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Aufgaben

Aufgabe 900. Es seien ha, hb, hc die Höhen, r der Inkreisradius eines ebenen Dreiecks.
Man schätze

hn-r hb-r ^K~r
n. + r hb + r hc + r

bestmöglich nach unten ab.

M.D. Milosevic, Pranjani, YU

Lösung: O.B.d.A. betrachten wir Dreiecke vom Umfang a + b + c— 1. Für diese ist

x h—r hh — r h—r l — a 1 — b 1 — c
<p(a,b,c):=-r + t + T \ + ~, 7 + ~,YK ' ha+r hb + r hc + r l + a l+b l + c

Es sei D die durch a + b + c 1 sowie die Dreiecksungleichungen 0 < a < b + c usw.
definierte Teilmenge des R3. Wegen der Konvexität der Funktion/(x) (1 - x)/(l + x)
in 0 ^ jc < 1 ist (p konvex in D, d.h. (p(a,b,c) ^ (p(l/3,1/3,1/3) 3/2. Da ferner (p für
(a,b,c) (0,1/2,1/2) maximal wird, gilt aus Stetigkeitsgründen für eigentliche Dreiecke
<p(a,b,c) < (0,1/2,1/2) 5/3. Die bestmöglichen Abschätzungen von ip lauten also

3/2 ^cp(a,b,c)< 5/3

mit Gleichheit genau für reguläre Dreiecke.
O. P. Lossers, Eindhoven, NL

Weitere Lösungen sandten S. Arslanagic (Trebinje, YU), G. Bercea (München, BRD),
C. Bindschedler (Kusnacht), E. Braune (Linz, A), P. Bundschuh (Köln, BRD), L. Cseh

(Odorheiu-Secuiesc, Rumänien), H. Egli (Zürich), H. Frischknecht (Berneck), W.
Janous (Innsbruck, A), M.S. Klamkin (Edmonton, Kanada), L. Kuipers (Sierre), V.D.
Mascioni (Origlio; 2 Lösungen), I. Merenyi (Cluj-Napoca, Rumänien), Hj. Stocker

(Wädenswil).

Aufgabe 901. Die Funktion f:{zeC;\z\=l}-+{zeC;\z\ < 1} sei holomorph und es sei

/(0) 0. Dann trifft genau eine der beiden folgenden Aussagen zu:

if(x)dx <2/3. (1)

Es gibt eine Konstante aeC mit |a| 1 derart, dass

/00 az2. (2)

Dies ist zu zeigen.
P. von Siebenthal, Zürich
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Losung Es sei D die offene Einheitskreisscheibe, also D {zeC \z\ < 1} Zunächst
zerlegen wir die Funktion / in den geraden Anteil vv und den ungeraden Anteil v, also

f(z) w(z) + v(z), (3)

mit

Hz) \ (f(z) +/(-_)) und v(z) i (/(_) -/(-z))

Aus den Voraussetzungen uber/ folgt, dass vv die Form

w(z) z2g(z)

hat, wobei die Funktion g holomorph in D und \g(z)\ ^ 1 fur jedes z eD ist

1 Fall \g(z)\ < 1 fur jedes zeD
+i

Da die Funktion v ungerade ist, ist das Integral J v (x) dx 0 Daher ergibt sich sofort
-i

die gewünschte Ungleichung

J f(x)dx J w(x)dx
+i +i 9

^ J \x2g(x)\dx < J x2dx= -
-i -i 5

2 Fall \g(z0)\ 1 fur ein z0eD
Nach dem Maximumprinzip ist demnach \g(z)\ 1 fur jedes zeD, also g(z) const

a mit |a| 1

Die Funktion /lasst sich daher nach (3) in der Form

f(z) (xz2 + v(z)

darstellen
Beachtet man, dass v ungerade ist, so gilt fur jedes zeD

|az2 + t?(z)| /(z)Kl
|az2-t>(z)| /(-z)|<l

Quadrieren und Addition ergibt wegen |a| 1

\z\< + \v(z)\2^l (zeD) (4)

Die Ungleichung (4) impliziert jedoch, dass v(z) gleichmassig gegen Null geht, falls z

gegen den Rand von D strebt Nach dem Maximumprinzip ist also v identisch Null
Somit hat/die Gestalt

/(z) az2,

mit |a|= 1

R Mortini, Karlsruhe, BRD



132 El Math, Vol 39, 1984

Weitere Lösungen sandten P. Bundschuh (Köln, BRD), L. Cseh (Odorheiu-Secuiesc,
Rumänien), W. Hensgen (München), Kee-wai Lau (Hongkong), I. Merenyi (Cluj-Na-
poca, Rumänien), Chr.A. Meyer (Berlin). Eine Beweisskizze sandte Hj. Stocker
(Wädenswil).

Neue Aufgaben

Die Lösungen sind getrennt nach den einzelnen Aufgaben in Maschinenschrift erbeten
bis 10. April 1985 and Dr. H. Kappus. Dagegen ist die Einsendung von Lösungen zu
den mit Problem...A,B bezeichneten Aufgaben an keinen Termin gebunden.
Bei Redaktionsschluss dieses Heftes sind noch ungelöst: Problem 601A (Band 25,
S.67), Problem 625B (Band 25, S.68), Problem 645A (Band 26, S.46), Problem 672A
(Band 27, S.68), Aufgabe 680 (Band 27, S. 116), Problem 724A (Band 30, S.91),
Problem 764A (Band 31, S.44), Problem 862A (Band 36, S.68), Problem 887A (Band 37,
S. 151).

Aufgabe 912. In einem rechtwinkligen Dreieck ABC wird das Lot von einem Punkt D
der Kathete AC auf die Hypothenuse AB gefällt. Der Fusspunkt sei E. Die Transversalen

BD und CE schneiden sich in S. Durchläuft D die Seite AC, so beschreibt S eine
durch A und C verlaufende Kurve k. T sei der Schnittpunkt von k mit dem Kreis um B
durch C. Man zeige, dass BT den Winkel ABC drittelt.

M. Diederichs, Leichlingen, BRD

Aufgabe 913. Compute the ratio

^2742 + ^32540 - ^%843
f ^4881 + ^20388 - 3/8683°

to a precision of 10 significant figures.
J. Waldvogel, Zürich
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