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Bemerkung zu einem Satz von Glauberman

Das Ziel dieser Note ist der Nachweis, dass der unten formulierte Satz von Glauber-
man ([1], S.270, Lemma 4.3, und [2], S.165-171) auch dann gilt, wenn die Charakteri-
stik des KoordinatenkOrpers gleich 2 ist. Dieser Satz spielt eine Rolle beim Beweis eines
sehr gewichtigen Theorems von Hering und Ostrom ([2], S.178, Theorem 35.10), das
von Kollineationsgruppen endlicher Translationsebenen handelt, die sich durch Sche-
rungen erzeugen lassen.

Satz (Glauberman). V # 0 sei ein endlicher Vektorraum und M < GL(V) ein System von
Vektorraumautomorphismen mit folgenden Eigenschaften:

I aeM=a""'eM.
II. M U {0} ist additiv abgeschlossen.
III. 1eM.

Dann ist M {0} ein Kérper.

Beweis: Wir beginnen mit einigen Vorbemerkungen. Der Koordinatenschiefkérper K
des Vektorraumes V ist natiirlich endlich. Ausserdem ist L:=M U {0} beziiglich der
Addition eine abelsche Gruppe, deren Exponent mit der Charakteristik von X tiberein-
stimmt. Hinsichtlich der Bezeichnungsweise ist anzumerken, dass mit (X) stets das
Erzeugnis der Teilmenge X < GL (V) in der linearen Gruppe GL (V) gemeint ist. Wir
nehmen jetzt unsere Betrachtungen auf mit der Begriindung einiger Einzelfeststellun-
gen.
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a)a,feM=afaecM.

Beweis: Im Falle a 7' folgt mit I. und der Gruppeneigenschaft von (L,+),
dass «— "' und dann auch —a'+(@—pg")'= (——oc“‘(oz — B+ D) (&~ B!
=a”'p M@= = ((@a—p)Ba)” = (afa—a)" zu M gehdrt. Mit 1. und I er-
halten wir jetzt die Behauptung.

b)aeM={a)c M.

Beweis: Wegen III. kann man in a) f:=1 setzen. Daher gilt auch a’e M. a) zeigt jetzt,

dass alle Potenzen von a mit natiirlichem Exponenten zu M gehoren. Dies geniigt, weil
{a) endlich ist.

c)a,ByeM=af + pa,afy + yfacL.

Beweis: Da (L,+) eine Gruppe ist, folgt aus a) afy +yfa=(ax +p)f(x +7y)
—afa—yByeL. Weil man y:= 1 setzen darf, gilt auch af + faeL.

d) Fiir a,feM, ¢y,...,&,N,y,...,N,EL gilt
I] (@p™) + ] (B-ia*-)eL.
i=0 i=0

Beweis (durch Induktion nach r): b) und c) erledigen den Fall r = 0. c), die Gruppenei-
genschaft von (L,+) und die folgende Gleichung zusammen erméglichen den Induk-
tionsschluss.

oo (ortr+t Brqufr frr=1 . o’ B0 + Brogrt, . Br—1 ot Bl oo +1) B +1

+ prr+i(acr+t frrat frr-1, ot B0 + Brogtt,, B -1 ot ot +1) g%

= (oot r+1 Bt Br=1, qft B0 M4t + B0t Tttt B -100% B oo T o +1)

+ (om0t f . qr+1 BT+l + Bir+rgrtr+t, BT grft B0 g 0)

e) Sind die Elemente von M (beziiglich der Multiplikation) paarweise vertauschbar, so ist
L ein Korper.

Beweis: Wir haben nur zu zeigen, dass M multiplikativ abgeschlossen ist. Dazu seien
o, B € M beliebig vorgegeben.

1. Fall: char K # 2. Mit c) folgt 2af= af + faeL und daraus afeL, weil char K 2
ist. Wegen aff &0 gilt a fe M.

2. Fall: char K = 2. Der von « in EndV erzeugte Teilring ist wegen b) und der Grup-
peneigenschaft von (L,+) in L enthalten und daraufhin ein Koérper. Weil dieser die
Charakteristik 2 hat, ist die Ordnung von a beziiglich der Multiplikation ungerade.
Daher gibt es ein ye{a) =« M mit y* = a. a) zeigt nun af=y>* f=yfyeM.

Nach diesen Voriiberlegungen beweisen wir jetzt den Satz durch Induktion nach
n:=dimV. Im Falle n =1 gilt GL (V)= K ™. Weil K als endlicher Schiefkérper nach
dem Satz von Wedderburn kommutativ ist, sind die Elemente von M paarweise ver-
tauschbar. Daraufhin ist L nach €) ein Korper. Nun sei n > 1 und die Behauptung
zutreffend fiir Dimensionen < n. Wegen ¢) geniligt es zu zeigen, dass zwei beliebig
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vorgegebene Elemente o, f e M vertauschbar sind. Zur Begriindung dieser Behauptung
nehmen wir eine Fallunterscheidung vor.

1. Fall: {a,f) lisst einen nichttrivialen Unterraum U < V im ganzen fest. Wir ziechen
M,:={yeM|U’= U} in Betracht. Fiir y e M,, ist die Einschrinkung 7:=y|, von y auf
U ein Automorphismus von U. Das System M :={j|ye M} hat offenbar die Eigen-
schaften I.-III. Wegen 0 < dim U < dimV = nist M U {0} nach Induktionsannahme ein
Korper. Weil M als Multiplikationsgruppe eines endlichen Korpers zyklisch ist, gibt es
ein ye M, mit M = (7). Zu beliebig vorgegebenem 6 € M, findet man ein k €Z mit
d=7* Aus b) und der Gruppeneigenschaft von (L,+) folgt § —y*eL und dann
0—y*=0, weil J—y* nicht injektiv ist. Also gilt J = y*e(y>. Nun haben wir
a,feM, < {(y> und damit die Vertauschbarkeit von o und g.

2. Fall: {a, ) operiert irreduzibel auf V. Wir fassen den von {a, ) erzeugten Teilring
R < EndV ins Auge. Klar ist, dass die Nullteilerfreiheit des Ringes R die Vertauschbar-
keit von o und f# mit sich bringt, weil ein endlicher nullteilerfreier Ring #+ {0} als endli-
cher Schiefkérper nach dem Satz von Wedderburn kommutativ ist. Zum Beweis der
Nullteilerfreiheit fixieren wir einen Nullteiler # € R. u ldsst sich als Summe passender

Elemente u,e{a, ) darstellen: u = Z u, Jeder der Summanden y; besitzt eine Darstel-

i=1

lung der Gestalt

"
w,= ] % B (reNo, &5 n,€Z).
j=0

Wir setzen

§
L

1=1

Ti
u,'.:=1lﬂ”i,r,~—joc‘i,r,-—z (1<i<y), u'=
j=

und behaupten

utuel, )
uyu' =0 fiirjedes yela)ulf). 2)

Die Giiltigkeit von (1) folgt unmittelbar aus d). Zur Begriindung von (2) notieren wir
zundchst

s

uyu' =(2 u,-) y(Z u,f) = i‘ wyu+ Z(u,.y w+ uyu).
i=1 i

1 i=1 i<j

Die Summanden u,y u; bzw. u;yu;/+ u;yu; gehoren nach a) bzw. d) zu L. Weil (L,+) eine
Gruppe ist, erhdlt man uyu’eL. Da u als Nullteiler von R kein Automorphismus von
V ist, folgt uyu’' = 0.
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Um die beiden jetzt gesicherten Aussagen (1) und (2) auszuwerten, nehmen wir eine
Fallunterscheidung vor. Bei # + u’ = 0 erhalten wir mit d) yu — uy=yu+ u’'yeL. Aus
(2) folgt ausserdem (yu — uy)*=0. yu — uy ist also kein Automorphismus von ¥ und
dann als Mitglied von L der Nullendomorphismus. Die jetzt begriindete Vertauschbar-
keit yu = uy zeigt, dass Bildu y-invariant ist fiir jedes y e (o> U {B). Bildu * V ist also
ein beziiglich <{a,f) invarianter Unterraum. Nun folgt Bildu = 0, d.h. u = 0. Im Falle
u+u' $0ist u +u’ als Mitglied von L ein Automorphismus von V. Daraufhin haben
die Endomorphismen u,u’ fremde Kerne, wir gewinnen die Ungleichung defu’ <rgu.
Andererseits gilt nach (2) uu’ =0 und deshalb Bildu — Kernu'. Zusammen mit der
zuvor begriindeten Ungleichung folgt jetzt Bildu = Kernu', dann mit (2), dass Bildu
y-invariant ist fiir jedes y e{a ) U {f) und daraus wie oben u = 0.

Zum Abschluss méchte ich noch zwei Bemerkungen anfiigen. Erstens erscheint mir
erwiahnenswert, dass der vorstehende Beweis mit sehr bescheidenen Hilfsmitteln aus-
kommt. Die einzige nennenswerte Zutat ist die Kenntnis, dass die multiplikative
Gruppe eines endlichen Schiefkorpers zyklisch ist. Die zweite Bemerkung betrifft III.
Ersetzt man III. durch die schwichere Forderung M =+ @, so braucht M U {0} kein
Korper zu sein. Im Falle char K = 2 bereitet die Herstellung eines Gegenbeispiels kei-
nerlei Miihe.

(S

hat die Eigenschaften I. und II., M U {0} aber ist kein Korper. Auch bei ungerader
Charakteristik p findet man Gegenbeispiele. Dazu betrachten wir V:=GF (p*)(s €N)
als Vektorraum tliber K:=GF (p). Wegen p + 2 gibt es ein Element 1eGF (p*)* mit
o(A)=2@°—1). a:V -V sei die Abbildung mit x*:=x 4. Dann ist

M :={a*k €eZ ungerade}

ein System von Automorphismen des endlichen Vektorraumes V # 0 mit den Eigen-
schaften I. und II. M U {0} ist nicht multiplikativ abgeschlossen, also kein Korper.
Giinter Heimbeck, Math. Institut der Universitit Wiirzburg, Wiirzburg
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