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Eine Ramsey-Zahl fiir fiinf Knoten und acht Kanten

Als klassische Ramsey-Zahl r (p) bezeichnet man die kleinste natiirliche Zahl
n, fiir die bei jeder 2-Fiarbung der Kanten des vollstindigen Graphen mit »
Knoten, K,, ein einfarbiger Teilgraph K, vorkommt. Es sind r(3) =6 und
r(4) =18 wohlbekannt. Jedoch schon fiir p=5 weiB man bisher nur
42 =r(5) = 55.

In der Literatur sind verschiedene Variationen der Ramsey-Zahlen zu finden
[2, 4]. Hier sollen eine andere Abwandlung und erste Ergebnisse fiir p=5
vorgestellt werden. Ahnliche Verallgemeinerungen wurden schon in [1, 3] be-
handelt.
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5 D
Fir g = (2

bei jeder 2-Firbung aller Kanten des K, ein Teilgraph mit p Knoten und
q Kanten einer Farbe, kurz ein einfarbiger (p,q)-Graph, vorkommt. Natiir-

lich ist r,(p) =p fiir g = {(’;)/2}. Die Werte r,(p) fiir ¢ < (g

als eine Art Anndherung an die klassische, fiir p = 5 noch unbekannte Ram-
sey-Zahl r (p) = r(,zz) (p) auffassen.

) sei r=r,(p) die kleinste Anzahl von Knoten eines K,, so daB

) lassen sich

Satz: Es gelten
re(5)=6, r;(5)=10 und rg(5)=14.

Beweis: q = 6: Werden 5 Kanten des K5 griin und die iibrigen 5 rot gefarbt, so
kommt kein einfarbiger (5, 6)-Graph vor, das heisst r5(5) > 5.

Im K sind stets x = 8 Kanten von einer Farbe, etwa griin. Entfernt man
einen Knoten, der mit der kleinsten Anzahl y griiner Kanten inzidiert, so ent-
hélt der Restgraph und damit auch der K¢ einen griinen (5,6)-Graph. Dies
gilt fiir y =2 trivialerweise und wegen x = 3y auch fiir y = 3. Damit ist
76 (5) = 6 gezeigt.

Figur 1. 2-Férbung der Kanten des Ky (nur die Kanten einer Farbe sind gezeichnet) ohne Teil-
graph mit 5 Knoten und 7 Kanten einer Farbe.

q=7:In Figur 1 sind je 5 der 9 Punkte durch 4, 5 oder 6 Kanten verbunden,
und das bedeutet r;(5) > 9.

Jeder Knoten im K, inzidiert mit mindestens 5 Kanten einer Farbe, einer
etwa mit 5 griinen. Sind hochstens 3 der Kanten zwischen den 5 Endknoten
griin, so kommt ein roter (5,7)-Graph vor. Andernfalls gibt es unter den
5 Endknoten 4 mit 3 griinen Verbindungskanten und damit einen griinen
(5,7)-Graph. Hieraus folgt 7, (5) = 10.

q=38: Je 5 der 13 Punkte in Figur 2 sind durch 3, 4, 5, 6 oder 7 Kanten
verbunden, so dass rg(5) > 13 gilt. Um rg(5) = 14 nachzuweisen, zeigen wir
zunichst
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Figur 2. Alle Kanten einer Farbe in einer 2-Fiarbung der Kanten des K3 ohne Teilgraph mit
5 Knoten und 8 Kanten einer Farbe.

Hilfssatz (HS): Fiir n = 13 enthilt jede 2-Farbung des K, mit einfarbigem K,
auch einen einfarbigen (5, 8)-Graph.

Beweis: Es geniigt, n = 13 zu betrachten. Zu einem etwa griinen K4 gehen von
den iibrigen 9 Knoten jeweils mindestens 3, also zusammen mindestens 27
rote Kanten, oder es gibt einen griinen (5, 8)-Graph. Zu zwei Knoten des grii-
nen K, gehen mindestens 14 der 27 roten Kanten, so dass von jedem der bei-
den Knoten nur rote Kanten zu 5 der 9 Knoten gehen. Diese 5 Knoten bilden
einen griinen (5,8)-Graph oder von einem Knoten gehen 2 rote Kanten zu 2
anderen der 5 Knoten, so dass diese 3 Knoten zusammen mit den 2 Knoten
des griinen K, einen roten (5, 8)-Graph bilden.

Nun inzidieren im K4 mit jedem Knoten mindestens 7 Kanten einer Farbe.
Vom Knoten a gehen etwa x griine Kanten zu den Knoten 1 bis x mit x = 7.
Folgende drei Fille sind moglich: Entweder ist einer dieser x Knoten, etwa
1, mit mindestens drei der x Knoten, etwa 2, 3 und 4, griin verbunden oder
mit mindestens fiinf, etwa 3, 4, 5, 6 und 7, rot, oder aber von jedem der x
Knoten gehen zu den anderen zwei griine und vier rote Kanten, woraus x = 7
folgt.

Im ersten Fall kommt entweder ein griiner K4 vor (s. HS) oder 2, 3 und 4
sind rot verbunden und ebenso zwei der Knoten 5, 6 und 7, etwa 5 und 6.
Gehen von 5 und 6 mindestens vier rote Kanten zu den Knoten 2, 3 und 4, so
bilden 2, 3, 4, 5, 6 einen roten (5,8)-Graph. Andernfalls gehen etwa von 5
griine Kanten zu zwei der Knoten 2, 3 und 4, und diese bilden mit 5, a und 1
einen griinen (5, 8)-Graph.

Im zweiten Fall gibt es entweder ein einfarbiges Dreieck mit Knoten aus
{3, 4, 5, 6, 7}, also mit a oder 1 einen einfarbigen K, (s. HS), oder die Kanten
zwischen den Knoten 3 bis 7 bilden einen griinen und einen roten Cs (Kreis
der Linge 5). Gehen dann drei rote Kanten vom Knoten 2 zu drei auf dem
roten C; aufeinanderfolgenden Knoten, so bilden diese mit 1 und 2 einen
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roten (5,8)-Graph. Sonst gibt es drei unter den Knoten 3 bis 7, die mit a und
2 einen griinen (5, 8)-Graph erzeugen.

Bilden im dritten Fall die griinen Kanten zwischen den x =7 Knoten ein
Dreieck, so gibt es einen griinen K, (s. HS). Also konnen die griinen Kanten
nur noch einen C; bilden, ohne Einschriankung der Allgemeinheit mit den
Knoten 1 bis 7 in zyklischer Reihenfolge.

Es bleibt zu betrachten, dass jeder Knoten des K4 mit genau sieben Kanten
einer Farbe inzidiert, die Endknoten dieser Kanten einen C; von gleicher
Farbe aufspannen und alle iibrigen Kanten zwischen den Endknoten von der
anderen Farbe sind.

Gehen von einem der Knoten 1 bis 7, etwa von 1, sieben rote Kanten aus, so
muss zum roten C; die Kantenfolge (4, 6, 3, 5) gehoren, die etwa durch (8, 9,
10) in rot aus den mit a rot verbundenen Knoten 8 bis 13 ergdnzt werden
kann. Dann bilden aber q, 1, 8, 9, 10 einen roten (5, 8)-Graph.

Sonst inzidieren mit den Knoten 1 bis 7 jeweils sieben griine Kanten, das
heisst, vier davon, also insgesamt 7-4 = 28, auch mit den Knoten 8 bis 13.
Von einem dieser sechs Knoten gehen daher fiinf griine Kanten zu dem zu a
gehorenden griinen C;. In jedem Fall werden drei aufeinanderfolgende Kno-
ten dieses griinen C; erfasst, die zusammen mit 8 und a einen griinen (5, 8)-
Graph garantieren.

Damit ist auch rg(5) = 14 bewiesen.

Fiir ¢=9 konnte auf dhnliche Weise bisher nur 20 = ry(5) = 24 erreicht
werden.

Heiko Harborth und Ingrid Mengersen, Braunschweig
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