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Aufgaben

Aufgabe 898. Let feC" [0,1] with

fk)(0)=fk)(l) 0 for k 0,l,...,n- l. (1)

Show that for p ^ 1

)\fn\x)fdx>(2n + iy*((2n + l)!/*»)' )f(x)dx
o \ '

0

where a:=max{l,/?/2}. When does equality hold?
M. S. Klamkin und A. Meir, Edmonton, CDN

Lösung: Wegen der Voraussetzung (1) führen n partielle Integrationen zu

\f(x)dx (-1)"} Q„ (x)f»(x)dx, (2)

wobei Qn ein zunächst noch beliebiges Polynom des genauen Grades n mit 1/«! als

höchstem Koeffizienten ist. Wir wählen nun speziell

n\
Q"ixy-=(2ny.PÄ2X~l)' (3)

P„ das n-te Legendre-Polynom. Trägt man (3) in (2) ein, so wird die Ungleichung der
Aufgabenstellung äquivalent zu

(2« + \y-° j P„(2x - l)f\x)dx "^Uf^ixWdx. (4)

Im Falle n 0 ist (4) wegen P0 1 gleichbedeutend mit

Sf(x)dx *{l[f(x)rdx hp
(5)

Istp 1, so ist dies trivialerweise richtig, und Gleichheit gilt in (5) genau dann, wenn/
in [0,1] sein Vorzeichen nicht wechselt. Ist p > 1, so ist (5) als Spezialfall der Holderschen

Ungleichung richtig, und Gleichheit gilt in (5) genau dann, wenn / konstant ist,
vgl. etwa ([1], S.72). Sei hinfort n ^ 1.

Ist p 1, so ist (4) äquivalent mit

$Pn(2x-l)f<*(x)dx <\\f«\x)\dx. (6)
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Wegen \Pn(2x - l)/(w)(*)l < \fn)(x)\ in [0,1] ist (6) richtig. Ist überdies fn) ^ 0, so kann
in der zuletzt angegebenen Ungleichung nicht stets Gleichheit eintreten, also gilt dann
auch in (6) die strenge Ungleichung; ist aber/^ 0, so gilt trivialerweise Gleichheit in
(6). Wegen (1) ist/(n) 0 mit/= 0 äquivalent.
Sei jetzt 1 < p ^ 2. Mit der Holderschen Ungleichung ist

$Pn(2x -1)/« (x)dx ^(\jpn(2x - lX^-^^V"1^^}ir^Cjc)!-^)17"

<(f/>.(2^ - lydbcy'-^J U«^)rÄ)1ÄP (7)

(2n + lf-p)lp(l\fn\x)Ydx)IP

wegen p/(p - 1) ^ 2, \Pn(2x - l)\ < 1 in [0,1] sowie j Pn(2x - lfdx 1/(2« + 1). Die
0

Ungleichung zwischen erstem und letztem Glied in (7) ist zu (4) äquivalent. Ist
1 < p < 2, so ist sogar p/(p - 1) > 2 und

]\Pn(2x - l)\^~l)dx<\pn(2x - lfdx:
0 0

Ist in diesem Falle fn) ^ 0, so ergibt sich aus (7), dass in (4) strenge Ungleichung gilt;
bei 1< p < 2 gilt somit in (4) Gleichheit genau für fn) 0, d. h. / 0. Bei p 2 ist die
zweite Ungleichung in (7) eine Gleichheit, während die erste mit der Cauchy-Schwarz-
schen Ungleichung übereinstimmt, und in ihr gilt bekanntlich Gleichheit genau dann,
wenn

f»\x) cPn(2x- 1) (8)

ist mit einer reellen Konstanten c. Wegen der Rodriguez-Formel

Pn(2x-l) (l/n \)(d/dx)n(x2 - x)n

und (1) ist aus (8) induktiv leicht

f»-»(x) (cln\)(d/dx)n-J(x2-x)n für j 0,...,n

einzusehen, insbesondere f(x) c'(x2 - x)n mit einer neuen Konstanten c'.
Ist schliesslich p > 2, so hat man erneut nach Hölders Ungleichung

)fn)(x)2dx < \fn)(x)Ydx\llP (9)

mit Gleichheit genau dann, wenn/(n) konstant ist. Wendet man nun (7) mit p 2 an, so

erhält man die erste Hälfte von
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(2n + 1)(\ph(2x - l)fn\x)dx\^\fn\x)2dx ^Cj\ßn\xWdx\IP, (10)

wahrend sich die zweite aus (9) ergibt, wegen tx -p/2 ist die Ungleichung zwischen den
beiden äusseren Gliedern in (10) mit (4) gleichbedeutend In der ersten bzw zweiten
Ungleichung (10) steht Gleichheit genau dann, wenn (8) zutrifft bzw fn) konstant ist
Also hat man in (4) bei p < 2 Gleichheit genau dann, wenn das c m (8) Null ist, d h

wenn/™ 0 und somit/ 0 gilt
P Bundschuh, Köln, BRD

LITERATURVERZEICHNIS

1 N D KazarmofT Analytic inequahties Holt, Rmehart and Wmston, New York 1961

Bemerkung der Redaktion In die Aufgabenstellung hatte sich bedauerlicherweise der
Irrtum a -mm{l9p/2} eingeschlichen

Einen weiteren Beitrag sandte W Janous (Innsbruck, A)

Aufgabe 899. Es seien a„a2,a3 die Innenwinkel eines ebenen Dreiecks mit Inkreisradius
r und Umkreisradius R Man zeige, dass

Jl(3ocJn)^2r/R

Wann genau steht das Gleichheitszeichen*?

V D Mascioni, Origlio

Losung Es gilt bekanntlich (siehe z B [1], S 34)

3

8 JJ sM<xJ2)~ 2r/R
1*1

Daher ist die behauptete Ungleichung äquivalent mit

(3/„)3>nsin(_,/2)/(a,/2)

Weil die Funktion f(x) =log(sinjc/x) im Intervall ]0,tt/2[ streng konkav ist, folgt

tf(*J2) ^f(t («ß)\ - 3/(*/6) - 31og(3/*),

mit Gleichheit genau dann, wenn at <x2 a3 Daraus ergibt sich unmittelbar die
Behauptung

W Janous, Innsbruck, A
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LITERATURVERZEICHNIS

1 E Donath Die merkwürdigen Punkte und Linien des ebenen Dreiecks Berlin 1976

Weitere Lösungen sandten E. Braune (Linz, A), P. Bundschuh (Köln, BRD), H. Egli
(Zürich), L. Kuipers (Sierre), P. Streckeisen (Zürich), Hj. Stocker (Wädenswil), N.Y.
Wong (Hongkong).

Neue Aufgaben

Die Lösungen sind getrennt nach den einzelnen Aufgaben in Maschinenschrift erbeten
bis 10. Februar 1985 an Dr. H. Kappus. Dagegen ist die Einsendung von Lösungen zu
den mit Problem...A,B bezeichneten Aufgaben an keinen Termin gebunden.
Bei Redaktionsschluss dieses Heftes sind noch ungelöst: Problem 60IA (Band 25,

S.67), Problem 625B (Band 25, S.68). Problem 645A (Band 26, S.46), Problem 672A
(Band 27, S.68), Aufgabe 680 (Band 27, S. 116), Problem 724A (Band 30, S.91),
Problem 764A (Band 31, S.44), Problem 862A (Band 36, S.68), Problem 872A (Band 36,

S.175).

Aufgabe 910. Die Polynomfolge {p„)„eN sei rekursiv definiert durch

Pi(x)**x, Pn+i(x)^x(l-x)p'n(x); neN.

Man ermittle für jedes n eN die Menge der rationalen Nullstellen von pn.
H. Müller, Hamburg, BRD

Aufgabe 911. Man zeige, dass für x > 0

n
— - arctanx
4

n \x-l\* 47?T?
Wann genau steht das Gleichheitszeichen?

V. D. Mascioni, Origlio

Aufgabe 907. Correction, last line: read angles instead of sides.

Literaturüberschau
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1981

Hat man sich einmal entschlossen, in einer Anfängervorlesung an der Universität einen axiomatischen
Aufbau der eukhdischen Geometrie vorzuführen, so bieten sich dazu verschiedene Möglichkeiten
Klassischer Aufbau nach Hilbert, Spiegelungstheoretischer Aufbau nach Bachmann, Stufenaufbau nach

Lmgenberg, Verwendung von Vektorräumen nach Dieudonne* Die Autoren des vorliegenden Buches

bevorzugen (chacun ä son goüt) em schon auf G D Birkhoff (1932) zurückgehendes Axiomensystem Im
wesentlichen geht es dabei darum, die Funktionen des Messhneals (scale) und die des Winkelmessers
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