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ELEMENTE DER MATHEMATIK

Revue de mathématiques €lémentaires — Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts

El. Math. Band 39 Nr. 6 Seiten 137-160 Basel, 10. November 1984

Zwel Rekursionsverfahren zur Konstruktion
von Steiner-Systemen

1. Einleitung

Es sei V' mit |V| = v eine endliche Menge und B mit |B| = b eine Menge von k-elementi-
gen Teilmengen aus V, wobei k = 3. Die Elemente aus V heissen Punkte, die von B
Geraden. Zu zwei Punkten gebe es genau eine Gerade, der sie angehéren. Dann existie-
ren durch jeden Punkt genau r Geraden. Die Inzidenzstruktur (¥, B, €) heisst Steiner-

v—1 db= vw—1)
k-1 k-1
Daraus folgt als notwendige Bedingung fiir die Existenz solcher Systeme k — ljv — 1
und k£ (k — 1)|v (v — 1). Ist k Primzahlpotenz, so erweisen sich diese Bedingungen dqui-
valent dazu, dass v entweder von der Form v =1+ nk (k — 1) oder von der Form
v=k+nk(k— 1) mit neN, ist. Fir k = 3,4,5 weiss man, dass diese Forderung auch
hinreichend ist. Fiir £ > 5 ist sie es jedenfalls dann, wenn v «hinreichend» gross ist
[1, 5]. In Figur 1 sind zwei Beispiele von Steiner-Systemen S(3,v) gezeichnet. Im einen
Fall handelt es sich um die projektive Ebene PG (2,2) mit v= b= 7, k = r = 3, im zwei-
ten um die affine Ebene AG(2,3) mitv =9, b =12,k =3, r =4.

System der Ordnung v. Wir schreiben kurz S(k,v). Es gilt r =

/’--‘\\ //’-\\
~
7 ~ l
Vool N
\ (—f\ X /3.7 /
PG(2,2) \\ /\/( -4 // AG(2,3)
5(3,7) )L N/ \,( 5(3,9)
by K ps
1NN
/ ~ A \
AN \




138 El. Math., Vol. 39, 1984

In [7] findet sich ein Rekursionsverfahren, das es gestattet, aus einem S (3,v) ein neues
System S (3,1 + 2v) zu konstruieren. Dieses sogenannte Zentralverfahren wurde dann
in einer weiteren Arbeit [8] erweitert und konnte unter gewissen Voraussetzungen zur
Konstruktion eines S(k,1 + (v — 1)k) aus einem S(k,v) verwendet werden. Die Arbeit
[7] bringt noch ein weiteres Rekursionsverfahren. Mit ihm ldsst sich aus einem S(3,v)
ein neues System S(3,3v) erzeugen. Erstes Ziel der vorliegenden Arbeit ist es, auch
dieses sogenannte Parallelverfahren zu erweitern. Dann wird es moglich sein, aus einem
S(k,v) unter gewissen Voraussetzungen ein S(k,kv) zu konstruieren. Ganz nebenbei
ergibt sich ein Verfahren zur Konstruktion von k — 2 paarweise orthogonalen lateini-
schen Quadraten.

Das Auftreten dieser lateinischen Quadrate legt es nahe, in einem weiteren Abschnitt
ein auf H. Hanani [4] zuriickgehendes Verfahren vorzustellen. Auch dieses Transversal-
verfahren gestattet, aus einem S(k,v) unter gewissen Voraussetzungen ein S(k,kv) zu
konstruieren. Ein Vergleich beider Konstruktionsverfahren und eine Bemerkung zur
«Pseudoanschauung» beschliessen die Arbeit.

2. Das Parallelverfahren

2.1 Ein Konstruktionssatz
Aus einem gegebenen S(k,v) ldsst sich durch Anwendung des erweiterten Paral-
lelverfahrens ein S(k,kv) konstruieren, falls es S(k,k?) gibt.

2.1.1 Das Konstruktionsverfahren

Gegeben sei S, ein Steiner-System S(k,v) mit der Punktmenge V und der Geraden-
menge B. Die Punkte dieses Systems werden nun in k—1 Stufen parallel hochgezogen
oder parallel projiziert. Figur 2 zeigt diesen Vorgang des Hochziehens fiir k = 4.

¥

e W
T

S

Figur 2

I
Ry

Jedem Punkt P eV werden durch das Hochziehen genau £ — 1 weitere Punkte zugeord-
net. So erhalten wir insgesamt # = kv Punkte. Mit 7= {1,...,k} ldsst sich die neue
Punktmenge ¥ wie folgt beschreiben: ¥ = V x I. Dabei ist (P, 1) mit P zu identifizieren.
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Die Geraden
Die Grundgeraden
v(v—1)

In S, gibt es genau |B| = b, = k= 1)

Geraden. Wir nennen sie die Grundgeraden.

Die Projektionsgeraden
Jeder Punkt PeV bestimmt eine weitere Gerade g, = {(P,i)|liel}. Die Anzahl dieser
sogenannten Projektionsgeraden betrdgt b, = v.

Die Geraden der Einhiingsysteme

Nach der Voraussetzung von Satz 2.1 existieren Steiner-Systeme S(k,k?). Sie enthalten
genau k(k + 1) Geraden, und durch jeden Punkt gehen genau k + 1 Geraden.

Jeder Grundgeraden h € B wird nun ein solches System 7, mit der Geradenmenge B,
zugeordnet und dieses dann so eingehdngt, dass es alle durch die k Punkte von 4 festge-
legten Projektionsgeraden enthdlt. Mit diesem Einhdngsystem T, kommen zu jeder
Grundgeraden neben den Projektionsgeraden noch weitere k? — 1 Geraden dazu. Dies
liefert insgesamt

o — 1)k + 1)

by, = bl(kz—_l) = k

neue Geraden. Figur 3 erlidutert das Einhdngen des Systems S(3,9) aus Figur 1.

Figur 3
Fir die Gesamtheit aller bisher konstruierten Geraden erhalten wir schliesslich

v(v—1) ot vo—-DEk+1) _ v(vk—1)

b=bi+btb= Ty T k k-1

Das geschilderte «Einhdngen» ist ein Isomorphismus ¢, von T, mit h, g,€9,(B,) fir
alle Peh. Ein solcher existiert, da T, als ein S(k,k?) eine affine Ebene ist, also eine
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Gerade von k paarweise punktfremden Geraden geschnitten wird. Damit ergibt sich die
Menge aller Geraden in unserer neuen Inzidenzstruktur

B = {g,(m)lhe B,meB,} .

2.1.2 Der Beweis des Satzes 2.1

Bezeichnen wir die charakteristischen Grossen unserer neuen Inzidenzstruktur in der
iiblichen Weise, jedoch versehen mit einem Querstrich, so entnehmen wir unserer Kon-
struktion sofort

vok—=1) _ 5@-1)

f=ki=1M=keF=1Bl= “"~ = £

Der Vollstindigkeit halber sei noch bemerkt, dass durch jeden Punkt (P,i) mit
PeV,iel genau eine Projektionsgerade und in jedem Einhdngesystem, das diese Pro-
jektionsgerade enthdlt, noch k weitere Geraden gehen. Dies ergibt insgesamt

v—1 vk —1 r—1
F=14k - - :
d k-1 k-1 k-1

Weiter gibt es durch zwei Punkte genau eine Gerade. Liegen die beiden Punkte auf
einer Projektionsgeraden oder auf einer Grundgeraden, so ist alles schon bewiesen. Im
anderen Fall bestimmen die beiden Punkte zwei verschiedene Projektionsgeraden, diese
in S, zwei verschiedene Punkte, also genau eine Gerade s € B. Im Einhdngsystem T,
gibt es aber durch zwei Punkte genau eine Gerade.

Damit ist nachgewiesen, dass unsere neue Inzidenzstruktur ein Steiner-System S(k, kv)
ist.

2.2 Bemerkungen

2.2.1 k Primzahlpotenz

S(k,k?) ist in jedem Fall eine affine Ebene. Handelt es sich bei k um eine Primzahlpo-
tenz, so existieren diese Einhdngsysteme auch tatsichlich. Entweder liegen die affinen
Ebenen AG (2,k) oder aber nicht-desarguessche affine Ebenen vor.

2.2.2 Etagensysteme

Wir betrachten jetzt die Menge S, aller Punkte (P,i) aus S(k,kv) mit festem
ie{l,...,k}, zusammen mit den in ihr enthaltenen Geraden, und fragen, ob es sich
dabei um ein Steiner-System S(k,v) handelt. (Fir i = 1 ist dies selbstverstdndlich der
Fall.) Wenn ja, sprechen wir von einem Etagensystem, von der i-ten Etage.

Das Parallelverfahren ldsst sich so gestalten, dass k£ zueinander isomorphe Eragensy-
steme existieren. Bei Beginn der Konstruktion ziehen wir nicht nur die einzelnen
Punkte aus dem gegebenen System S, hoch, sondern das gesamte System mit all seinen
Geraden. Auf diese Weise erhalten wir insgesamt k Etagensysteme, isomorph zu dem
gegebenen System S,. Jetzt erst hidngen wir unsere Systeme S(k,k?) ein. Dabei sind in
jedem Fall nicht nur k? Punkte, sondern auch schon 2k Geraden vorgegeben. Die k?
Punkte befinden 'sich in quadratischer Anordnung, sie bilden gewissermassen ein Geriist.
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Weil es sich bei unseren Einhéngsystemen um affine Ebenen handelt, ist es stets mog-
lich, sie in dieses Geriist passend einzufiigen. (Die Einhdngsysteme miissen nicht iso-
morph zueinander sein.)

Man konnte nun vermuten, dass jedes nach dem Parallelverfahren aus S(k,v) kon-
struierte System S(k,kv) insgesamt k Etagensysteme enthélt. Dies stimmt nicht. Ver-
tauschen wir ndmlich in dem gerade konstruierten System S(k, kv) innerhalb eines ein-
zigen Einhdngsystems zwei Punkte, so bewirkt diese geringfiigige Perturbation bereits,

dass in dem neuen, jetzt entstehenden System S (k,kv) nicht mehr k£ Etagensysteme
existieren.

2.3 MOLS (v)

2.3.1 Definitionen [1, 3]

Wir betrachten eine Menge M der Michtigkeit v, z.B. M = {l1,...,v}. Unter einem
lateinischen Quadrat der Ordnung v versteht man dann eine (v X v)-Matrix von der
Art, dass in jeder Zeile und in jeder Spalte jedes Element aus M genau einmal vor-
kommt.

Eine algebraische Struktur (M, °) heisst Quasigruppe, wenn es fiir alle a,be M genau ein
x €M bzw. genau ein ye M gibt mit acx = b bzw. y°a = b. Betrachtet man ein lateini-
sches Quadrat als Verkniipfungstafel, so entsteht nach unseren Definitionen eine Qua-
sigruppe. Umgekehrt induziert auch jede Quasigruppe ein lateinisches Quadrat.
Werden zwei lateinische Quadrate gleicher Ordnung aufeinandergelegt, so heissen die
beiden Quadrate zueinander orthogonal, wenn jedes Element des ersten genau einmal
mit jedem des zweiten zusammentrifft.

Sind in einer Menge lateinischer Quadrate der Ordnung v je zwei zueinander orthogo-
nal, so spricht man von einer Menge paarweise orthogonaler lateinischer Quadrate der
Ordnung v und schreibt kurz MOLS (v) — mutually orthogonal Latin squares.

In Figur 4 sind drei paarweise orthogonale Quadrate der Ordnung 4 angegeben.

1 2 3 4 12 3 4 1 2 3 4
2 1 4 3 4 3 2 1 3 4 1 2
3 4 1 2 2 1 4 3 4 3 2 1
4 3 2 1 3 4 1 2 2 1 4 3

Drei MOLS der Ordnung 4

Figur 4

2.3.2 Satz

Die Konstruktion eines S (k,kv) mit k Etagensystemen aus einem S (k,v) nach dem Par-
allelverfahren liefert k — 2 MOLS (v).

Ist k€{3,4,5} und v =1+ nk (k — 1) oder v =k + nk (k — 1) mit neN,, so existieren
nach der Einleitung sowohl Systeme S(k,v) als auch Systeme S(k,k?) und mit Satz
2.3.2 also k —2 MOLS(v). Damit ist ein fiir all diese Ordnungen v anwendbares Ver-
fahren zur Auffindung von MOLS (v) gewonnen.
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Beweis: Jedem Punktepaar (P, 1), (Q,2) mit P,Q eV wird die Verbindungsgerade und
auf dieser der (in ¢,,(T;,) liegende) Punkt (R,i) aus der i-ten Etage mit ie{3,...,k}
zugeordnet. Tragen wir all diese Punkte in eine Tabelle mit jeweils v Eingéngen (P, 1)
und (Q,2) ein, so erhalten wir ein lateinisches Quadrat der Ordnung v. Denn Q,R
bestimmen eindeutig P und P, R eindeutig Q.

Die so entstehenden lateinischen Quadrate L, und L, mit i # j erweisen sich als ortho-
gonal, da die Verbindungsgerade (R, i), (S,/) die erste und die zweite «Etage» jeweils in
genau einem Punkt trifft.

Wir merken an, dass die zu den einzelnen lateinischen Quadraten gehorenden Quasi-
gruppen nach der Art unserer Konstruktion kommutativ sind. Weiter enthélt jede sol-

che Quasigruppe Iigi =)

des Systems S, bestimmt werden. Die Méchtigkeit jeder Unter-Quasigruppe dieser Art

Unter-Quasigruppen, die jeweils durch eine Grundgerade

betrdagt k. Jedes Element der Quasigruppe gehdrt genau Z_ "
dieser Art an. Entsprechendes gilt fiir die zugeordneten lateinischen Quadrate.

Unter-Quasigruppen

2.3.3 Beispiel

Das Startsystem S, sei die projektive Ebene PG (2,2) mit der Punktmenge
v ={11,21,31,41,51,61,71} und der Geradenmenge (Grundgeraden) B = {{11,21,31},
{11,41,71}, {11,51,61}, {21,71,51}, {21,41,61}, {31,61,71}, {31,41,51}}. Nun werden
weitere Punkte hinzugenommen, namlich {1i,2i,3i,4i,5i,6i,7i} mit ie{2,3}. Projek-
tionsgeraden sind dabei die 7 Punktmengen {nl,n2,n3} mit ne{1,2,3,4,5,6,7}.

Als Einhdngsysteme verwenden wir affine Ebenen AG (2,3). Figur 5 veranschaulicht
diesen Vorgang nochmals. (Dabei wurde auf alle Geraden im Steiner-System, die nicht
als euklidische Strecken darstellbar sind, verzichtet.)

! Figur 5
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Mit unserer Konstruktion erhalten wir weitere Geraden

{11,22,33}, {21,32,13}, {31,12,23}, {31,22,13}, {21,12,33}, {11,32,23}, {11,42,73},
{41,72,13}, {71,12,43}, {71,42,13}, {11,72,43}, {41,12,73}, {11,52,63}, {51,62,13},
{61,12,53}, {61,52,13}, {51,12,63}, {11,62,53}, {21,52,73}, {51,72,23}, {71,22,53},
{71,52,23}, {51,22,73}, {21,72,53}, {21,42,63}, {41,62,23}, {61,22,43}, {61,42,23},
{41,22,63}, {21,62,43}, {31,62,73}, {61,72,33}, {71,32,63}, {71,62,33}, {61,32,73},
{31,72,63}, {31,42,53}, {41,52,33}, {51,32,43}, {51,42,33}, {41,32,53}, {31,52,43}.
Dazu kommen noch

{1i,2i,3i}, {1i,4i,7i}, {14,568}, {2i,7i,5i}, {2i,4i,6i}, {3i,6i,7i}, {3i,4i,5{} mit ie{2,3}.
Unter Verwendung all dieser Geraden ergibt sich zunichst eine Verkniipfungstafel und
damit dann ein lateinisches Quadrat. In Figur 6 ist beides angegeben.

Verkniipfungstafel:

T

o 12 22 32 42 52 62 72

11 13 33 23 73 63 53 43
21 33 23 13 63 73 43 53
31 23 13 33 53 43 73 63

41 73 63 53 43 33 23 13

51 63 73 43 33 53 13 23

61 53 43 73 23 13 63 33

I 71 43 53 63 13 23 33 73

Lateinisches Quadrat der Ordnung 7:

1 3 2 7 6 5 4
3 2 1 6 7 4 5
2 1 3 5 4 7 6
7 6 5 4 3 2 1
6 7 4 3 5 1 2
5 4 7 2 1 6 3
4 5 6 1 2 3 7
Figur 6

3. Das Transversalverfahren

3.1 Satz

Aus einem gegebenen S (k,v) ldsst sich durch Anwendung des Transversalverfahrens ein
S (k,kv) konstruieren, falls es TD [k,v] gibt.
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3.1.1 Transversaldesigns TD [k, v]

a) Definition

Gegeben seien k paarweise disjunkte Punktmengen S; jeweils mit der Méchtigkeit v.
Durch zwei Punkte in ein und derselben dieser Punktmengen gebe es keine, durch zwei
Punkte aus verschiedenen dieser Punktmengen dagegen genau eine Gerade (Transver-
sale) mit jeweils genau k£ Punkten. Jedes solche System ist ein (spezielles) Transversal-
design. Wir schreiben dafiir kurz TD [k, v]. Diese Struktur enthilt nach dem Gesagten
insgesamt ¢ = kv Punkte und b, = v* Geraden.

b) Konstruktion

Wir nehmen jetzt an, es gebe k—2 MOLS(v), also k—2 Quasigruppen zu je v Elemen-
ten. Die k —2 dabei auftretenden Operationen bezeichnen wir mit °, wobei
ie{l,...,k — 2}. Mit diesen Quasigruppen konstruieren wir jetzt ein 7D [k, v].

Punkte: P={l,...,0} x {1,...,k}, also |P| = vk.
Wir konnen auch schreiben
P = {xilxe{l,...,v}, ie{l,...,k}}
und entsprechend
S, = {xilxe{l,...,v}}.

Geraden: Jede Punktmenge {x1,2,(x°,)3,...,(x°,»)k}
mit x,ye{l,...,v} heisst Gerade. Es gibt also insgesamt v* Geraden.

¢) Beispiel TD [4,4]
Die Quasigruppen:
Unter Verwendung von zwei MOLS (4) erhalten wir zwei Quasigruppen

e}
e}

e
il

—_— W RN N
HN - W W
W o=~ NS

1
1
3
4
2

F QRSN & S
O T N R
W Hh o= NN
N = B W [W
—_— N W A D
W N -

Die Punkte: P = {1,2,3,4} x {1,2,3,4}.
Explizit geschrieben

P ={11,21,31,41;12,22,32,42;13;23;33;43; 14, 24,34, 44}.

Die Geraden: B = {x1,y2,(x °,y)3,(x°,y)4} mit x,ye{1,2,3,4}.
Explizit geschrieben

(11,12,13,14},  {11,22,23,24},  {11,32,33,34},  {11,42,43 44},
_J{21,12,23,34},  {21,22,13,44},  {21,32,43,14},  {21,42,33,24},
T1{31,12,33,44},  {31,22,43,34},  {31,32,13,24},  {31,42,23,14},

{41,12,43,24},  {41,22,33,14},  {41,32,23,44),  {41,42,13 34}

B

3.1.2 Das Konstruktionsverfahren
Wir starten mit dem in 3.1.1 konstruierten TD[k,v]). Damit haben wir bereits & = kv
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Punkte. Wir kennen auch schon b, = v? Geraden, die Transversalen. Jetzt strukturieren
wir die k Teilmengen S; so, dass jeweils ein zum gegebenen System S(k,v) isomorphes
entsteht: In der Sprechweise von 2.2.2 handelt es sich um Etagensysteme. Die
Transversalen bleiben bei diesem Strukturierungsvorgang unverandert. So erhalten wir

-1 -1
_v@k—1) )
1 Geraden.

3.1.3 Beweis des Satzes 3.1
Bezeichnen wir die charakteristischen Grossen in unserer neuen Struktur wieder wie in
2.1.2, so erhalten wir mit unserer Konstruktion sofort

_ _ :ﬁ(ﬁ—l)‘
k=k, o=kv, b ———E(E—l)

Der Vollstiandigkeit halber bemerken wir, dass durch jeden Punkt innerhalb des zuge-

1 und in TD[k,v] genau v Geraden, also insgesamt

g~ 1 _vk—=1 -1 h

PErRL T

Weiter gibt es durch zwei Punkte genau eine Gerade. Liegen ndmlich die beiden Punkte
in ein und demselben Etagensystem, so ist dies die Gerade aus diesem System, im
anderen Falle die Transversale in 7D [k,v]. Damit ist nachgewiesen, dass unsere neue

Struktur ein Steiner-System S(k, kv) ist.

ordneten Etagensystems genau

genau r =

3.1.4 Beispiel
Mit dem in 3.1.1 c) konstruierten 7D [4,4] ldsst sich aus S (4,4) ein S (4,16) gewinnen.
Allerdings ist dieses Beispiel trivial, da jedes Etagensystem nur aus genau einer Gera-

den besteht, also besonders einfach strukturiert ist. Es ergibt sich die affine Ebene
AG (2,4).

3.2 Bemerkungen

3.2.1 v Primzahlpotenz

Ist v Primzahlpotenz, so existieren [3] stets v — 1 MOLS(v). Nimmt man weiter
k<v+1 an, so gibt es jedenfalls k —2 MOLS(v). Also ldsst sich ein 7D [k,v] und
damit dann aus S(k,v) stets ein S(k, kv) mit k Etagensystemen konstruieren.

3.2.2 Einhidngsysteme
Es kann durchaus sein, dass es in einem nach dem Transversalverfahren konstruierten
v(v—1)
k(k—1)

System S(k,kv) neben den k Etagensystemen auch noch

S(k,k*) — etwa wie in 2.2.2 — gibt.

Nehmen wir an, dem wére immer so. Dann miissten nach der Bemerkung in 2.3.2
notwendig alle zu den verwendeten lateinischen Quadraten gehGrenden Quasigruppen
kommutativ sein. Diese Voraussetzung aber ist im allgemeinen nicht erfiillt. Denn fiir
alle Ordnungen v > 2 lassen sich nicht-kommutative Quasigruppen konstruieren.

Einhidngsysteme
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4. Vergleich der beiden Konstruktionsverfahren

In beiden Fillen wird die Existenz eines Systems S(k,v) vorausgesetzt. Mit Einhdngsy-
stemen S(k,k*) lassen sich nach dem Parallelverfahren Systeme S(k,kv) konstruieren.
v(v—1)
k(k—1)
k «Etagensysteme» enthalten, miissen dies aber nicht. Tun sie es, so erhalten wir k£ — 2
MOLS (v).

Kennt man umgekehrt £k — 2 MOLS (v), so lassen sich nach dem Transversalverfahren

mit Etagensystemen S (k,v) ebenfalls Systeme S(k,kv) konstruieren. Die erhaltenen Sy-
-1

steme konnen neben den k& Etagensystemen auch noch -EE—Z——_—_—% Einhdngsysteme ent-

halten, miissen dies aber nicht. Schon aus diesen Feststellungen folgt, dass die aus

S(k,v) mit den beiden Verfahren konstruierten Systeme S(k,kv) im allgemeinen nicht

isomorph zueinander sind.

Die sich ergebenden Systeme konnen neben den Einhdngsystemen auch noch

5. Schluss

In einer interessanten Arbeit [6] untersucht F. Wille die Bedeutung der Anschauung fiir
die Mathematik. Dabei ist auch von einer sogenannten Pseudo-Anschauung die Rede.
Bei ihr bedient man sich unscharfer Vorstellungen. Doch auch sie — so wird behauptet —
sind als Denkhilfen fiir den Mathematiker von allergrosstem Wert.

Inhalt der vorliegenden Arbeit war es nun nicht, vollig neuartige Konstruktionsverfah-
ren fiir Steiner-Systeme aufzuzeigen. Es ging vielmehr darum, bekannte [1, 2, 4] Kon-
struktionen durch einen Pseudoprojektionsvorgang moglichst suggestiv zu veranschauli-
chen. Da werden Transversalen aus einem 7Dlk,v] plotzlich zu Projektionsgeraden.
Man sieht auf einmal, wie sich Systeme S(k,k*) einhdngen lassen. Es gibt mysteriose
Etagensysteme, die auch noch irgendwie hochziehbar sind.

Insgesamt handelt es sich um Vorstellungen, die eigentlich gar nicht exakt zutreffen, die
also letztlich nur im Kopf des Mathematikers existieren. Man darf sich auf Vorstellun-
gen dieser Art sicher nicht vollig verlassen. Sie lenken aber und leiten, ja sie fiihren

sogar manchmal zu neuen Ergebnissen. H. Zeitler, Bayreuth
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