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W-Kurven in der ebenen Lie-Geometrie

(1. Teil)

1. Das Übertragungsprinzip für Linienelemente

Grundelemente der ebenen Lie-Geometrie sind orientierte Linienelemente
und orientierte Kreise. Ein orientierter Kreis kann aufgefaßt werden als
Menge aller orientierten Linienelemente, die ihn gleichsinnig berühren
(Fig. 1).

Figur 1

Weil im folgenden immer nur orientierte Kreise und Linienelemente
betrachtet werden, lassen wir das Beiwort «orientiert» meistens weg.
Es soll zunächst eine analytische Beschreibung für die Linienelemente der
Möbiusebene gefunden werden. Wir gehen aus von der in der Funktionentheorie

üblichen Behandlung der ebenen Möbiusgeometrie mit Hilfe
komplexer Zahlen:
Die GaußscheZahlenebene C wird durch Hinzunahme des Punktes oo zur
Möbiusebene C erweitert. Orientierungstreue Möbjusabbildungen lassen sich
beschreiben durch gebrochen lineare Abbildungen C -? C,

az + b
zn» mit a,b,c,de<C9 ad-bc 4= 0. (1)

cz + a

Offensichtlich wird hier mit einem inhomogenen Parameter z auf der
komplexen projektiven Geraden gerechnet: Sei U ein zweidimensionaler
komplexer Vektorraum. Ist ax, a2 eine Basis von U9 so beschreibt die Abbildung

zx ax + z2 U2 h* z := — (2)
Z2

einen inhomogenen Parameter auf der projektiven Geraden M, die zu U
gehört. Jede Projektivität ol: M -^ M wird induziert von einer linearen Abbildung

A: U -> U mit det_4 4= 0. Der Parameter z transformiert sich unter a
gerade wie in (1).
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Um nun in diesem Rahmen eine Beschreibung für die orientierten
Linienelemente zu finden, zeichnen wir in U eine Determinantenfunktion det aus.
Eine Basis ax, a2 von U nennen wir «normiert», wenn det (ax, a2) 1.

U kann als vierdimensionaler reeller Vektorraum aufgefaßt werden, der
zugehörige reelle projektive Raum P3 ist dreidimensional. Wir werden
jedem reP3 ein orientiertes Linienelement von M zuordnen.
Sei zunächst ax, a2 eine normierte Basis von U. Der inhomogene Parameter

zx
r zj cti + z2 a2 h> z (r) := — (3)

z2

kann auch als Karte auf der differenzierbaren Mannigfaltigkeit M aufgefaßt
werden. In dieser Karte kann jedes Linienelement, das nicht zum Punkt oo

gehört, charakterisiert werden durch einen Punkt z e <E und einen Einheitsvektor

mgC (Fig. 2).

Figur 2

Jedem Punkt zx ax+ z2 a2 e P3 ordnen wir nun dasjenige Linienelement (z, u)
zu, mit

z —, u —. (4)
z2 z2

Man bestätigt leicht, dass diese Zuordnung wohldefiniert und injektiv ist,
und dass jedes Paar (z, ü) als Bild vorkommt. Weiter kann man zeigen, dass
sie auch unabhängig von der Auswahl der normierten Basis ax, Cfc ist.
Die Idee, die orientierten Linienelemente auf die Punkte eines dreidimensionalen

projektiven Raumes abzubilden, geht im wesentlichen auf Sophus Lie
zurück ([5], S. 238 ff.). Auch später wird dieses Abbildungsprinzip noch
erwähnt [8], jedoch scheint es nie zu konkreten geometrischen Untersuchungen

herangezogen worden zu sein. Die einzigen differentialgeometrischen
Arbeiten zur ebenen Lie-Geometrie, die dem Verfasser bekannt sind ([6] und
[7]), verwenden das Quadrikmodell.
Neu zu sein scheint unser Zugang über die komplexen Zahlen, der, wie wir
sehen werden, es besonders einfach macht, Lie-geometrische Aussagen
anschaulich zu deuten.

2. lie-geometrische Beschreibung von Kurven

Lie-geometrisch wird man eine ebene Kurve beschreiben als eine einparametrige

Schar von Linienelementen, die noch einer gewissen «Streifenbedingung»

genügt (Fig. 3).
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Figur 3

In Koordinaten (4) wird eine solche Schar dargestellt durch t h> (z (t)9 u (t))9
und die zu fordernde Bedingung lautet offenbar

^6R. (5)

Wir können diese Bedingung aber auch koordinatenfrei formulieren, denn es

gilt
z' z\ z2-zxz'2 z2 1

— 2 ~ _rdet(r, r), (6)
u z2 z2 z2z2

mit r:= (zx,z2). Die Linienelemente x(t) hüllen also genau dann eine Kurve
ein, wenn

c»(r,r') 0, (7)

mit co := Im det. co ist eine nicht ausgeartete schiefsymmetrische Bilinearform
auf U9 d. h. die Geraden r A x) in _f* mit co (r, n) 0 bilden einen nicht
ausgearteten linearen Komplex K (vgl. Bol [3], S. 72 ff.). Den Scharen von
Linienelementen, die Kurven einhüllen, entsprechen in P3 also gerade die
Komplexkurven eines festen linearen Komplexes K.
Den Komplexgeraden von K entsprechen die orientierten Kreise: Sei
t -+ x (t) eine Parametrisierung einer solchen Geraden mit r" 0. Beschreibt
f k (z (t)9 u (t)) wie in (4) die Linienelementeschar t »-> r (t) in einer Karte, so
ist entweder u' — 0 und die Kurve ist eine Gerade, oder es gilt

.«7 U 22~ZlZ^'=0. (8)
z2 z2 - z2 z2

Im Fall z'=0 artet die Kurve zu einem Punkt (als Linienelementgebilde
aufgefaßt) aus. Für z' 4= 0 ist aber z'/V gerade gleich i/x, wobei x die
euklidische Krümmung der Kurve / h> z (f) in C ist. Als Kurve konstanter
Krümmung beschreibt z somit einen Kreis.
Weil in der ebenen Lie-Geometrie Punkte, orientierte Geraden und orientierte

Kreise zum Oberbegriff «Lie-Kreis» (wir sprechen im folgenden kurz
von «Kreisen») zusammengefasst werden, haben wir damit gezeigt, dass

jeder Komplexgeraden von K ein Lie-Kreis entspricht.
Man sieht leicht, dass umgekehrt zu jedem Lie-Kreis der Möbiusebene in P3
eine Komplexgerade von K gehört. Klar ist auch, dass die Tangente an eine
Komplexkurve t h> x (t) von K gerade dem orientierten Schmiegkreis der
zugehörigen Kurve in M entspricht.
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Unter einer «Lie-Transformation» wollen wir eine Projektivität a: P3 -> P3
verstehen, die K festlässt. Lie-geometrisch gedeutet ist a dann eine kreistreue
Permutation der Linienelemente.
Insgesamt haben wir das folgende Abbildungsprinzip erhalten:

Möbiusebene Bildraum P3

orientiertes Linienelement Punkt
Lie-Kreis Komplexgerade von K
Kurve Komplexkurve von K

Schmiegkreis einer Kurve Tangente der zugehör. Komplexkurve
Lie-Transformation Projektivität von IP3, die K festlässt

3. Lie-W-Kurven

Eine Lie-W-Kurve ist eine Kurve in der Möbiusebene, die eine
Einparametergruppe von Lie-Transformationen gestattet.
Jede Einparametergruppe t h> a (f) von Lie-Transformationen wird induziert
von einer Einparametergruppe tv+A(t) von (reell) linearen Abbildungen
A (t): U -> U, die co festlassen, d. h. für die gilt

co (A(t) x,A(t) t)) g> (x,n) alle x,n e U. (9)

Durch Differenzieren von (9) folgt wegen A(0) I
co (Xx, X)) + co (x9Xn) 0 alle r, t) e U (10)

mit_y:=_4/(0).
Ist r0 ein Linienelement, so werden die Linienelemente x(t) :=A(t) r0 im
allgemeinen keine Kurve einhüllen (Fig. 3). Die Bedingung, dass dies doch der
Fall ist, (d.h. dass t h» x(t) eine Lie-W-Kurve beschreibt) ist die, dass r eine
Komplexkurve von K ist, d. h. dass gilt

0 a>(r(0,r'(0)
co(A(t)x0,A(t)A'(0)x0) (11)

co(xo,Xxo).

Weil nach (10) die Abbildung

x9X)-+co(x9Xn) (12)

eine symmetrische Bilinearform ist, ist (11) die Gleichung einer Quadrik Q
inP3.
Weil co nicht ausgeartet ist, gibt es umgekehrt zu jeder Quadrik Q in P3 eine
bis auf die Normierung eindeutig bestimmte lineare Abbildung X: U -> U
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mit der Eigenschaft (10), so dass (11) gerade die Gleichung von Q ist. Q ist
invariant unter den Lie-Transformationen

A (t) := exp (tX), (13)

und die Kurven t\^A(t) to, Xo e Q beschreiben Lie-W-Kurven.
Geometrisch kann man die Lie-W-Kurven auf einer Quadrik ßCP3
folgendermassen beschreiben: Abgesehen von gewissen Ausnahmepunkten schneidet

die Tangentialebene an Q in einem Punkt r e Q die Nullebene bezüglich
K von r in einer Geraden. Diese Geraden bilden ein Richtungsfeld, dessen
Integralkurven die W-Kurven auf Q sind.
In der Möbiusebene gedeutet, beschreibt eine Quadrik ßCP3 eine zweiparametrige

Schar von Linienelementen, d.h. ein Richtungsfeld. Wir können
daher sagen, dass die Lie-W-Kurven gerade die Integralkurven von «quadratischen

Richtungsfeldern» sind.
Wir stellen noch einige Formeln zusammen, die bei der anschaulichen
Diskussion der W-Kurvenscharen sehr nützlich sein werden. Ist in U eine
normierte Basis cti, a2 gewählt, so kann U durch

zxdx + z2a2H>( M (14)

mit C2 identifiziert werden. Durch zx xq+ ix\9 z2 x2+ ix3 sind dann
reelle Koordinaten (xo9xX9x2,x3) in U definiert, co Im det hat in diesen
Koordinaten die Form

co (at, t)) xöj>3 ~ x3y0 + xx y2 -x2yx. (15)

In Matrizenform geschrieben: co (x' xy) r', E x) mit

0 0 0 1^

^-1 0 0 0,

Zu einer symmetrischen Bilinearform r, t) »-? B (r, xf) xlA X) findet man das

zugehörige X mit B (at, xf) co (x9Xxf) für alle at, X) e U als

X=-EA. (17)

Wenn ein Linienelement wie in (4) als (z, u) gegeben ist, so ist r mit

z 1

zi=-r=-, z2 -n=- (18)
yu yu

ein zugehöriger Vektor in U. Die folgende Tabelle gibt an, wie man eine
Quadrikgleichung Y aik */ xk-0 auf die Linienelementkoordinaten (z, u)
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umrechnen kann. Wir schreiben (z, w) := -j (z w + z w) für das Skalarprodukt
in der Gaußschen Zahlenebene.

z2
xl ~ x2 Re z\ Re —

u2
2

<*2, «>

2xo^i =Imz? Im —
u

-</z2,M>

z
xo x2 — xx x3 — Re (zx z2) Re —

u
<z, ">

z
xx x2 + xo x3 Im (zx z2) Im —

u - </' Z, M>

x\ - x2 Re z\ Re u <1, u) cos q> (19)

2x2 X3 Im z\ Im ö - </, «) - sin <p

2 2 — —
XO + Xj =ZjZi =ZZ
Xo x2 + xx x3 Re (zi z2) Re z

xx x2 — xo x3 Im (zi z2) Im z

*2 + *3 Z2Z2 1

wobei u:= el(p.

In den Linienelementkoordinaten (z, ü) hat nach (19) also jedes quadratische
Richtungsfeld eine Gleichung der Form

(p(z)9u)-k(z) 09 (20)

wobei p ein quadratisches Polynom mit komplexen Koeffizienten in z ist,
und k (z) 0 einen Kreis beschreibt. Ist | p (z) \ < \ k (z)|, so gibt es kein u9 so
dass (z, ü) zu dem betrachteten Richtungsfeld gehört, ist \p (z)\> \ k (z) |,

so gibt es zwei solche u. Die Grenze des Gebietes der Möbiusebene, in dem
Linienelemente des Richtungsfeldes verlaufen, ist gegeben durch

\(p(z)9u)\2 k2(z). (21)

(21) ist die Gleichung einer bizirkularen Quadrik F. In den nachfolgenden
Beispielen, die besonders symmetrisch gewählt sind, zerfällt r meistens in
Kreise.

U. Pinkall, Math. Institut Universität Freiburg i. Br.

(Fortsetzung im folgenden Heft)
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