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Zum Fundamentalsatz der Algebra

Bewiesen wird (wieder einmal):
Jede ganz-rationale Funktion f: € — C,
f@=z"+a1z"'+...4a,, a,eC, n=z=1,
hat mindestens eine Nullstelle.

Der hier vorgestellte Beweis ') basiert auf einem kombinatorischen Hilfssatz,
fiir dessen Formulierung einige Bemerkungen erforderlich sind.

Ein Dreieck 4, sei in Teildreiecke 4 zerlegt,?) und alle Ecken seien mit einer
der Ziffern 1, 2, 3 signiert. Ein Teildreieck mit paarweise verschiedenen
Eckensignierungen heisst vollstandig signiert.

Alle Teildreiecke seien im Sinne der (positiven) Orientierung der Ebene
gleich orientiert. Dies induziert eine Orientierung der Teildreieckseiten und
damit auch des Randes von 4.

Definiert man Bewertungen fiir orientierte Teildreiecke 4:

+1 fiir das Signierungstripel (1, 2, 3)
a(4) = {—1 fiir das Signierungstripel (1, 3, 2)
0 sonst

und orientierte Teildreieckseiten s:

+1 fiir das Signierungspaar (1, 2)
a(s) = {—1 fiir das Signierungspaar (2, 1)
0 sonst,

1) Nach einem am 5. 3. 1981 auf der Bundestagung fiir Didaktik der Mathematik in Darmstadt
gehaltenen Kurzvortrag. Andere Zuginge auf kombinatorischer Basis findet man in [1], [2].

2) Die Vereinigung der Teildreiecke ist das Dreieck, und je zwei Teildreiecke haben entweder
keinen Punkt oder eine Ecke oder eine Seite gemeinsam.
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so gilt der folgende

Hilfssatz:%) In jedem in Teildreiecke A zerlegten Dreieck A sind die Summen
der Bewertungen der Teildreiecke und der Bewertungen aller Teildreieckseiten
auf dem Rand von A gleich:

2oad)y= Y a(s).

dcdy sC Randdo

Beweis: Genau die Teildreiecke mit (1, 2, 3) oder (1, 3, 2) haben genau eine
Seite mit (1,2) oder (2,1). Umlduft man alle Teildreiecke bei positiver
Orientierung und addiert die a (s), so erhidlt man

2= 2 a().
s < Rand 4y
Die Summe der Teilsummen je Teildreieck 4 ist ) a (4).

Folgerung: Ist 2, * 0, so gibt es mindestens | >, | vollstindig signierte Teil-
dreiecke, d.h. | ) | mehr von der einen als von der anderen Sorte (vgl. Fig. 1).

Beweis des Fundamentalsatzes: Mit der Annahme f(z) # 0 fiir alle ze C
148t sich eine Signierung der z € C definieren (0 = arg w < 2 7n):

1, falls 0 =argf(z)<%n
m(z) =1 2, falls%—néargf(z) <%7z
3, falls%n§argf(z) <2m.
Sei 4y ein gleichseitiges Dreieck in der komplexen Ebene, dessen Mittel-
punkt der Nullpunkt ist, mit Inkreisradius r, iiber den spiter verfiigt wird.

Mit Hilfe der Mittelparallelen wird rekursiv eine Zerlegungsfolge von 44 mit
kongruenten Teildreiecken konstruiert: {4,y (vgl. Fig. 2).

; JAVAVAVANN

°  Figur2

]

Wie im folgenden gezeigt wird, gibt es einen Index k(; (abhédngig von der
Funktion f und r), so daB fiir alle Zerlegungen mit k = ko vollstindig
signierte Teildreiecke existieren.

Damit lassen sich drei Eckpunkt-Folgen je gleicher Signierung definieren:

&My, m=1,2,3.

3) Dies ist eine verschirfende Verallgemeinerung des Spernerschen Lemmas: Y,  a(s) =1.
s< Rand 4y
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Da die (z(’)—-z(”)> j # p, nach Konstruktion Nullfolgen sind, haben die
(z{™) einen %emelnsamen Haufungspunkt zy e 4,. Daher glbt es drei
Teilfolgen {¢{™) der (z/™), die gegen zy konvergieren. Genau eine hat die-
selbe Signierung wie zy. Dann konvergiert mindestens eine der beiden ande-
ren Funktionswertfolgen {(f({/™)) — ihre Signierung sei m* — nicht gegen
f (zw) * 0, da fiir alle i € N gilt:

@) = 7| =1 e 5 V3> 0

(vgl. Fig. 3)), und wir haben einen Widerspruch zur Stetigkeit von f in zg.
Es bleibt zu zeigen, dass fiir jedes k = k, volistindig signierte Teildreiecke
existieren.

jflzg)iy Lyvs

|

|

I
I

1513

2
Figur 3. Hier ist —g— sargf(zy) < —37—{- ,mzy) =1, m*=3.

Die Argumente von f und der Vergleichsfunktion f* mit f* (z) = z" unter-
scheiden sich fiir alle z mit «grossen» Betrigen nur «wenigy». Daher wird zu-
nichst Y, o*(s) beziiglich f* berechnet und daraus >, «(s) beziig-

s< Rand 4, s< Rand 4,
lich f gewonnen.
Nun prézisieren wir. Die Zerlegung aller (mod 2 n reduzierten) arg f*(z),
z¥F0:

(m~1)--gg’iéargf*(z)=argz"<m-—2§’i, m=1,2,3, 1)

4) Dies ldsst sich mit einigem rechnerischen Aufwand auch rein analytisch zeigen.
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legt fiir die zugehorigen arg z die folgende Zerlegung nahe:

2
(,—1)-3—”’55argz<j%’15 1=j=3n. )

Dann gilt fiir jede Signierungsziffer m:

argz € Argumentbereich (2) mit j = m mod 3
= arg f* (z) € Argumentbereich (1) . 3)

Zur Vereinfachung setzen wir jetzt fiir z;, z; + 0
X (21, z;) = min (|argz, — arg z;|, 2n — |arg z; — arg z; ).
Offensichtlich l4sst sich » € R* so wihlen, dass fiir alle z € Rand 4,

¥ @) <¢ 4)

ausfillt, und dann durch Wahl von kye N die Zerlegung von 4, so fein
machen, dass fiir alle k£ = kq und alle Nachbarecken z’, z” auf dem Rand von
AO gllt

(4
X (2, Z") <‘§-—n— . (5)

Wird der Rand von 4, positiv orientiert durchlaufen, so haben je zwei auf-
einanderfolgende Ecken z’, z”” wegen (3), (5) entweder gleiche oder im Sinne
der zyklischen Ordnung 1, 2, 3 aufeinanderfolgende Signierungen, und zu
jedem Argumentbereich (2) gibt es wegen (5) mindestens zwei Randecken.
Da bis auf Ziffernwiederholungen genau n-mal der Signierungszyklus 1, 2, 3
durchlaufen wird, haben wir

> a*(s)=n.
seRandAo
Wird nun die f*-Signierung durch die f-Signierung ersetzt, so behilt von
den zu jedem Bereich (2) vorhandenen Randecken wegen (4) und (5) min-
destens eine ihre Signierung (vgl. Fig. 4). Hochstens in den Bereichen

NN PN ST L S

T A TR 3n  2n
konnen wegen (4) Signierungsdnderungen auftreten, aber nur so, dass die f*-
und die f-Signierung beide zu m =jmod3 oder m =+ 1 mod 3 gehdren
(vgl. Fig. 4).
Durchlaufen wir wieder den Rand von 4, wie vorher, so werden n getrennte
maximale Teilfolgen benachbarter Ecken durchlaufen, die beziiglich f nur
die Signierungen 1 oder 2 tragen, und zwar so, dass die erste Ecke mit 1 und
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tj-n- X

Figur 4. f*-, f-Signierung in der z-Ebene; hier j =1 mod 3.

die letzte mit 2 signiert ist. Die zugehorigen Teildreieckseiten haben somit je
ein Signierungspaar (1, 2) mehr als (2, 1). Daher gilt

Y, a*@=n= ) ().

s< Rand 4y s Rand 4o

Es existieren also nach dem Hilfssatz zu jedem k = k¢ sogar mindestens n
vollstindig signierte Teildreiecke. Damit ist der Beweis vollendet.

Bemerkung: Mit derselben Methode lassen sich erwartungsgemidf3 der Fix-
punktsatz von Brouwer und der Retraktsatz (zunichst fiir Dreiecksbereiche)
beweisen.

Hermann Hering, Technische Hochschule Aachen
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