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An Egyptian algorithm for polynomials

1. Introduction and notation

The Egyptian, or Ahmes, algorithm asserts that any positive proper fraction is a sum
of finitely many so-called unit, or Egyptian, fractions. In other words, given positive
integers a<b, there exist positive integers k, < --- <k, such that a/b=
1/k, + - -- + 1/k,. A proof that any such a/b admits such a sum representation appears
in [2], p.261, and an algorithm producing such a representation is given in [1], Exercise
4(a), p.133. This note presents an analogous result in a kindred context, that of the
polynomial ring K [X], where K is a field. It will be no more difficult to consider, more
generally, R [X] where R is a domain with quotient field K.

2. The algorithm

It will be convenient to introduce the following terminology. A rational function
we K (X) is said to be R-proper in case w = f/g for some nonzero f,g € R[X] such that
deg(f) <deg(g). A natural family of examples of R-proper rational functions is pro-
vided in characteristic 0 by the logarithmic derivatives g'/g arising from arbitrary
geK[X] of degree at least 1. By clearing denominators, one sees easily that w is R-
proper if and only if w is K-proper. Moreover, the above definition is easily shown to
be independent of the choice of f and g, by using the fact that K[X] is a unique
factorization domain. Such assertions, and indeed most of the calculations in this note,
may be verified via the valuation properties of deg for polynomials over a domain.
To wit, deg(g,g,) = deg(g,) + deg(g,); and deg(g, + g,) < max(deg(g,),deg(g,)), with
equality holding if deg(g,) # deg(g,). A particularly useful application of these proper-
ties asserts that any nonzero sum of R-proper rational functions is itself R-proper, the
point being that deg(f) < deg(g) for i = 1,2 implies deg(f,g, + g./,) < deg(g,g,). Ob-
serve that the analogous assertion for positive proper fractions is false: for instance,
1/2+1/3+1/4=13/12> 1.

We shall say that an R-reciprocal representation of a nonzero rational function
weK (X) (of length m) is an expression

w=r/h+ - +r,lh,

with each h,e R[X], 0 #r,eR, 0 <deg(h) < deg(h,) < - -- <deg(h,). As any such sum-
mand r,/h; is R-proper, the result noted above implies that if w admits an R-reciprocal
representation, then w is R-proper. (The analogue for Z is false: vide 13/12.) Theorem
(a) will establish the converse, but first we need

Lemma. Let f,g be nonzero elements of R[X] such that deg(f) <deg(g). If
rn/h+---+r,/h, is an R-reciprocal representation of flg, then deg(h)=

deg(g) — deg(/). -
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Proof: Multiply both sides of flg= ) r/h, by g[[h. The result is
fIIm=g Y r. T] h - Equating degrees, we have

J#i

deg(f) + ), deg(h)=deg(gr, [] h)=deg(e) +0+ ). deg(h),

j#1 j#1

from which the conclusion is immediate.

Theorem. Let w be a nonzero element of K(X). Express w as f|g, where [ and g are in
R[X], and deg(f) = n. Then:

(a) w is R-proper if and only if there exists an R-reciprocal representation of w.

(b) If w is R-proper, then one can algorithmically produce an R-reciprocal representation
of w of length at most n + 1.

Proof: The ‘if’ half of (a) follows from the above comments. Conversely, let w be
R-proper; that is, deg(f) < deg(g). It is enough to show that w admits a K-reciprocal
representation of the form Z 1/h, of length m <n + 1. For then, by clearing denomi-
nators, 1/h;=r/H; for suitable r,eR and H,eR[X] (with deg(H) = deg(h)), and w
would have an R-reciprocal representation, 2 r./H, of the same length m.

We shall show by strong induction on n that w has a K-reciprocal representation of the
above form with length at most n + 1. If n = 0, this is clear, for f'is then a constant and
w = 1/f"'g. For the induction step, use the division algorithm in K[X] to write
g = h,f + r, for uniquely determined 4, and r in K[X] such that deg(r) < n. Note that
deg(h,) = deg(g) — deg(f) = 1. Moreover,

1 —
=t M
g h gh
Without loss of generality, r #0. We claim that v= —r/gh, is K-proper. Indeed,
deg(—r)=deg(r) <n <deg(g) <deg(g) + deg(h,) = deg(gh,), proving the claim.
Note that we have also shown

deg(r) < deg(g) — 2. (2)

Now, since deg(r) < deg(f), the induction hypothesis supplies z:"zz 1/h, a K-recip-
rocal representation of v, with m — 1 <deg(r)+1<n. By (1), w=1/h, + --- + 1/h,,
and so it suffices to prove that deg(h,) < deg(h,). However, the lemma gives
deg(h,) = deg(gh,) — deg(—r), which equals deg(h,) + deg(g) —deg(r). By (2),
deg(h,) > deg(h,) + 2, and the proof is complete.

As noted in [2], p.261, the divergence of the harmonic series permits arbitrary posmve
rationals to be realized as sums of unit fractions. Essentially because deg is non-Archi-
medean, the next result is the best-possible analogue for rational functions.

Corollary. Each element of K(X) can be expressed as a sum of the form
hofro +ri/h, + - -+ + 1, /h,, where r,eR for each i and ry# 0, h,e R[X]\{0} for each i > 1
and hye R[X], and deg(h,) < deg(h,) < - - - < deg(h,).
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Proof: If u e K(X), write u = F/g for suitable F,g in K[X] with g # 0. By the division
algorithm in K[X], F=qg + f for suitable ¢,f in K[X] with deg(f) < deg(g). Thus
u=gq + flg. By clearing denominators, write g as hy/r, for hyr, as asserted. Finally,
express f/g as r,/h, + - -+ +r,/h,, either with an R-reciprocal representation of f/g (if
f # 0) or trivially with vanishing numerators (if f = 0).

Remark: (a) If R = K then each R-proper rational function has a ‘unit’ R-reciprocal
representation, that is, one in which each numerator r,= 1. The converse also holds.
Indeed, if s is a nonzero element of R and s/X admits an R-reciprocal representation of
the type Z h', clearing denominators leads to

s ‘I:[l h=X Z(g h,).
Then, if a, denotes the leading coefficient of A, equating the leading coefficients of the
left- and right-sides of the display yields sa,a,- - -a,, = a,- - -a,. By cancellation, sa, = 1;
that is, s”'eR.
(b) It seems natural to consider power series analogues of the above theorem. Here, we
record only the simple fact that K [[X ]] admits such an analogue with m = 1. More
generally, let V be the valuation ring (domain) of a (discrete rank one) valuation v with
value group Z and local uniformizing parameter z. Then any ‘proper’ element, f/g with
fand g in ¥V and v (f) < v (g), can be expressed as 1/z°® "y for an appropriate unit u
of V.
(c) Unit reciprocal representations need not be unique. To see this in classical context
of the Egyptian algorithm, observe that the proper fraction 7/12 is both 1/3 + 1/4 and
1/2 + 1/12. An analogue for rational functions (for simplicity, with R = Q) is easily
illustrated:

X+ X+ DX =X+ X+ X=X~ 1)+ 1/X* (= X+1).

It is a bit harder to illustrate nonuniqueness with distinct Q-reciprocal representations
sharing a common initial term and having the same length. For instance, one has
Q-reciprocal representations

Y+X+X+XxXx+Xx-1 1
X+ X - X? X

+

)
1 1 1 11

It

where p, denotes a suitable polynomial of degree .

To indicate the genesis of (3), we first reveal a general way to synthesize a rational
function admitting distinct K-reciprocal representations having a common initial term.
Consider two distinct polynomials, fand A, of the same degree n > 2 and with the same
term of highest degree; let r be a polynomial of degree at most » —1 and set
g = h,f+ r. We know from the proof of the theorem that f/g has a K-reciprocal repre-
sentation with initial term 1/A,. Does it also have one whose initial term is 1/f? By the
lemma and theorem, it will since deg(f) + deg(g) — deg(f* — g) > n, the point being
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that /? and g have the same leading term. One thereby obtains distinct K-reciprocal
representations, 1/h, + --- =1/f+ ---; adding 1/X to (the left of) each produces
distinct such representations with the same initial term.

The two representations given by the above recipe may, however, have unequal
lengths. Consider, for instance, the choices f= X*+ 1, h,= X* — 1, r = X. The recipe
produces

X4+X3+2X—1_l+ 1 + 1 +~—1—
X+X-X X X-1 -X+X-X+X+1 p,
1 1
=—+ + iti :
¥t ¥ sum of three additional terms @)

Let w denote the rational function in (4), we compute via the first equation in (4) that

Xr+xX+xX+x+x-1

v=1/X+w/X = PO
1

I
¥ ¥ xT Txrxr_xrx+x py

which explains the origin of the first equation in (3). How does one obtain the second

equation in (3)? Simply apply the Theorem’s algorithm.to w, multiply the result

through termwise by 1/X, and then add 1/X to (the left of) the ensuing expression.

Finally, it is amusing to note that an application of the Theorem’s algorithm directly to
v produces yet another distinct Q-reciprocal representation of v.

David E. Dobbs and Robert M. McConnel

University of Tennessee, Knoxville (USA)
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Berichtigung

Correction to paper: Packing of 180 equal circles on a sphere.
Elemente der Mathematik. Vol. 38, 1983, 119-122

Professor H.S.M. Coxeter kindly drew my attention to the fact that figures of pack-

ings of 72 and 180 circles are chiral and not centro-symmetric. Namely, central symme-

try can occur in tessellation {3,q + }, . (¢ =4 or 5) if bc (b — ¢) = 0, that is, the tessela-

tion has a plane of symmetry. Thus, the statement in the last sentence of the paper is
not valid.

Tibor Tarnai

Hungarian Institute for Building Science Budapest
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