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A Remark on Buffon’s Needle Problem

Let G, be a grid in the Euclidean space RR” with coordinates xi, x,, ..., X,
determined by hyperplanes parallel to the hyperplanes with the equation
x; =0 separated by a distance of 2 L.

In his generalization of Buffon’s Needle Problem to n dimensions Stoka [2]
gives an expression for the probability that a segment @ of length L which
will be “thrown” in a random fashion into the R” cuts the grid G,.

Let 4; be the event: the segment w cuts a hyperplane of G, parallel to the
hyperplane with the equation x;=0. In [2] and [3] Stoka shows that the
probability for the event 4; is

r(3)
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(formula (9) in [3] is a misprint) and finds for the estimator
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(3], formula (15)). On the other hand he calculates for the estimator
P, =M (number of times 4; occurs in M independent trials) of P(4,) the
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({3}, formula (16)). For the case n =2 compare Schuster [1]. If we set both
variances (2) and (3) equal we receive

M=o(n)nN ©))

with F(_g_){(n—l)r(";l)l/;z—l“(—;—)} | “
Y R

a(n) =

2

Thus, N independent trials in G, give the same information about the prob-
ability (1) as o(n) n N independent trials in a grid determined by hyper-
planes parallel to the hyperplane with the equation x; = 0. Schuster [1] finds
o(2) ~ 1.1114. Stoka [3] calculates ¢(3) * 1.1121 and ¢(4) = 1.1039 and con-

jectures that lim o(n) =1. In this note we give an asymptotic expression for
n-= oo

o (n) and show that Stoka’s conjecture is true.

Theorem. It holds 2
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Proof: First we simplify the expression (5). For abbreviation we set

a=a,,=1"(n;1) andb=b,,=1"(%). Then by (5)
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The formula

I’(x)F(x+-—;—)=—2—2]§t_—l—F(2x)

gives us

ab=

2}@2 (n—2)!

and therefore
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By Stirling’s formula for the Gamma-function it holds
1 1
logF(x+1)-=(x+——2—)logx—x+c+0(7) (x = + o)
with
c= 1 log (27)
= > g .

This implies
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which is (7). .
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Evidently the numerator of (7) converges to |2z for n — co. It is sufficient
to show that

—92\n-1 _ 3 _ n-2
n— o n n n

Now
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it remains to show that

(1+—’17)n+1=e+0(%) (n — ).

To see thisweset x;=i/n (i=0, 1, ..., n) and Taylor’s formula gives us

e  with x_; <& <x;.
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This implies
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Thus the Theorem is proved.

Ulrich Abel
Mathematisches Institut der Justus-Liebig-Universitat, Giessen
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