]l=k:=k +1

lclk]> ali]—»i:=i+1
OD

Die Schlussbedingung afi] < b[j] < c[k] < a[i] liefert das Resultat. Die Invariante ist hier
leer, falls man nicht die eher technische Bedingung 0 <i<#» und 0<j<m und
0 <k <! als Invariante betrachtet. Der Algorithmus terminiert nach hdochstens
n + m + | Repetitionsschriften, da bei jedem Schritt genau ein Index erhéht wird.
(Fortsetzung im néchsten Heft)

J. Gutknecht, Institut fiir Informatik, ETH Ziirich

© 1985 Birkhduser Verlag, Basel 0013-6018/85/060011-1281.50 + 0.20/0

Kleine Mitteilungen

Uber einen Wert, der zwischen dem geometrischen und dem arithmetischen Mittel
zweier Zahlen liegt

In dieser kleinen Mitteilung soll gezeigt werden, dass fiir positive reelle Zahlen a und b
(mit a < b) der Wert (e/a)*(b/e)’ zwischen der (b — a)-ten Potenz des geometrischen
und des arithmetischen Mittels von a und b liegt. (Mit e wird wie liblich die Eulersche
Zahl bezeichnet.)

	Elementare Prinzipien der Informatik

