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Aufgaben

Aufgabe 900. Es seien h,, h,, h, die Hohen, r der Inkreisradius eines ebenen Dreiecks.
Man schitze

h,—r h,—r h—r
+ +
h,+r h+r h+r

bestmoglich nach unten ab.
M. D. Milosevic, Pranjani, YU

Losung: O.B.d.A. betrachten wir Dreiecke vom Umfang a + b+ ¢ = 1. Fir diese ist

(abc)___ha—r_’_hb—r_'_hc—r_1——a+1~b+ l-c
ad et h,+r h+r h+r 1+a 1+b 1+c

Es sei D die durch a + b + ¢ = 1 sowie die Dreiecksungleichungen 0 < a < b + ¢ usw.
definierte Teilmenge des R®. Wegen der Konvexitit der Funktion f(x) = (1 — x)/(1 + x)
in 0<x <1 ist g konvex in D, d.h. ¢(a,b,c) = ¢(1/3,1/3,1/3) = 3/2. Da ferner ¢ fiir
(a,b,c) = (0,1/2,1/2) maximal wird, gilt aus Stetigkeitsgriinden fiir eigentliche Dreiecke
¢(a,b,c) <(0,1/2,1/2) = 5/3. Die bestmoglichen Abschdtzungen von ¢ lauten also

3/2 < p(a,b,c) < 5/3

mit Gleichheit genau fiir regulidre Dreiecke.
O.P. Lossers, Eindhoven, NL

Weitere Losungen sandten S. Arslanagic (Trebinje, YU), G. Bercea (Miinchen, BRD),
C. Bindschedler (Kiisnacht), E. Braune (Linz, A), P. Bundschuh (Kd6ln, BRD), L. Cseh
(Odorheiu-Secuiesc, Ruménien), H. Egli (Ziirich), H. Frischknecht (Berneck), W. Ja-
nous (Innsbruck, A), M.S. Klamkin (Edmonton, Kanada), L. Kuipers (Sierre), V.D.
Mascioni (Origlio; 2 Losungen), 1. Merényi (Cluj-Napoca, Ruménien), Hj. Stocker
(Wéidenswil).

Aufgabe 901. Die Funktion f:{zeC;|z|=1}—{zeC;|z| < 1} sei holomorph und es sei
f(0) = 0. Dann trifft genau eine der beiden folgenden Aussagen zu:

[ fx)dx [ <2/3. (1)

Es gibt eine Konstante a € C mit |a| = 1 derart, dass

f@=az’. ()

Dies ist zu zeigen.
. P. von Siebenthal, Ziirich
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Losung: Es sei D die offene Einheitskreisscheibe, also D = {zeC:|z| < 1}. Zundichst
zerlegen wir die Funktion f in den geraden Anteil w und den ungeraden Anteil v, also

f@)=w(2) +0(2), €)

mit
w@ = 3 (MO +/=2) wd @)= (10 -1-2).

Aus den Voraussetzungen iiber f folgt, dass w die Form

w(z)=2'g(2)
hat, wobei die Funktion g holomorph in D und |g(2)| < 1 fiir jedes z €D ist.

1. Fall. |g(2)| < 1 fiir jedes z eD.

+1

Da die Funktion v ungerade ist, ist das Integral | v(x)dx = 0. Daher ergibt sich sofort
-1

die gewiinschte Ungleichung:

T w(x)dx

-1

+1 +1 2
<[ I¥g)dx< | x*dx= 3

| -1

_f S(x)dx

2.Fall. |g(z,)] = 1 fiir ein z,€eD.

Nach dem Maximumprinzip ist demnach |g(z)| =1 fiir jedes zeD, also g(z) = const
= g mit |a| = 1.

Die Funktion f lasst sich daher nach (3) in der Form

f@)=az2+v(2)

darstellen.

Beachtet man, dass v ungerade ist, so gilt fiir jedes z eD.
e 2" + v(2)| = [f(2) < 1
e 22 = v(2)| = [f(—2)| < 1.

Quadrieren und Addition ergibt wegen |a| = 1:

lzZI*+ @) <1 (zeD). 4)

Die Ungleichung (4) impliziert jedoch, dass v(z) gleichmassig gegen Null geht, falls z
gegen den Rand von D strebt. Nach dem Maximumprinzip ist also v identisch Null.
Somit hat f die Gestalt

f@=az,

mit || = 1.
R. Mortini, Karlsruhe, BRD
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Weitere Losungen sandten P. Bundschuh (K6in, BRD), L. Cseh (Odorheiu-Secuiesc,
Ruménien), W. Hensgen (Miinchen), Kee-wai Lau (Hongkong), I. Merényi (Cluj-Na-
poca, Rumdnien), Chr. A. Meyer (Berlin). Eine Beweisskizze sandte Hj. Stocker (Wa-
denswil).

Neue Aufgaben

Die Losungen sind getrennt nach den einzelnen Aufgaben in Maschinenschrift erbeten
bis 10. April 1985 and Dr. H. Kappus. Dagegen ist die Einsendung von Ldsungen zu
den mit Problem...A, B bezeichneten Aufgaben an keinen Termin gebunden.

Bei Redaktionsschluss dieses Heftes sind noch ungelGst: Problem 601A (Band 25,
S.67), Problem 625B (Band 25, S.68), Problem 645A (Band 26, S.46), Problem 672A
(Band 27, S.68), Aufgabe 680 (Band 27, S.116), Problem 724A (Band 30, S.91), Pro-
blem 764A (Band 31, S.44), Problem 862A (Band 36, S.68), Problem 887A (Band 37,
S.151).

Aufgabe 912. In einem rechtwinkligen Dreieck 4BC wird das Lot von einem Punkt D
der Kathete 4C auf die Hypothenuse 4B gefillt. Der Fusspunkt sei E. Die Transversa-
len BD und CE schneiden sich in S. Durchlduft D die Seite AC, so beschreibt S eine
durch 4 und C verlaufende Kurve k. T sei der Schnittpunkt von k£ mit dem Kreis um B
durch C. Man zeige, dass BT den Winkel ABC drittelt.

M. Diederichs, Leichlingen, BRD

Aufgabe 913. Compute the ratio

/2742 + /32540 — /96843

" 74881 + /20388 — /36830

to a precision of 10 significant figures.
J. Waldvogel, Ziirich
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