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Kleine Mitteilungen

On the Limits of Simple Means
1. Let{a,} (n=1,2,...) be an infinite sequence of positive real numbers. If
a, — A as n — o0, then both the arithmetic mean
Ay(@)= (@ +ay+...+a,)/n
and the geometric mean
Gu(@)=Varas ... a,

converge to A. But when a, is not convergent, it does not necessarily follow
that G,(a) — 4 from A,(a) > A < co. This is easily seen, for instance, from
the example a, =2+ (—1)". So we may naturally ask when it really does. An
obvious sufficient condition to ensure that G,(a) - 4 when A4,(a) = 4 will
be H,(a) — A, where H,(a) is the harmonic mean

1
H,(a)=n (—1-+—+ +—1—) :
aj ar ay
That this is not necessary at all can be seen e.g. from
1

a,=1(n=+2", —n—(n=2"), (1)
in which case 4,(a) = 1 and G,(a) = 1 but H,(a) — —;—
It is to be remarked that lim A4,(a) =lim G,(a) =lim H,(a) =4 < oo does

n— oo n— o0 n— oo

not imply a, — A. Consider e.g. a,= 1 if n* 2", =2 if n=2". However, the
following theorem holds.

Theorem 1. Let {a,} (n=1,2,...) be an infinite sequence of positive real
numbers, and suppose that

lim 4,(a) =4 < o0, (2)
n-> o0
liminfa,> 0. (3)
n-> oo
Then
lim G,(a) =4 (4)
n— oo

if and only if for all positive constants p, q
lim H,(pa+q)=pA+gq. (5)
n— oo

The assertion is invalid if we drop the extra condition (3), or admit q =0 or
A= oo0.
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We notice that H,(a) -4 < oo does not always imply H,(pa+q) — pA+gq.
In fact we can obtain the theorem below from which Theorem 1 can easily be
deduced.

Theorem 2. Let {a,} (n=1,2,...) be a bounded sequence of positive real
numbers such that

lin(}0 H,(a)=A>0 (A= oo included). (6)
Then
lim H,(pa+q)=pA+gq (7

for all positive constants p, q, if and only if
lim G,(a) =A4. 8)

The assertion is no longer true if A = Q.
2. For the proof of Theorem 2 we need the following

Theorem3. Let {a,} (n=1,2,...) be an infinite sequence of positive real
numbers such that

lim 4,(a) =1lim G,(a) =4 < ©. 9)
n- oo n-— oo

Then, for all positive constants p and q,

lim H,(pa+q)=pA+q.
n-+ oo

Here we cannot include q=0.
Before proving the theorem we state a lemma below.
Lemmal. Ifa,=0(k=1,2,..., n), then

Vad+a)(+a)...(1+an =1+ Gn(a), (a)
1 & ag A,,(a)
— > = : (b)

ni=11+a, 1+4,(a)

Proof. Although these inequalities are known and proved easily by induction,
we find it interesting to show another simple way. Let us put a; = tan?6, in
(a) and (b). Then, after simplification, we see that (a) and (b) are equivalent
to

n n
Veos?6, - cos?0,... cos?8, + Vsin?6, - sin?b,... sin?d, =1 (10)

and
-1

Btz ) "
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respectively Now (11) 1s self-evident and (10) follows from

Hooszé?k +Vﬂsm 6y S——— Zcos 0k+——— Z sin%0,=1.

Proof of Theorem 3. From (a) we have inequalities

n 1/n
14+ Gu(a) = {kLII (1+ ak)} =1+4,(a),

which imply together with (9) that

1/n
lim {H(1+ak)} =1+4. (12)
n— oo

Thus we obtain from (9) and (12),

1 n ax ) ) ( n ak )l/n A
liminf — =1 f = )
i & =\ S T

On the other hand, from (9) and (b), we get

1 & a X An(a) A
li — =1 = .
lg—l»sogp zl 14+ ay P 1+4,(a) 1+4
Hence
R R A
lim — > —2% _ , (13)

n-o N k=1 1+ ai 1+ 4
1.e.
1 & 1 1
lim — = .
fim Y T T T+A

The rest part of the theorem follows from the example (1).
Proof of Theorem 2. First we need an inequality due to Henrici [1] [2,
Chap. 3].
Lemma2.1f0< ar=1(k=1,2,...,n), then
1 & 1

— (14)
n & 1+ak 1+ Ga(a)

Since we may assume, without loss of generality, 0 < a, = 1 in Theorem 2, it
follows from (7) and (14) (with p = ¢ =1) that

limsup G,(a) =A. (15)

n— oo

On the other hand, from (6) we have
liminf G,(a) = 11m mf H,(a)=4,

n—oo
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which implies together with (15) that
lim G,(a) =4, (A= oo being included)
n-— oo

i.e. the “only if” part of Theorem 2.

To prove the “if” part we shall make the substitution a,=1/b, in
Theorem 3. Then (13) becomes

lim L3 ! —(1+—1—).l
"—*wnk=]1+bk A ’

which proves (7). That we cannot include 4 = 0 in this theorem may be seen
from

a,=1(n+v), —i—(n=v2), (16)

in which case Ilim G,(a)=1lim H,(a)=0, but lim H,(pa+q)=2 for
p=q=1_ n— oo n-— o n— oo

Proof of Theorem 1. Finally we deduce Theorem 1 from Theorem 2. In fact,

by the substitution a,= 1/b, in Theorem 2, we obtain the same assertion as

Theorem 1 for b, in place of a,. That we cannot drop (3) in Theorem 1 may

be seen also from (16) where lim 4,(a)=1, lim G,(a)=0, while
n-— oo n-— Qoo

lim H,(pa+q)=p+q for all positive constants p, q. Also example (1)
n— oo

shows that g = 0 should be excluded in Theorem 1. On the other hand, the
example a,=n (n even), 1 (n odd) shows that we have to exclude 4 = o0
because in this case

lim A4, (a) =lim G,(a) = 0,
n—aoo n-— oo

while
lim H,(pa+q)=2(p+q)
n->oo

for all p, ¢ > 0. Thus our proof of Theorem 1 is complete.
Takeshi Kano, Okayama University, Okayama, Japan
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Die Eulersche Formel cos¢ + i - sing = e'®

Diese wichtige Formel wird iiblicherweise mit Hilfe der Potenzreihen bewie-
sen. Es ist aber wiinschenswert, sie schon mdglichst frith zur Verfiigung zu
haben, und daher mag der folgende Beweis von Interesse sein, welcher
lediglich einfache Tatsachen liber komplexe Zahlen, trigonometrische Funk-
tionen und Grenzwerte verwendet.

Fiir alle z sei exp z als Limes von (1 + i) definiert. Es ist

n
. . n l n
cos¢+i~sm¢=(cos—?-+i-sm—z) =(l+——2—) (1—=w)".
n n n

Der erste Faktor geht gegen e'?, und wir miissen zeigen, dass der zweite
gegen 1 geht. In ihm ist mit o = ¢/n

(1—cosa) +i (o0 —sina)
1+io '

Wir verwenden
2
R,
0=1-—cosa=2" sin’*—=—.
2 2

Von jetzt ansei || < 1,d.h. n > |p|. Wegen |a| = |tana| folgt

3
o —sina| = |a| (1—cosa) = !O;‘
und damit
a*/4 + af/4 _ 0*
|w|? == 7 =o* undschliesslich |w|= el

Die letzte Abschitzung fiihrt auf lim (1—w)"= 1.
Fiir n > ¢? ist naimlich nme

nlwl __ ¢

l—n|w| n-—9¢

|(1—w)"—11§211nw|"= .

Man bemerkt noch, dass aus dem Beweis die Existenz des Grenzwerts

lim (1 +—’~’-l‘f’-) folgt.

n—aoo

D. Laugwitz, Technische Hochschule Darmstadt
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