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A Remark on Buffon's Needle Problem

Let Gn be a grid in the Euclidean space Rn with coordinates xx,x29 ...9xn
determined by hyperplanes parallel to the hyperplanes with the equation
Xi 0 separated by a distance of 2 L.
In his generalization of Buffon's Needle Problem to n dimensions Stoka [2]
gives an expression for the probability that a segment co of length L which
will be "thrown" in a random fashion into the _Rn cuts the grid Gn.
Let Aj be the event: the segment co cuts a hyperplane of Gn parallel to the
hyperplane with the equation xj 0. In [2] and [3] Stoka shows that the
probability for the event Aj is

P(Aj)=-
"T

(n-l)rffl* 0=1,2,...,«) (1)

(formula (9) in [3] is a misprint) and finds for the estimator

nN j.\
ofP(Aj) the variance
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([3], formula (15)). On the other hand he calculates for the estimator
Pi AT1 (number of times _4i occurs in M independent trials) of P(Aj) the
variance
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([3], formula (16)). For the case n 2 compare Schuster [1]. If we set both
variances (2) and (3) equal we receive

M—a(n) nN
with

r
a(n)

(n-l)TM*
(4)

(5)

("-1)2 r n-l nOn

Thus, N independent trials in G„ give the same Information about the
probability (1) as a(n)nN independent trials in a grid determined by hyperplanes

parallel to the hyperplane with the equation x{ 0. Schuster [1] finds
a (2) « 1.1114. Stoka [3] calculates a (3) « 1.1121 and a (4) « 1.1039 and
conjeetures that lim a(n) 1. In this note we give an asymptotic expression for

a(n) and show that Stoka's conjeeture is true.

Theorem. It holds

nn\-2"-2n
a{n)
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fln-n 1/2

and

n-2 n-1
e2 + »"i^-m

n-2 («-K») (7)

limo-(«) 1 (8)

Proof: First we simplify the expression (5). For abbreviation we set

a an r i^Y^ and b b„ r (y). Then by (5)
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The formula

r(x)r(x + y)--^r/'(2x)

fn
2n-2

gives us

-*-#_ (»-2)1

and therefore

2-("-2) tc (« -l)!-62
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2«
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which is (6).

By Stirling's formula for the Gamma-function it holds

logr(x + l) (jc + —Jlogjc-Jt + c + of—) (x-* + oo)

with

c= — log(2n).

This implies
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which is (7). x
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Evidently the numerator of (7) converges to l[2n for n -» oo. It is sufficient
to show that

d= lim n
n -* oo

1/2 n-2 n-X -[^-m n-2
0.

Now

</|__lim«''2(^-L)(^
«-oo \ n j \ n

Because of

n \3 n — 2

\n — lj n

it remains to show that

-1 0 - oo)

1+7)"+,-' + 0(i» (^°°>
To see this we set x, iln (i 0, 1,..., «) and Taylor's formula gives us

e* (1 + —) e**-1 + -r-y e*4 with xt- x < f, < je,.

This implies

e ^» 1 +

Thus the Theorem is proved.

**

Ulrich Abel
Mathematisches Institut der Justus-Liebig-Universität, Giessen
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