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ELEMENTE DER MATHEMATIK
Revue de mathematiques elementaires - Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts

El Math Band 39 Nr 6 Seiten 137-160 Basel, 10 November 1984

Zwei Rekursionsverfahren zur Konstruktion
von Steiner-Systemen

1. Einleitung

Es sei V mit | V\ v eine endliche Menge und B mit \B\ b eine Menge von k-elementigen

Teilmengen aus V, wobei k — 3 Die Elemente aus V heissen Punkte, die von B
Geraden Zu zwei Punkten gebe es genau eine Gerade, der sie angehören Dann existieren

durch jeden Punkt genau r Geraden Die Inzidenzstruktur (V,B, e) heisst Steiner-

v-l v(v-l)System der Ordnung v Wir schreiben kurz S(k, v) Es gilt r — und b —
AC 1 AC \IC l)

Daraus folgt als notwendige Bedingung fur die Existenz solcher Systeme k - l\v — 1

und k (k — l)\v (v — 1) Ist k Primzahlpotenz, so erweisen sich diese Bedingungen
äquivalent dazu, dass v entweder von der Form v l + nk(k — 1) oder von der Form
v k + nk(k- 1) mit neN0 ist Fur k — 3,4,5 weiss man, dass diese Forderung auch
hinreichend ist Fur k > 5 ist sie es jedenfalls dann, wenn v «hinreichend» gross ist
[1, 5] In Figur 1 sind zwei Beispiele von Steiner-Systemen S(3,v) gezeichnet Im einen
Fall handelt es sich um die projektive Ebene PG (2,2) mit v b 7, k r 3, im zweiten

um die affine Ebene _4<7(2,3) mit v 9, b 12, k 3, r 4

v;s X

PG(2,2)
S(3,7)

frr\ /
S\/ \xe-#—*

/ N/ V v

i

V

Figur 1

AG(2,3)
S(3,9)
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In [7] findet sich ein Rekursionsverfahren, das es gestattet, aus einem S(3,v) ein neues
System S(3,l + 2v) zu konstruieren. Dieses sogenannte Zentralverfahren wurde dann
in einer weiteren Arbeit [8] erweitert und konnte unter gewissen Voraussetzungen zur
Konstruktion eines S(k,l + (v - l)k) aus einem S(k,v) verwendet werden. Die Arbeit
[7] bringt noch ein weiteres Rekursionsverfahren. Mit ihm lässt sich aus einem 5(3, v)
ein neues System 5(3,31;) erzeugen. Erstes Ziel der vorliegenden Arbeit ist es, auch
dieses sogenannte Parallelverfahren zu erweitern. Dann wird es möglich sein, aus einem

S(k,v) unter gewissen Voraussetzungen ein S(k,kv) zu konstruieren. Ganz nebenbei

ergibt sich ein Verfahren zur Konstruktion von k - 2 paarweise orthogonalen lateinischen

Quadraten.
Das Auftreten dieser lateinischen Quadrate legt es nahe, in einem weiteren Abschnitt
ein auf H. Hanani [4] zurückgehendes Verfahren vorzustellen. Auch dieses Transversalverfahren

gestattet, aus einem S(k,v) unter gewissen Voraussetzungen ein S(k,kv) zu
konstruieren. Ein Vergleich beider Konstruktionsverfahren und eine Bemerkung zur
«Pseudoanschauung» beschliessen die Arbeit.

2. Das Parallelverfahren

2.1 Ein Konstruktionssatz
Aus einem gegebenen S(k,v) lässt sich durch Anwendung des erweiterten
Parallelverfahrens ein S(k,kv) konstruieren, falls es S(k,k2) gibt.

2.1.1 Das Konstruktionsverfahren
Gegeben sei 5„ ein Steiner-System S(k,v) mit der Punktmenge V und der Geradenmenge

B. Die Punkte dieses Systems werden nun in ac—1 Stufen parallel hochgezogen
oder parallel projiziert. Figur 2 zeigt diesen Vorgang des Hochziehens für k 4.

Si
Figur 2

Die Punkte
Jedem Punkt Pe V werden durch das Hochziehen genau k-l weitere Punkte zugeordnet.

So erhalten wir insgesamt v-kv Punkte. Mit /= {1,...,ac} lässt sich die neue

Punktmenge V wie folgt beschreiben: V= V x I. Dabei ist (P, 1) mit P zm identifizieren.
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Die Geraden

Die Grundgeraden
v(v- 1)

In Sx gibt es genau \B\ — bx= —r—— Geraden. Wir nennen sie die Grundgeraden.
AC ^AC 1 j

Die Projektionsgeraden
Jeder Punkt PeV bestimmt eine weitere Gerade gP= {(P,i)\iel}. Die Anzahl dieser

sogenannten Projektionsgeraden beträgt b2 v.

Die Geraden der Einhängsysteme
Nach der Voraussetzung von Satz 2.1 existieren Steiner-Systeme S(k,k2). Sie enthalten

genau ac(ac + 1) Geraden, und durch jeden Punkt gehen genau k + 1 Geraden.
Jeder Grundgeraden heB wird nun ein solches System Th mit der Geradenmenge Bh

zugeordnet und dieses dann so eingehängt, dass es alle durch die ac Punkte von h festgelegten

Projektionsgeraden enthält. Mit diesem Einhängsystem Th kommen zu jeder
Grundgeraden neben den Projektionsgeraden noch weitere k2 - 1 Geraden dazu. Dies
liefert insgesamt

b3 bx(k2-l) v(v-l)(k+l)

neue Geraden. Figur 3 erläutert das Einhängen des Systems 5(3,9) aus Figur 1.

I \\
<p>

<

\ <£-7trX
/ \ / \ /

_~zp^___v
tf ^ __/_-.—

Th\ä ö o

Si
Figur 3

Für die Gesamtheit aller bisher konstruierten Geraden erhalten wir schliesslich

t: u+u+u V(v-V ^ v(v-l)(k+l) v(vk-l)b bx + b2 + b3= -tt. tz +v+ -k(k-l) k-l
Das geschilderte «Einhängen» ist ein Isomorphismus <ph von Th mit h9 gPe(ph(Bh) für
alle Peh. Ein solcher existiert, da Th als ein S(k9k2) eine affine Ebene ist, also eine
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Gerade von ac paarweise punktfremden Geraden geschnitten wird. Damit ergibt sich die

Menge aller Geraden in unserer neuen Inzidenzstruktur

B={<ph(m)\heB,meBh}.

2.1.2 Der Beweis des Satzes 2.1

Bezeichnen wir die charakteristischen Grössen unserer neuen Inzidenzstruktur in der
üblichen Weise, jedoch versehen mit einem Querstrich, so entnehmen wir unserer
Konstruktion sofort

Der Vollständigkeit halber sei noch bemerkt, dass durch jeden Punkt (P,i) mit
PeV,ieI genau eine Projektionsgerade und in jedem Einhängesystem, das diese

Projektionsgerade enthält, noch k weitere Geraden gehen. Dies ergibt insgesamt

- ü ~" 1

_
vk— 1

_ v— 1

r~ k~k^l~ FT~FT'
Weiter gibt es durch zwei Punkte genau eine Gerade. Liegen die beiden Punkte auf
einer Projektionsgeraden oder auf einer Grundgeraden, so ist alles schon bewiesen. Im
anderen Fall bestimmen die beiden Punkte zwei verschiedene Projektionsgeraden, diese

in 5j zwei verschiedene Punkte, also genau eine Gerade heB. Im Einhängsystem Th

gibt es aber durch zwei Punkte genau eine Gerade.
Damit ist nachgewiesen, dass unsere neue Inzidenzstruktur ein Steiner-System S(k,kv)
ist.

2.2 Bemerkungen
2.2.1 ac Primzahlpotenz
S(k,k2) ist in jedem Fall eine affine Ebene. Handelt es sich bei ac um eine Primzahlpo-
tenz, so existieren diese Einhängsysteme auch tatsächlich. Entweder liegen die affinen
Ebenen _4G(2,ac) oder aber nicht-desarguessche affine Ebenen vor.

2.2.2 Etagensysteme
Wir betrachten jetzt die Menge 5, aller Punkte (PJ) aus S(k,kv) mit festem

/e{l,...,Ac}, zusammen mit den in ihr enthaltenen Geraden, und fragen, ob es sich
dabei um ein Steiner-System S(k,v) handelt. (Für i 1 ist dies selbstverständlich der

Fall.) Wenn ja, sprechen wir von einem Etagensystem, von der i-ten Etage.
Das Parallelverfahren lässt sich so gestalten, dass ac zueinander isomorphe Etagensysteme

existieren. Bei Beginn der Konstruktion ziehen wir nicht nur die einzelnen
Punkte aus dem gegebenen System Sx hoch, sondern das gesamte System mit all seinen

Geraden. Auf diese Weise erhalten wir insgesamt k Etagensysteme, isomorph zu dem

gegebenen System 5,. Jetzt erst hängen wir unsere Systeme 5(ac,ac2) ein. Dabei sind in
jedem Fall nicht nur ac2 Punkte, sondern auch schon 2ac Geraden vorgegeben. Die ac2

Punkte befinden sich in quadratischer Anordnung; sie bilden gewissermassen ein Gerüst.
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Weil es sich bei unseren Einhängsystemen um affine Ebenen handelt, ist es stets möglich,

sie in dieses Gerüst passend einzufügen. (Die Einhängsysteme müssen nicht
isomorph zueinander sein.)
Man könnte nun vermuten, dass jedes nach dem Parallelverfahren aus 5(ac,i?)
konstruierte System S(k,kv) insgesamt k Etagensysteme enthält. Dies stimmt nicht.
Vertauschen wir nämlich in dem gerade konstruierten System S(k,kv) innerhalb eines
einzigen Einhängsystems zwei Punkte, so bewirkt diese geringfügige Perturbation bereits,
dass in dem neuen, jetzt entstehenden System S(k,kv) nicht mehr k Etagensysteme
existieren.

2.3 MOLS(v)
2.3.1 Definitionen [1,3]
Wir betrachten eine Menge M der Mächtigkeit v, z.B. M {l,...9v}. Unter einem
lateinischen Quadrat der Ordnung v versteht man dann eine (v x t;)-Matrix von der

Art, dass in jeder Zeile und in jeder Spalte jedes Element aus M genau einmal
vorkommt.

Eine algebraische Struktur (M,°) heisst Quasigruppe, wenn es für alle a,beM genau ein

xeM bzw. genau ein yeM gibt mit a°x b bzw. y°a b. Betrachtet man ein lateinisches

Quadrat als Verknüpfungstafel, so entsteht nach unseren Definitionen eine

Quasigruppe. Umgekehrt induziert auch jede Quasigruppe ein lateinisches Quadrat.
Werden zwei lateinische Quadrate gleicher Ordnung aufeinandergelegt, so heissen die

beiden Quadrate zueinander orthogonal, wenn jedes Element des ersten genau einmal
mit jedem des zweiten zusammentrifft.
Sind in einer Menge lateinischer Quadrate der Ordnung v je zwei zueinander orthogonal,

so spricht man von einer Menge paarweise orthogonaler lateinischer Quadrate der

Ordnung v und schreibt kurz MOLS(v) - mutually orthogonal Latin Squares.
In Figur 4 sind drei paarweise orthogonale Quadrate der Ordnung 4 angegeben.

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

1 2 3 4

4 3 2 1

2 1 4 3

3 4 1 2

1 2 3 4

3 4 1 2

4 3 2 1

2 1 4 3

Drei MOLS der Ordnung 4

Figur 4

2.3.2 Satz
Die Konstruktion eines S(k,kv) mit k Etagensystemen aus einem S(k,v) nach dem

Parallelverfahren liefert k-2 MOLS(v).
Ist Ace{3,4,5} und v 1 + nk(k - 1) oder v k + nk(k - l) mit neN0, so existieren
nach der Einleitung sowohl Systeme S(k,v) als auch Systeme S(k,k2) und mit Satz

2.3.2 also ac - 2 MOLS(ü). Damit ist ein für all diese Ordnungen v anwendbares
Verfahren zur Auffindung von MOLS(u) gewonnen.
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Beweis: Jedem Punktepaar (P91), (ß,2) mit P,QeV wird die Verbindungsgerade und
auf dieser der (in <pPq(Tpq) liegende) Punkt (R,i) aus der i-ten Etage mit ie{3,...,k}
zugeordnet. Tragen wir all diese Punkte in eine Tabelle mit jeweils v Eingängen (P, 1)

und (Q,2) ein, so erhalten wir ein lateinisches Quadrat der Ordnung v. Denn Q,R
bestimmen eindeutig P und P, R eindeutig Q.
Die so entstehenden lateinischen Quadrate L, und L} mit / +j erweisen sich als
orthogonal, da die Verbindungsgerade (R,i), (SJ) die erste und die zweite «Etage» jeweils in

genau einem Punkt trifft.
Wir merken an, dass die zu den einzelnen lateinischen Quadraten gehörenden
Quasigruppen nach der Art unserer Konstruktion kommutativ sind. Weiter enthält jede solche

Quasigruppe v(v-l) Unter-Quasigruppen, die jeweils durch eine Grundgerade
k(k-l)

des Systems 5, bestimmt werden. Die Mächtigkeit jeder Unter-Quasigruppe dieser Art
v- 1

beträgt k. Jedes Element der Quasigruppe gehört genau -—- Unter-Quasigruppen
AC 1

dieser Art an. Entsprechendes gilt für die zugeordneten lateinischen Quadrate.

2.3.3 Beispiel
Das Startsystem Sx sei die projektive Ebene PG (2,2) mit der Punktmenge
V {11,21,31,41,51,61,71} und der Geradenmenge (Grundgeraden) B {{11,21,31},
{11,41,71}, {11,51,61}, {21,71,51}, {21,41,61}, {31,61,71}, {31,41,51}}. Nun werden
weitere Punkte hinzugenommen, nämlich {1/, 2i, 3i, 4/, 5/, 6i, li} mit *e{2,3}.
Projektionsgeraden sind dabei die 7 Punktmengen {nl,n2,n3} mit ne{l,2,3,4,5,6,7}.
Als Einhängsysteme verwenden wir affine Ebenen AG (2,3). Figur 5 veranschaulicht
diesen Vorgang nochmals. (Dabei wurde auf alle Geraden im Steiner-System, die nicht
als euklidische Strecken darstellbar sind, verzichtet.)

_J<
_w*

Figur 5
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Mit unserer Konstruktion erhalten wir weitere Geraden
{11,22,33}, {21,32,13}, {31,12,23}, {31,22,13}, {21,12,33}, {11,32,23}, {11,42,73},
{41,72,13}, {71,12,43}, {71,42,13}, {11,72,43}, {41,12,73}, {11,52,63}, {51,62,13},
{61,12,53}, {61,52,13}, {51,12,63}, {11,62,53}, {21,52,73}, {51,72,23}, {71,22,53},
{71,52,23}, {51,22,73}, {21,72,53}, {21,42,63}, {41,62,23}, {61,22,43}, {61,42,23},
{41,22,63}, {21,62,43}, {31,62,73}, {61,72,33}, {71,32,63}, {71,62,33}, {61,32,73},
{31,72,63}, {31,42,53}, {41,52,33}, {51,32,43}, {51,42,33}, {41,32,53}, {31,52,43}.
Dazu kommen noch

{li,2i,3i}, {li,4i,7i}, {li,5i96i}, {2i,li95i}, {2i,4i,6i}, {3i,6i,li}, {3i,4f,5i} mit ie{2,3}.
Unter Verwendung all dieser Geraden ergibt sich zunächst eine Verknüpfungstafel und
damit dann ein lateinisches Quadrat. In Figur 6 ist beides angegeben.

Verknüpfungstafel:

- —T

o 12 22 32 42 52 62 72

11 13 33 23 73 63 53 43

21 33 23 13 63 73 43 53

31 23 13 33 53 43 73 63

41 73 63 53 43 33 23 13

51 63 73 43 33 53 13 23

61 53 43 73 23 13 63 33

71 43 53 63 13 23 33 73

Lateinisches Quadrat der Ordnung 7:

1 3 2 7 6 5 4

3 2 1 6 7 4 5

2 1 3 5 4 7 6

7 6 5 4 3 2 1

6 7 4 3 5 1 2

5 4 7 2 1 6 3

4 5 6 1 2 3 7

Figur 6

3. Das Transversalverfahren

3.1 Satz
Aus einem gegebenen S(k,v) lässt sich durch Anwendung des Transversalverfahrens ein

S(k,kv) konstruieren, falls es TD [k,v] gibt.
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3.1.1 Transversaldesigns TD [k, v]
a) Definition
Gegeben seien k paarweise disjunkte Punktmengen 5, jeweils mit der Mächtigkeit v.

Durch zwei Punkte in ein und derselben dieser Punktmengen gebe es keine, durch zwei
Punkte aus verschiedenen dieser Punktmengen dagegen genau eine Gerade (Transversale)

mit jeweils genau k Punkten. Jedes solche System ist ein (spezielles) Transversaldesign.

Wir schreiben dafür kurz TD [k,v]. Diese Struktur enthält nach dem Gesagten
insgesamt v kv Punkte und b2 v2 Geraden.

b) Konstruktion
Wir nehmen jetzt an, es gebe ac—2 MOLS(u), also ac—2 Quasigruppen zu je v Elementen.

Die ac — 2 dabei auftretenden Operationen bezeichnen wir mit °„ wobei
i e{l,... ,ac — 2}. Mit diesen Quasigruppen konstruieren wir jetzt ein TD [k,v].

Punkte: P= {l,...,v}* {1,...,ac}, also \P\ vk.

Wir können auch schreiben

P={xi\xe{l,...,v},ie{l,...,k}}
und entsprechend
Sf {xi\xe{l,...,v}}.

Geraden: Jede Punktmenge {xl,y2,(x°xy)3,...,(x°k_2y)k}
mit x,ye{l,...,v} heisst Gerade. Es gibt also insgesamt v2 Geraden.

c) Beispiel TD [4,4]
Die Quasigruppen:
Unter Verwendung von zwei MOLS (4) erhalten wir zwei Quasigruppen

o
1

1 2 3 4

1 1 2 3 4
2 2 1 4 3

3 3 4 1 2

4 4 3 2 1

°2 1 2 3 4

1 1 2 3 4
2 3 4 1 2

3 4 3 2 1

4 2 1 4 3

Die Punkte: P {1,2,3,4} x {1,2,3,4}.
Explizit geschrieben

/> {11,21,31,41;12,22,32,42;13;23;33;43;14;24;34;44}.

Die Geraden: B {xl,yl,(x 0,j)3,(x°2>')4} mit *,^e{l,2,3,4}.
Explizit geschrieben

B

{11,12,13,14},
{21,12,23,34},
{31,12,33,44},
{41,12,43,24},

{11,22,23,24},
{21,22,13,44},
{31,22,43,34},
{41,22,33,14},

{11,32,33,34},
{21,32,43,14},
{31,32,13,24},
{41,32,23,44},

{11,42,43,44},
{21,42,33,24},
{31,42,23,14},
{41,42,13,34}

3.1.2 Das Konstruktionsverfahren
Wir starten mit dem in 3.1.1 konstruierten TD[k,v]. Damit haben wir bereits v kv
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Punkte. Wir kennen auch schon b2 v2 Geraden, die Transversalen. Jetzt strukturieren
wir die ac Teilmengen 5, so, dass jeweils ein zum gegebenen System S(k,v) isomorphes
entsteht: In der Sprechweise von 2.2.2 handelt es sich um Etagensysteme. Die
Transversalen bleiben bei diesem Strukturierungsvorgang unverändert. So erhalten wir

weitere /33 Ac/3, k — —, also insgesamt E= b2 + b^ v2 + k — —
ac(ac- 1) k(k- 1)

— — Geraden.
k — 1

3.1.3 Beweis des Satzes 3.1

Bezeichnen wir die charakteristischen Grössen in unserer neuen Struktur wieder wie in
2.1.2, so erhalten wir mit unserer Konstruktion sofort

r i - i t: "(ii ~ 1)^K v kv> E=W^)'
Der Vollständigkeit halber bemerken wir, dass durch jeden Punkt innerhalb des zuge-

i?- 1

ordneten Etagensystems genau -—- und in TD [k, v] genau v Geraden, also insgesamt
AC 1

v — 1 vk— 1 v— 1

genau r — + »=--—p--^ gehen.

Weiter gibt es durch zwei Punkte genau eine Gerade. Liegen nämlich die beiden Punkte
in ein und demselben Etagensystem, so ist dies die Gerade aus diesem System, im
anderen Falle die Transversale in TD[k,v\. Damit ist nachgewiesen, dass unsere neue
Struktur ein Steiner-System S(k,kv) ist.

3.1.4 Beispiel
Mit dem in 3.1.1 c) konstruierten TD [4,4] lässt sich aus 5(4,4) ein 5(4,16) gewinnen.
Allerdings ist dieses Beispiel trivial, da jedes Etagensystem nur aus genau einer Geraden

besteht, also besonders einfach strukturiert ist. Es ergibt sich die affine Ebene
AG (2,4).

3.2 Bemerkungen
3.2.1 v Primzahlpotenz
Ist v Primzahlpotenz, so existieren [3] stets v - 1 MOLS(y). Nimmt man weiter
ac :g v + 1 an, so gibt es jedenfalls ac - 2 MOLS(y). Also lässt sich ein TD [k,v] und
damit dann aus S(k,v) stets ein S(k,kv) mit Ac Etagensystemen konstruieren.

3.2.2 Einhängsysteme
Es kann durchaus sein, dass es in einem nach dem Transversalverfahren konstruierten

v(v- 1)
System S(k,kv) neben den ac Etagensystemen auch noch ———— Einhängsysteme

AC ^AC 1 j
5(ac,ac2) - etwa wie in 2.2.2 - gibt.
Nehmen wir an, dem wäre immer so. Dann müssten nach der Bemerkung in 2.3.2

notwendig alle zu den verwendeten lateinischen Quadraten gehörenden Quasigruppen
kommutativ sein. Diese Voraussetzung aber ist im allgemeinen nicht erfüllt. Denn für
alle Ordnungen v > 2 lassen sich nicht-kommutative Quasigruppen konstruieren.
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4. Vergleich der beiden Konstruktionsverfahren

In beiden Fällen wird die Existenz eines Systems S(k,v) vorausgesetzt. Mit Einhängsystemen

S(k,k2) lassen sich nach dem Parallelverfahren Systeme S(k,kv) konstruieren.
v(v- 1)

Die sich ergebenden Systeme können neben den — — Einhängsystemen auch noch
ac(ac - 1)

ac «Etagensysteme» enthalten, müssen dies aber nicht. Tun sie es, so erhalten wir Ac - 2

MOLS(t;).
Kennt man umgekehrt ac - 2 MOLS(t;), so lassen sich nach dem Transversalverfahren
mit Etagensystemen 5(Ac,t;) ebenfalls Systeme 5(ac,aci>) konstruieren. Die erhaltenen Sy-

v(v- 1)
steme können neben den k Etagensystemen auch noch — — Einhängsysteme ent-

k(k— 1)

halten, müssen dies aber nicht. Schon aus diesen Feststellungen folgt, dass die aus

S(k,v) mit den beiden Verfahren konstruierten Systeme S(k,kv) im allgemeinen nicht
isomorph zueinander sind.

5. Schluss

In einer interessanten Arbeit [6] untersucht F. Wille die Bedeutung der Anschauung für
die Mathematik. Dabei ist auch von einer sogenannten Pseudo-Anschauung die Rede.
Bei ihr bedient man sich unscharfer Vorstellungen. Doch auch sie - so wird behauptet -
sind als Denkhilfen für den Mathematiker von allergrösstem Wert.
Inhalt der vorliegenden Arbeit war es nun nicht, völlig neuartige Konstruktionsverfahren

für Steiner-Systeme aufzuzeigen. Es ging vielmehr darum, bekannte [1, 2, 4]
Konstruktionen durch einen Pseudoprojektionsvorgang möglichst suggestiv zu veranschaulichen.

Da werden Transversalen aus einem TD[k,v] plötzlich zu Projektionsgeraden.
Man sieht auf einmal, wie sich Systeme S(k,k2) einhängen lassen. Es gibt mysteriöse
Etagensysteme, die auch noch irgendwie hochziehbar sind.

Insgesamt handelt es sich um Vorstellungen, die eigentlich gar nicht exakt zutreffen, die
also letztlich nur im Kopf des Mathematikers existieren. Man darf sich auf Vorstellungen

dieser Art sicher nicht völlig verlassen. Sie lenken aber und leiten, ja sie führen

sogar manchmal zu neuen Ergebnissen. H. Zeitler, Bayreuth
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