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ELEMENTE DER MATHEMATIK

Revue de mathématiques €élémentaires — Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts

El. Math. Band 40 Nr. 1 Seiten 1-32 Basel, 10.Januar 1985

Drei- und Viereckspaare, fiir deren Drei- und Vierecke
jeweils zwei Steiner-Symmetrisierungen iibereinstimmen

In der euklidischen Ebene sei 4 ein Eibereich (ebener konvexer Korper mit inneren
Punkten) und g eine Gerade. Jede zu g senkrechte Gerade, die 4 in inneren Punkten
trifft, hat mit 4 eine Strecke gemeinsam. Verschiebt man diese Strecken in ihren Gera-
den (Symmetrisierungsgeraden), bis ihre Mittelpunkte auf g liegen, dann erfiillt die
Gesamtheit der so erhaltenen Strecken einen Eibereich A’, die Steiner-Symmetrisierung
(kurz Symmetrisierung) von A4 in Richtung s’ (s’ L g)").

Das Problem der Rekonstruktion eines Eibereichs 4 aus gewissen Symmetrisierungen
von A wurde in jlingerer Zeit in verschiedenen Varianten untersucht [2-5], [8-10]%).
Insbesondere wurde gezeigt [3, 5, 8]: 1. Ein gegebener Eibereich A ist durch mindestens
zwel, jedoch hochstens drei geeignete Symmetrisierungen von A4 eindeutig bestimmt. 2.
Wird ein Eibereich A4 in zwei verschiedenen Richtungen s’ und s” symmetrisiert und
sind die A einbeschriebenen Sehnenziige mit abwechselnd zu s" und s” parallelen Seh-
nen stets Parallelogramme, dann ist A durch seine s'- und s”-Symmetrisierungen 4’, 4”
eindeutig bestimmt.

Die Frage, inwieweit ein vorgegebener Eibereich 4 durch genau zwei verschiedene
Symmetrisierungen A4’, 4" von A bestimmt wird, ist ersichtlich invariant gegeniiber
einer Scherung der Ebene, die das 4 umbeschriebene Parallelogramm aus den s’- und
s” -parallelen Stiitzgeraden von A in ein Rechteck iiberfiihrt sowie gegeniiber einer
senkrechten Affinitdt, die dieses Rechteck auf ein Quadrat abbildet. Ohne Einschrin-
kung wird daher vorausgesetzt, dass A’, 4" zwei Symmetrisierungen eines Eibereichs 4
sind, die zu orthogonalen Symmetrisierungsrichtungen s’, s” gehoren und ein 4 umbe-
schriebenes Quadrat bestimmen (Normalgestalt von A beziiglich s’ und s”, s" L s").
Sind A’, A" zwei verschiedene Symmetrisierungen eines Eibereichs A4, und ist eine da-
von (etwa A”) zur Mittelparallelen m” der beiden s”-parallelen Stiitzgeraden von A4
symmetrisch und halbiert m” nicht alle s'-Sehnen von A4, so wird 4 durch 4" und A"
nicht eindeutig bestimmt. Vielmehr besitzt der aus 4 durch Spiegelung an m” entste-

'Y Nach dem Cavalierischen Prinzip ist 4’ mit 4 flichengieich. — Steiner [6,7] hat diese Symmetrisierung zur
Behandlung des isoperimetrischen Problems eingefiihrt, Blaschke [1] hat ihre Eigenschaften ausfiihrlich behan-
delt. Wird ein Bereich B der euklidischen Ebene von zu g senkrechten Geraden in endlich vielen Strecken
geschnitten, so wird bei der Symmetrisierung von B in Richtung s die Streckensumme gebildet und in der
Symmetrisierungsgeraden symmetrisch zu g verschoben (Fig. 5).

2y Das Problem indert sich nicht wesentlich, wenn anstelle einer Symmetrisierung 4’ ein Bereich B tritt, der von
jeder Symmetrisierungsgeraden in gleichlangen Strecken wie 4 geschnitten wird oder wenn 4" durch die entspre-
chende Sehnenfunktion ersetzt wird. — Rekonstruktionsprobleme verschiedener Art haben seit langem praktische
Bedeutung, so in der darstellenden Geometrie, der Trilateration, der Tomographie und Tomometrie.
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hende Eibereich B wie 4 die Symmetrisierungen 4’ und A4”*). Wir fragen nun: Liegen
(in Normalgestalt) alle Eibereiche A, B mit gleichen s'- und s"-Symmetrisierungen
(A" = B, A" = B”) zueinander symmetrisch beziiglich einer Achse mit Symmetrisierungs-
richtung?

Als Beitrag zu diesem Thema bestimmen wir in Abschnitt 1 alle (einem Quadrat einbe-
schriebenen) Dreieckspaare, deren Dreiecke in den Richtungen s',s” der Quadratseiten
dieselben Symmetrisierungen besitzen. Wir nennen solche Dreieckspaare S-Dreiecks-
paare und ihre Dreiecke S-Dreiecke. Andere Figuren, die moglicherweise dieselben s'-
und s”-Symmetrisierungen wie ein beteiligtes Dreieck besitzen, bleiben ausser Betracht.
Es ergeben sich fiinf verschiedene Typen von S-Dreieckspaaren (Satz 1); diese sind
entweder axial- oder nicht axialsymmetrisch. Die nicht axialsymmetrischen S-Dreiecks-
paare liegen jedoch in einer einparametrigen axialsymmetrischen Schar von S-
Dreieckspaaren.

In Abschnitt 2 wird die weitaus umfangreichere Frage nach den entsprechend erklirten
S-Viereckspaaren angeschnitten. Dabei werden zwei einparametrige axialsymmetrische
Scharen von S-Viereckspaaren angegeben, deren einzelne S-Viereckspaare (bis auf je
ein Exemplar) nicht axialsymmetrisch sind (Satz 2 und Satz 3).

1. Ist eine s'-Symmetrisierung eines Dreiecks gegeben, dann liegen seine drei Ecken auf
drei Symmetrisierungsgeraden s,, s,, s; (Ecken-Symmetrisierungsgeraden). Entweder
sind s, 5,, 5; paarweise verschieden (Moglichkeit I") oder zwei der drei Ecken-Symmetri-
sierungsgeraden — etwa s, und s; — fallen zusammen (Mdoglichkeit I1'). Beziiglich der
s"-Symmetrisierung eines Dreiecks bestehen die entsprechenden Moglichkeiten I” und
II". Ein festes Dreieck fillt daher im Hinblick auf eine s'- und s”-Symmetrisierung
unter genau einen der drei Falle (I',1"), (I',11"), (IT',11") (Fig. 1). Fall (I”, II') ist 4quiva-
lent zu Fall (I, I1").
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Figur 1

3) Beispiel: Man umschreibe einer Ellipse 4 ein Quadrat und spiegle 4 an der Mittelparallelen gegeniiberliegen-
den Quadratseiten.
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Wir betrachten zunichst Fall (I',I"). Wir bezeichnen dabei die neun Schnittpunkte der
sechs verschiedenen Ecken-Symmetrisierungsgeraden s;,5,"(i = 1,2, 3) wie in Figur 1 mit
indizierten Grossbuchstaben. Auf jeder der vier s'- bzw. s”-Stiitzgeraden s,, 55,5, 55" liegt
genau eine Dreiecksecke. Folglich liegt stets mindestens eine Ecke im Schnitt einer s’'-
mit einer s”-Stiitzgeraden. Die s'-Symmetrisierung eines Dreiecks aus Fall (I',I") ist
daher ein Drachenviereck; von seinen Ecken liegen zwei auf s,, und je eine Ecke liegt
auf s, bzw. s,. Entsprechendes gilt fiir seine s”-Symmetrisierung. Umgekehrt gehort
jedes Dreieck mit Drachenvierecken als s'- und s”-Symmetrisierungen zu Fall (I',1").
Zu untersuchen ist nun, wann zwei verschiedene Dreiecke aus Fall (I',1”) dieselben s’-
und s”-Symmetrisierungen besitzen. Dafiir ist notwendig und hinreichend, dass s s"
(i = 1,2,3) Ecken-Symmetrisierungsgeraden fiir beide Dreiecke sind und ihre s,-(und
s,-)Sehnen gleiche Linge besitzen.

Die Ecken der dafiir in Frage kommenden Dreiecke liegen notwendig in der Punkt-
menge {4,,A,, A,, B, B,, B,,C,,C,,C,}. Es handelt sich also um die sechs Dreiecke:

4,B,C,, A,C,B;, BA,C,, BG4, C,B,4,, C,A,B,. (1)

Aus den Dreiecken (1) lassen sich 15 verschiedene Paare bilden. Jedes dieser Dreiecks-
paare lidsst sich ohne Bezeichnung seiner Ecken betrachten. Die Bezeichnung seiner
Ecken kann dann auf vier verschiedene Arten nach Figur 1 erfolgen, je nachdem, wel-
che Seite des dem Paar umbeschriebenen Quadrats unten liegt. Auf diese Weise erhilt
man ein und denselben Paar-Typ in verschiedenen Bezeichnungen. Wie man leicht fest-
stellt, lassen sich die aus (1) gebildeten 15 Dreieckspaare in die folgenden fiinf Gruppen
(2a)—(2e) derart aufteilen, dass jede Gruppe nur ein und denselben Paar-Typ (Typ A bis
Typ E, jedoch in verschiedenen Bezeichnungen) enthélt:

(4,B,C, A,C,Bs), (4,B,Cs, B4,C;), (B,C,4,,C By4y), (C,B,4,,C A4,B,), (2a)
(4,C,By, C\B,A4,), (4,B,Cy, B\C4,), (4,B,C;, C\4,By), (B 4,C;, C,B,4,), (2b)
(B,C,4,,C A4,B,), (4,C,B,, B,A,C)), (2c)
(4,C,By, C\4,B)), (A4,C,By, B,C4,y), (B 4,Cs, B,C,4;), (B4,C5, C\A4,By), (2d)
(4,B,C;,C,B,A4,). (Ze)

Wir reprisentieren im folgenden Typ A bis Typ E durch die jeweils ersten Dreiecks-
paare aus (2a)—(2e) und ermitteln die Bedingungen, unter denen die Léangen ihrer s,-
(und s,-)Sehnen iibereinstimmen (Horizontal- und Vertikalbedingungen). Da die
Dreiecke jedes Dreieckspaars aus (2a)—-(2e) bereits dieselben Ecken-Symmetrisierungs-
geraden besitzen, kennzeichnen diese Bedingungen die S-Dreieckspaare aus Fall (I',1”).
Dabei sei das einem Dreieckspaar umbeschriebene Quadrat ohne Einschriankung ein
Einheitsquadrat. In diesem habe die Strecke 4,4, die Linge x und die Strecke 4,B, die
Lange y.

Typ A (Fig.2a): Bei einem Dreieckspaar (4,B,C;, 4,C,B;) lassen sich weder die Hori-
zontal- noch die Vertikalbedingung erfiillen. Es gibt daher kein S-Dreieckspaar
(4,B,C;, A,C,By).

Typ B (Fig.2b): Berechnet man unter Verwendung der Hilfspunkte 1,2,3,4 die Lingen
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der Strecken B,1, B,2, B,3, 4,4, so findet man der Reihe nach 1 — y, x(1 — ), y(1 — x),
1 — x. Horizontal- und Vertikalbedingung lauten dann iibereinstimmend

xy+x+y—2=0. 3)

Ein S-Dreieckspaar (4,C,B,, C,B,A,) ist folglich nach (3) dadurch gekennzeichnet, dass
der Punkt B, im Einheitsquadrat 4,C,C,A4, auf der durch (3) gegebenen gleichseitigen
Hyperbel 4 liegt*). Der Durchschnitt zweier S-Dreiecke A4,C,B;, C,B,A, ist ein Fiinfeck.
Zwei S-Dreiecke 4,C,B,, C,B,A, liegen dreifach perspektiv. Die Perspektivititszentren
sind der Punkt P:= C,4;n C,B, sowie die Fernpunkte P, P” der Symmetrisierungs-
richtungen s',s”. Die zugehorigen Perspektivitdtsachsen p,p’,p” inzidieren jeweils mit
ihren Perspektivitdtszentren (Fig.2b). Ein S-Dreieckspaar (4,C,B,, C,B,A;) ist genau
dann axialsymmetrisch, wenn A4,, B,, C, kollinear liegen; A4,C, ist Symmetrieachse. Die
Gesamtheit aller S-Dreieckspaare (4,C,B,, C,B,4,) erfiillt eine einparametrige, zu 4,C,
axialsymmetrische Schar.

Typ C (Fig.2c): Horizontal- und Vertikalbedingung fiihren beide auf y = x. Demnach
ist ein S-Dreieckspaar (B,C,A4,,C,4,B;) dadurch gekennzeichnet, dass B, auf der Dia-
gonale A4,C, des Einheitsquadrats 4,C,C;4, liegt’). Zwei S-Dreiecke B,C,4,, C,A4,B,
besitzen sogar drei gemeinsame Symmetrisierungen (gemeinsame s’-, s”- und C,4,-Sym-
metrisierungen) und liegen dreifach perspektiv. Die Perspektivitdtszentren P,P’,P"
sind die (kollinearen) Fernpunkte der drei Symmetrisierungsrichtungen. Der Durch-
schnitt zweier S-Dreiecke B,C,4,, C,4,B,; ist ein Sechseck, dessen Diagonalen auf den
(kopunktalen) Perspektivititsachsen p,p’,p” liegen. Jedes S-Dreieckspaar (B,C,A4.,,
C\A4,B;) liegt axialsymmetrisch zu p = A,C, sowie schiefsymmetrisch zu p’ beziiglich
der s’-Symmetrisierungsrichtung und schiefsymmetrisch zu p” beziiglich der s”-Sym-
metrisierungsrichtung. Zwei kongruente gleichseitige Dreiecke mit gemeinsamem Mit-
telpunkt, die um /3 gegeneinander verdreht sind, bilden ein S-Dreieckspaar vom
Typ C.

Typ D (Fig.2d): Horizontal- und Vertikalbedingung fiihren beide auf 2y — 1 = 0. Da-
mit liegt jedes S-Dreieckspaar (4,C,B,, C,4,B,) axialsymmetrisch zu B, B,. Liegt B, aus-
serhalb des Einheitsquadrats 4,C,C,4, auf B,B,, so wird ein S-Dreieckspaar vom Typ
E bestimmt, das nicht in Normalgestalt vorliegt. Der Durchschnitt zweier S-Dreiecke
A,C,B;, C,A,B, ist ein Drachenviereck. Zwei S-Dreiecke 4,C,B;, C,A4,B, liegen in trivia-
ler Weise zweifach perspektiv. Die Perspektivitdtszentren P’, P” sind die Fernpunkte
der beiden Symmetrisierungsrichtungen. Die zugehorigen Perspektivitdtsachsen p’,p”
inzidieren mit der Symmetrieachse B, B,; P’ inzidiert mit p’, P" inzidiert nicht mit p".
Typ E (Fig.2e): Horizontal- und Vertikalbedingung lauten beide 2y — 1 = 0. Folglich
liegt jedes S-Dreieckspaar axialsymmetrisch zu B, B;. Liegt B, ausserhalb des Einheits-
quadrats A4,C,C,A4, auf B,B,, so wird ein S-Dreieckspaar vom Typ D - jedoch nicht in
Normalgestalt — bestimmt. Der Durchschnitt zweier S-Dreiecke 4,B,C;, C,B,4, ist ein
Drachenviereck. Zwei S-Dreiecke A4,B,C;,C,B,A, liegen wie bei Typ D in trivialer
Weise zweifach perspektiv.

%) Liegt B, auf der Hyperbel A ausserhalb des Quadrats 4,C;C;A5, so wird ebenfalls ein S-Dreieckspaar vom
Typ B bestimmt, jedoch nicht in Normalgestalt.

%) Liegt B, auf der Geraden 4,C; ausserhalb des Quadrats 4,C;C343, so wird ebenfalls ein S-Dreieckspaar vom
Typ C bestimmt. Das beiden Dreiecken umbeschriebene Quadrat ist jedoch kein Einheitsquadrat.
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Wir betrachten nun Fall (I',I1”) (Fig. 1). Ein Dreieck aus Fall (I',I1”) besitzt als s’-Sym-
metrisierung ein Drachenviereck und als s”-Symmetrisierung ein gleichschenkliges
Dreieck. Umgekehrt liegt jedes Dreieck mit solchen s’- und s”-Symmetrisierungen in
Fall (I',I1"). Man findet unschwer: Zwei verschiedene Dreiecke aus Fall (I',11”) bilden
genau dann ein S-Dreieckspaar, wenn sie zur Mittelparallelen von s, und s; symme-
trisch liegen (Fig.2f). Damit existieren im Einheitsquadrat 4,C,C;4, genau zwei S-
Dreieckspaare aus Fall (I',I1"), die zur Mittelparallelen der Quadratseiten 4,C, und
A4,C, = A,C, symmetrisch liegen (Typ F). Figur 2f stellt eine zwischen Figur 2d und
Figur 2e vorhandene Grenzlage dar.

In Fall (Il', IT") existieren ersichtlich keine S-Dreieckspaare.

Zusammenfassend gilt:

Satz 1. Es gibt genau fiinf verschiedene Typen (Typ B-Typ F) von S-Dreieckspaaren in
Normalgestalt (dargestellt in Fig. 2b-2f, beschrieben im Text). Typ B-Typ E besteht aus
Je einer axialsymmetrischen einparametrigen Schar von S-Dreieckspaaren; Typ F besteht
aus zwei S-Dreieckspaaren. Ein S-Dreieckspaar vom Typ C-Typ F ist axialsymmetrisch;
ein S-Dreieckspaar vom Typ B ist nur dann axialsymmetrisch, wenn die Dreiecksecken
A,, B,,C, kollinear liegen.

2. Sind eine s'- und eine s"-Symmetrisierung eines Vierecks gegeben, dann liegen seine
Ecken auf den acht Ecken-Symmetrisierungsgeraden s, s"(i =1,...,4).
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Wir betrachten im folgenden nur den allgemeinen - bei Dreiecken mit (I',1”) bezeichne-
ten — Fall, in dem s/ und s5,"(i = 1, ..., 4) jeweils paarweise verschieden sind; s/,s; seien
die s'-parallelen und s,; s,’die s"-parallelen Stiitzgeraden eines Vierecks. Die 16 Schnitt-
punkte der acht Ecken-Symmetrisierungsgeraden seien wie in Figur 3a mit indizierten
Grossbuchstaben bezeichnet. Das Viereck 4,D,D,A4, sei ohne Einschrinkung ein Ein-
heitsquadrat. In diesem seien x,y,u,v der Reihe nach die Lingen der Strecken
A,A,,A\B,, A,A,,C\D,.

U| D‘

Gy Cs
NN

Z:’

B.

A,

Figur 3a

Unser Ziel ist nicht die Ermittlung aller Viereckspaare, bei deren Vierecken die s’- und
s"-Symmetrisierungen jeweils libereinstimmen (S-Viereckspaare, bestehend aus S-Vier-
ecken). Wir geben lediglich im vorliegenden allgemeinen Fall Beispiele fiir S-Vierecks-
paare an, wobei die Ecken der betrachteten Vierecke der Punktmenge
M:={A,..., A, ....D,, ..., D} angehOren. Zwei solche Vierecke bilden ein S-Vier-
eckspaar, wenn ihre s,- und s,- sowie ihre s,- und s;-Sehnen gleiche Léinge besitzen
(Horizontal- bzw. Vertikalbedingungen). Ein Viereck wird angegeben durch Hinterein-
anderschreiben seiner Ecken in der Reihung, in der diese bei einer Durchlaufung des
Vierecks aufeinanderfolgen.

Wir bemerken, dass ein Eckenquadrupel aus M (mit genau einer Ecke auf jeder Ecken-
Symmetrisierungsgeraden) noch kein Viereck bestimmt, und ein Paar verschiedener
Eckenquadrupel noch kein Viereckspaar festlegt. Durch Abzihlen findet man 80 we-
sentlich verschiedene Eckenquadrupelpaare, die bei vollstindiger Bearbeitung des all-
gemeinen Falles auf alle Arten zu Viereckspaaren zu ergidnzen und sodann auf S-Vier-
eckspaare zu untersuchen sind. Diese Bemerkung skizziert die umfangreiche Aufgabe,
die im Auffinden aller S-Viereckspaare besteht.

Wir beginnen nun die Untersuchung von Viereckspaaren auf S-Viereckspaare.

S-Viereckspaare (4,C,D,B,, B,D,C,A,) (Fig. 3a, Fig. 3b): Die kennzeichnenden Horizon-
tal- und Vertikalbedingungen lauten

... y=>0-—x—-u)l-v), S55... v=(_01—-x—u)1-y),
5... x=(0—y—v)X1—u), S50 u=({1—-y=v)1-x). 4)
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Diese Bedingungen sind in den Figuren 3a und 3b als flichengleiche Rechtecke inter-
pretierbar. Das Gleichungssystem (4) in den Unbekannten x, y,u, v besitzt die Losun-
gen

u=x,y=y mit xy—x—y+3;=0, ©)

die eine einparametrige Schar von S-Viereckspaaren (4,C,D,B,, B,D,C,A4,) festlegen.
Im Anschluss an (5) findet man unmittelbar die folgenden Aussagen, die wir in Satz 2
zusammenfassen:

Satz 2. a) Die S-Viereckspaare (A,C,D,B,, B,D;C,A,) sind in Normalgestalt unter Be-
achtung von u= x und v=y bestimmt, wenn der Punkt B, im Gebiet des Quadrats
A,D,D,A, auf der durch xy — x — y + 1= 0 gegebenen gleichseitigen Hyperbel h wandert;
D,D, und D,A, sind die Asymptoten von h. Die so festgelegte einparametrige Schar der
S-Viereckspaare (A,C,D,B;, B,D,C,A,) liegt symmetrisch zur Quadratdiagonale A,D,.
b) Die Vierecke der S-Viereckspaare (A,C,D,B;,B,D,C,A,) sind Parallelogramme, die
den Mittelpunkt des Quadrats A,D,D,A, als gemeinsamen Mittelpunkt besitzen und aus-
serdem in Richtung B,C, und in Richtung C,D, gemeinsame Symmetrisierungen aufwei-
sen’).

¢) Ein S-Viereckspaar (A,C,D,B;, B,D,C,A,) ist genau dann axialsymmetrisch, wenn
A,, B,, D, kollinear liegen.

d) Mit jedem S-Viereckspaar (A,C,D,B,, B,D;C,A,) ist auch (A,C,D,B,,C,D,B,A;) ein
S-Viereckspaar’), und (A,C,D,B;,B,D,C,A, C,D,B,A,,D,C;A,B,) ist ein aus Paral-
lelogrammen bestehendes S-Vierecksquadrupel.

Nach Satz 2 gibt es also Parallelogrammpaare mit gleichen Symmetrisierungen der Par-
allelogramme in vier Richtungen und Parallelogrammgquadrupel mit gleichen Symmetri-
sierungen der Parallelogramme in zwei Richtungen.

S-Viereckspaare (4,D,C,B,, B,D;C,A,) (Fig.3a,4): Die kennzeichnenden Horizontal-
und Vertikalbedingungen lauten:

1.._
si.. 1—xy=x+X—(l—)Q, (62)
-V
1_
sl 1—u—x(1—v)=u+1%—:—y1)-, (6b)
1__
i 1—xp =y TP (6¢)
1—u
1_
;... 1—v——y(1——u)=v+—lf(1—:—;—2. (6d)

6) Zwei kongruente Quadrate mit gemeinsamem Mittelpunkt, die um /4 gegeneinander verdreht sind, bilden
ein S-Viereckspaar vom Typ (4,C,D4B3, B D3CyA4,).

" Die Ermittlung aller S-Viereckspaare (4,C,D, By, C,D,B,4;) aus den zugehdrigen Horizontal- und Vertikal-
bedingungen fiihrt erneut auf (5). - Die Ermittlung der S-Viereckspaare (C;D,B443, B|D;C44;) und der S-Vier-
eckspaare (4,C,D4B;, D,C3A4B,) fiihrt auf u = x,v = y. Damit ist jeweils eine zweiparametrige Schar von S-Par-
allelogrammpaaren bestimmt; jedes dieser Paare liegt axialsymmetrisch zu den Mittelparallelen gegeniiberliegen-
den Seiten des Quadrats 4,D;D,A,.
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Aus (6a) erhilt man

l_ i
v=T:—x£:—fy— mit 1-x — xp +0F), )

und aus (6¢) folgt

1 — —
uzi—:;y:—f; mit 1—y—xy#0. 8)
Ersetzt man u und v in (6b) und (6d) durch (7) und (8), so folgt nach einfacher Rech-
nung die einzige Bedingung:

xy+x+y—1=0, 9

Figur 4

die eine einparametrige Schar von S-Viereckspaaren (4,D,C,B,, B,D,C,A,) festlegt. Die
weitere Diskussion dieser S-Viereckspaare aufgrund der Gleichungen (6a) bis (9) liefert
die Aussagen des folgenden Satzes:

Satz 3. a) Die S-Viereckspaare (A,D,C,B,, B,D,C,A,) sind in Normalgestalt bestimmt,
wenn der Punkt B, im Gebiet des Quadrats A,D,D,A, auf der zur Quadratdiagonale A,D,
symmetrischen Kurve 4.Ordnung c¢ (9) wandert und sich dabei der Punkt
By(x:=1—wu,y:=y) auf der Kurve 4.Ordnung ¢,

P+ E-Dy+x—-1=0 (10)
8 Fiir 1 — x — xy = 0 folgt aus (6a) y(1 — x) =0 und daraus s{ = s; oder s; = s; im Widerspruch dazu, dass

si, ..., 84 und sy, ..., 54 paarweise verschieden vorausgesetzt sind. Folglich ist 1 — x ~ xy # 0. Entsprechend folgt
in@®1—y—xy=+0.
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und der Punkt C, (X: = x,y:=1—v) auf der Kurve 4.Ordnung ¢
X+ -1 +5—-1=0 (11)

bewegt, ¢ entsteht aus ¢ durch Spiegelung an der Quadratdiagonale A,D,. Die so festge-
legte einparametrige Schar der S-Viereckspaare (A,D,C;B,, B,D,C,A,) liegt symmetrisch
zu A,D,.

b) Bei jedem Viereck eines S-Viereckspaars (A,D,C;B,, B,D;C,A,) stimmen die Ldngen
der sy- und sy-Sehne sowie der s;- und si-Sehne iiberein.

c¢) Die Diagonalenschnittpunkte der Vierecke eines S-Viereckspaars
(A,D,C;B,, B,D,C,A,) inzidieren und liegen auf der Kurve 4.0Ordnung

QE-1YQ2p -1y +26+2n-3=0. (12)
Dabei sind &,y die Abstinde des Diagonalenschnittpunkts S(E,n) von A\D, bzw. A,A,.

Wandert B, auf der Kurve 4.Ordnung ¢ und verlisst B, das Gebiet des Quadrats
A,D,D,A,, dann wandern schliesslich alle Punkte B,, B;, C,,C, in das Aussengebiet von
A,D,D,A,. Dabei ergeben sich weitere — nicht notwendig konvexe — S-Viereckspaare,
die jedoch keine Normalgestalt aufweisen (das einem dieser S-Viereckspaare umbe-
schriebene Rechteck mit s’- und s"-parallelen Seiten ist kein Einheitsquadrat). Werden
die Bezeichnungen aus Figur 3a sinngemiss libernommen, dann findet man S-Vier-
eckspaare (4,D,C,B,,C,B,D,A,) sowie S-Viereckspaare (4,C,D,B,,D,B,C,A4,) (Fig.5).

D,

Cy
B,

A

Schlussbemerkungen: 1. Die Horizontal- und die Vertikalbedingungen fiir ein S-Vier-
eckspaar sind nicht stets vertrdglich. Werden jedoch die Vierecke «symmetrisch» zum
Quadrupel (4,, B,, C;, D,) angeordnet (Fig.3a), so kann man — wie in Satz 2 und Satz
3 - einparametrige Scharen von S-Viereckspaaren finden. Bei «symmetrischer» Anord-
nung der Vierecke zu den Mittelparallelen gegeniiberliegender Quadratseiten sind sogar
zweiparametrige Scharen von S-Viereckspaaren moglich (siehe Fussnote 7 und
Fig.3b). Sucht man allgemein Paare von n-Ecken (n > 3) mit gleichen Symmetrisie-
rungen in zwei verschiedenen Richtungen, so ergeben die n — 2 Horizontal- und die
n — 2 Vertikalbedingungen ein System von 2(n — 2) (im allgemeinen nichtlinearen)-
algebraischen Gleichungen mit ebenso vielen Unbekannten, dessen Losbarkeit zu un-
tersuchen ist.
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2. Die vorgestellten einparametrigen Scharen von S-Dreieckspaaren und S-Vierecks-
paaren hingen von der gewiahlten Normalgestalt ab. Bei Verwendung anderer Normal-
gestalten entstehen dquivalente einparametrige Scharen. So ldsst die Schar der S-Vier-
eckspaare (4,C,D,B,, B,D,C,A,) aus Satz 2 unter Beibehaltung orthogonaler Symmetri-
sierungsrichtungen s’,s” folgende Version zu: Werden (siche Fig.3a) die Lingen der
Strecken B,B,, B,D, zu 1 normiert und werden B, als Ursprung eines kartesischen xy-
Systems, B, als Einheitspunkt der x-Achse und D, als Einheitspunkt der y-Achse ge-
wihlt, dann laufen bei den S-Viereckspaaren (4,C,D,B,, B,D,C,A,) die Ecken C,,C,, 4,
der Reihe nach auf den Hyperbeln xy +y =2, xy =2, yx + x = 2. Die Schar der
S-Viereckspaare (4,C,D,, B,, B,D,C,A,) ist auch in dieser Version erzeugbar. Man kann
diese Erzeugung — wie Erzeugungen aufgrund anderer Normierungen — als kinemati-
schen Satz formulieren. O. Giering, Miinchen
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