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Zum Fundamentalsatz der Algebra

Bewiesen wird (wieder einmal):

Jede ganz-rationale Funktion f: <E -+ <C9

f(z) zn + axzn-l + + an9 a(E(C9 n^l9
hat mindestens eine Nullstelle.

Der hier vorgestellte Beweisx) basiert auf einem kombinatorischen Hilfssatz,
für dessen Formulierung einige Bemerkungen erforderlich sind.
Ein Dreieck Ao sei in Teildreiecke A zerlegt,2) und alle Ecken seien mit einer
der Ziffern 1, 2, 3 signiert. Ein Teildreieck mit paarweise verschiedenen
Eckensignierungen heisst vollständig signiert.
Alle Teildreiecke seien im Sinne der (positiven) Orientierung der Ebene
gleich orientiert. Dies induziert eine Orientierung der Teildreieckseiten und
damit auch des Randes von __.0.

Figur 1

Definiert man Bewertungen für orientierte Teildreiecke A:

a(J)
+ 1 für das Signierungstripel (1, 2, 3)
— 1 für das Signierungstripel (1, 3, 2)

0 sonst

und orientierte Teildreieckseiten s:

«(*)
+1 für das Signierungspaar (1,2)
-1 für das Signierungspaar (2, 1)

0 sonst,

1) Nach einem am 5. 3.1981 auf der Bundestagung für Didaktik der Mathematik in Darmstadt
gehaltenen Kurzvortrag. Andere Zugänge auf kombinatorischer Basis findet man in [1], [2].
2) Die Vereinigung der Teildreiecke ist das Dreieck, und je zwei Teildreiecke haben entweder
keinen Punkt oder eine Ecke oder eine Seite gemeinsam.
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so gilt der folgende

Hilfssatz:3) In jedem in Teildreiecke A zerlegten Dreieck Ao sind die Summen
der Bewertungen der Teildreiecke und der Bewertungen aller Teildreieckseiten
aufdem Rand von Ao gleich:

I<x(_f)= Z «(*)•
_-c__0 jcRandJo

Beweis: Genau die Teildreiecke mit (1, 2, 3) oder (1, 3, 2) haben genau eine
Seite mit (1,2) oder (2,1). Umläuft man alle Teildreiecke bei positiver
Orientierung und addiert die a (_?), so erhält man

_>>(*)= Y «(*)•
.c Rand/In

Die Summe der Teilsummen je Teildreieck A ist Y a (A).

Folgerung: Ist Y * 0, so gibt es mindestens | Y I vollständig signierte
Teildreiecke, d.h. | YI mehr von der einen als von der anderen Sorte (vgl. Fig. 1).

Beweis des Fundamentalsatzes: Mit der Annahme f(z) 4= 0 für alle z e C
läßt sich eine Signierung der z e C definieren (0 __i arg w <2n):

1, falls 0 ^ arg/(z) < j n

m(z)= 2, falls f n __i arg/(z) < -f n

3, falls -j n ___ arg/(z) < 2 ti

Sei Jo ein gleichseitiges Dreieck in der komplexen Ebene, dessen Mittelpunkt

der Nullpunkt ist, mit Inkreisradius r9 über den später verfügt wird.
Mit Hilfe der Mittelparallelen wird rekursiv eine Zerlegungsfolge von __f0 mit
kongruenten Teildreiecken konstruiert: (Ak} (vgl. Fig. 2).

0 Figur 2

Wie im folgenden gezeigt wird, gibt es einen Index k0 (abhängig von der
Funktion / und r), so daß für alle Zerlegungen mit k __= ko vollständig
signierte Teildreiecke existieren.
Damit lassen sich drei Eckpunkt-Folgen je gleicher Signierung definieren:

<z<*>>, m-1, 2, 3.

3) Dies ist eine verschärfende Verallgemeinerung des Spernerschen Lemmas: Y a(5)»l.
sc Rand-fo
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Da die <zp} — z^>, j=¥p9 nach Konstruktion Nullfolgen sind, haben die
<zfm)) einen gemeinsamen Häufungspunkt zHeA0. Daher gibt es drei
Teilfolgen <Ci > der <ziw)>, die gegen zH konvergieren. Genau eine hat
dieselbe Signierung wie zH. Dann konvergiert mindestens eine der beiden anderen

Funktionswertfolgen {f(Öm))} - ihre Signierung sei ra* - nicht gegen
f(zH) * 0, da für alle i e N gilt:

\f(Cr))-f(zH)\^\f(zH)\-j]/3>0
(vgl. Fig. 3)4), und wir haben einen Widerspruch zur Stetigkeit von / in zH.
Es bleibt zu zeigen, dass für jedes k *__; /c0 vollständig signierte Teildreiecke
existieren.

tm'

r {^i
M«,) ^

l*tzH)l
1

V-5

* /
} / / fr\ 11

fl«',3')

Figur 3. Hier ist —- _s arg/(z/f) < —-, m (zH) 1, m* 3.

Die Argumente von / und der Vergleichsfunktion /* mit /* (z) zn
unterscheiden sich für alle z mit «grossen» Beträgen nur «wenig». Daher wird
zunächst Yi a* (s) bezüglich /* berechnet und daraus _£ a (s) bezüg-

_,cRand_-o jcRandJo
lieh/gewonnen.
Nun präzisieren wir. Die Zerlegung aller (mod 2 n reduzierten) arg /* (z),
z*0:

(/n-1)-—Sarg/* (z) argz"<m • — m= 1,2,3, (1)

4) Dies lässt sich mit einigem rechnerischen Aufwand auch rein analytisch zeigen.
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legt für die zugehörigen argz die folgende Zerlegung nahe:

/. .x
271 2tt

(j - 1) •— _=i argz <j •—, l^j^3n. (2)3n 3n

Dann gilt für jede Signierungsziffer ra:

argz € Argumentbereich (2) mit j ra mod 3

=> arg/* (z) g Argumentbereich (1). (3)

Zur Vereinfachung setzen wir jetzt für zx, z2 4= 0

£ (zj, z2) min (| argzi - argz21, 2 ti - | arg zx - arg z21).

Offensichtlich lässt sich r e 1R+ so wählen, dass für alle z g Rand _d0

*(z",/(z))<-| (4)

ausfällt, und dann durch Wahl von /c0 e N die Zerlegung von _d0 so fein
machen, dass für alle k^ ko und alle Nachbarecken z', z" auf dem Rand von
A0 gilt

*«¦'.'•><-£. («)

Wird der Rand von __f0 positiv orientiert durchlaufen, so haben je zwei
aufeinanderfolgende Ecken z', z" wegen (3), (5) entweder gleiche oder im Sinne
der zyklischen Ordnung 1, 2, 3 aufeinanderfolgende Signierungen, und zu
jedem Argumentbereich (2) gibt es wegen (5) mindestens zwei Randecken.
Da bis auf Ziffernwiederholungen genau «-mal der Signierungszyklus 1, 2, 3

durchlaufen wird, haben wir

Y a* (s) n.
se Rand_.o

Wird nun die /*-Signierung durch die /-Signierung ersetzt, so behält von
den zu jedem Bereich (2) vorhandenen Randecken wegen (4) und (5)
mindestens eine ihre Signierung (vgl. Fig. 4). Höchstens in den Bereichen

2n n 2n n r ^ 2n n
j. <argz<y. + =(j+iy3n 6n 3n 6n 3n 2n

können wegen (4) Signierungsänderungen auftreten, aber nur so, dass die /*-
und die /-Signierung beide zu ra=ymod3 oder ra=y' + lmod3 gehören
(vgl. Fig. 4).
Durchlaufen wir wieder den Rand von Ao wie vorher, so werden n getrennte
maximale Teilfolgen benachbarter Ecken durchlaufen, die bezüglich / nur
die Signierungen 1 oder 2 tragen, und zwar so, dass die erste Ecke mit 1 und
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ur

\ m*=2 / m*=1 /
m =m=2 mis m =1

\ m»1 /
\ ' /(j*U P m /2 \ \ /\ \ / / 3n

^lYl -Ü
H) TT

Figur 4. /*-, /-Signierung in der z-Ebene; hier j — 1 mod 3.

die letzte mit 2 signiert ist. Die zugehörigen Teildreieckseiten haben somit je
ein Signierungspaar (1, 2) mehr als (2, 1). Daher gilt

Y z*(s) n= Y «CO-
5cRand_.o scRand_-o

Es existieren also nach dem Hilfssatz zu jedem k i__ ko sogar mindestens n
vollständig signierte Teildreiecke. Damit ist der Beweis vollendet.

Bemerkung: Mit derselben Methode lassen sich erwartungsgemäß der
Fixpunktsatz von Brouwer und der Retraktsatz (zunächst für Dreiecksbereiche)
beweisen.

Hermann Hering, Technische Hochschule Aachen
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