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Sehwach verkoppelte Ungleichungssysteme
und konvexe Spline-Interpolation

1. Einleitung

Die Frage, ob man durch n + 1 konvex angeordnete Punkte (jc0, f0)9 (xX9 fx)9
• > (xn> fn) einen konvexen kubischen Spline legen kann, lässt sich in äquivalenter

Weise auf die Lösbarkeit des Ungleichungssystems

2m,_i + ra, __i 3r,
(i=l,2,...,*) (1)

mt-X + 2mt i__ 3 t,

zurückführen, falls man

f — f
Ti=

' '~l hl xl-xl-\ (2)

setzt, s. Neuman [5]. Die zu ermittelnden Grössen mo, mX9 mn sind gleich
der ersten Ableitung des Interpolations-Splines in den Stützstellen x0, xx, ...9
xn. Das System (1) ist durchaus nicht immer lösbar. Hinreichende Bedingungen

und einen Lösungsvorschlag findet man bei Mettke und Lingner [4].
In der vorliegenden Mitteilung wird die beschriebene Aufgabe vollständig
abgehandelt. Es werden für Ungleichungssysteme vom Typ (1) eine
hinreichende und notwendige Lösbarkeitsbedingung angegeben und alle bei deren
Erfülltsein vorhandenen Lösungen konkret benannt. Der Aufwand zur Errechnung

einer Lösung ist dabei proportional zu n.
Zunächst erfolgt die Vorstellung des Lösungsalgorithmus für Ungleichungssysteme

vom Typ (1). Danach wird das zugrunde liegende allgemeine Prinzip
herausgestellt. Den Abschluss bilden Anwendungen der Ergebnisse über
Ungleichungssysteme auf die konvexe Spline-Interpolation. Insbesondere
ergibt sich, dass man zu streng konvex angeordneten Punkten immer konvexe
Interpolations-Splines finden kann, sofern man den Grad des Splines hoch
genug wählt.

2. Der Lösungsalgorithmus

Es wird das schwach verkoppelte Ungleichungssystem

(* 1,2,...,«) (3)
ylml-x + 8lml^xl

für die reellen Zahlen m0, mX9 m„ betrachtet. Die Konstanten al9ßl9yl9 öt

und x, sollen den Bedingungen

r, ^r2^...^rn (4)

a, + Ä«l, y, + Ä=l (1=1,2,...,«) (5)
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0<y,<ocM 0<ßt<öt (i=l,2,...,/i) (6)

genügen. Das System (1) ist von diesem Typ, wobei die Forderung (4) im
Falle xo<xx<... < xn mit der konvexen Anordnung der Punkte (xl9f)
gleichwertig ist.
Das zu beschreibende Verfahren besteht aus einem Vorwärts- und einem
Rückwärtsschritt.

Vorwärtsschritt: Man setze

tf0 -oo, &o=Ti (7 a)

undfür i= 1,2,...,«, sofern at-X __i t, gilt,

a, maxJT„ bt (7b)

Rückwärtsschritt: Man wähle

mne[cn9dn] mit cn an9 dn=bn (8 a)

undfür i n9 n — 1,..., 1

m,-\ e[cl-l9dl-x] mit

Tt-ötm,] [, Ti-ßtmA
ct-x max \at-x, dt-X mm |6,_i, —

a.

(8 b)

Zum Beispiel kann man für m^x stets die untere oder stets die obere
Intervallgrenze nehmen.
Das Hauptergebnis dieser Mitteilung ist der folgende

Satz 1: Das Ungleichungssystem (3) ist bei Vorliegen der Eigenschaften (4), (5)
und (6) genau dann lösbar, wenn die Ungleichungen

fli-i-ST, (i 4,..., w) (9)

bestehen. Alle Lösungen von (3) können bei Erfülltsein von (9) durch die
Vorschrift (8) erhalten werden.

Bemerkung 1: Die in (9) fehlenden Ungleichungen

ao _£ Tj, ax _i t2 a2 sg t3

sind in der Tat entbehrlich, da sie, wie man leicht nachrechnet, immer gelten.
Das System (3) ist daher für n __i 3 stets lösbar.

Bemerkung 2: Der Satz 1 bleibt gültig, wenn man in (7 a)

flosas(Ti-5iT2)/yi

oder in (7 b)
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T,- CLtüt-i^ min t/+i, Ä
setzt.

Bemerkung 3: Ändert man im Fall tx =\ 0 den Start (7 a) zu

a0 0 bo Ti

ab, wird die Bedingung (9) hinreichend und notwendig für die nichtnegative
Lösbarkeit des Ungleichungssystems (3), und alle nichtnegativen Lösungen
von (3) können mit Hilfe von (8) gefunden werden.
Beweis von Satz 1: Die Notwendigkeit der Forderung (9) sowie eine Lokalisierung

der Lösungen ergeben sich unmittelbar aus dem

Lemma 1: Falls es Zahlen mo, mx, m} gibt, welche den Ungleichungen (3)
für i 1,..., j (1 __i j =\ ri) genügen, sind die Beziehungen

aj-X=^Tj, aj^mj^bj (10)

gültig.
Dem Beweis von Lemma 1 wird die folgende Aussage vorangestellt:

Aussage 1: Es gelten

mj-X^TJ9 mj^Xj, (11)

sofern mj-X, m} die Ungleichungen (3) für i =j erfüllen.
In diesem Fall ergeben sich nämlich

(ocj öj - ßj yj) mj-x^(öj- ßf) Xj,

(oLjöj-ßjy^mj ^(öj-ßj)xJ9
woraus wegen a, öj — ßjyj 8j — ß}> 0 bereits (11) folgt.
Das Lemma 1 kann nun durch Induktion bewiesen werden. Die für j 1 zu
bestätigenden Ungleichungen a0 __I xX9 ax __i mx __i bx sind unter Beachtung von
(11) wegen a0 - oo,ax xx und bx + oo gültig.
Für den Schluß von j — 1 auf j ist nach der Induktionsannahme

o,-i ^mj-x^bj-x.
Wegen (11) gilt daher

aj-x^mj-X^Xj.
Ebenso ist m7 i__ xJ9 und aus (3) folgen

tj~mj- yimi-\ - i=
*J -Vjbj-i

4 '

x,-mJ^-L- °LJmi-\
- _=i V-0,0,-1
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so dass sich in Abschluss des Induktionsbeweises für Lemma 1

o, _£ m, £ bj

ergibt

Bemerkung 4: Da es leicht möglich ist, Zahlen xx^x2< x3< t4 so zu wählen,
dass a3 > X* wird, ist das zugehörige System (3) auf Grund von Lemma 1

dann nicht lösbar.
Um die Hinlänglichkeit der Forderung (9) zu bestätigen, wird zunächst die
folgende Aussage bewiesen:

Aussage 2: Im Falle (9) gilt

at^bt für i 0,l,...,/t. (12)

Denn für i 0 ist bo — ao + oo > 0, während man beim Schluss von i - 1

nach i sowohl im Fall ax - xt zu

h-a^-^iXt-at-O^O
Pi

als auch im Fall at (xt - yt bt-x)/di zu

^-fli»y(^i-fl/-i) + (y-y)(T,--fl/-i)^0,
also zur gewünschten Ungleichung kommt.

Bemerkung 5: Berechnet man a} und b3 auch beim Vorliegen von

0,_i ___t, für i 4, 5, ...,y —1 und aj-X>Xj
nach der Vorschrift (7 b), so ergibt sich die unerwünschte Ungleichung

aj>bj.
In der Tat, es ist x} - y} b^x =§ t> — y} aj-\ < T; ~'Yjtj** fy xi\ daher folgen a; - t,
und schliesslich

fy-*y-y0y-ö/-i)<0.

Lemma2: Es gelte (9). Dann sind durch (8) Zahlen m„, mn-X9 ra,_i
erklärt, welche die Ungleichungen (3) für i—n9n — 1,... 9j erfüllen, und es ist

Cj-tSmj-i&dj-i O'^l). (13)

Beweis durch Induktion: Für j n + 1 wird nur die mit (8 a) übereinstimmende

Ungleichung c„_lwi„_. dn verlangt. Der Schluss von j +1 auf j
erfordert zuerst den Nachweis von

Cy-lSS^-l. (14)
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um ra,-! nach der Vorschrift (8b) wählen zu können. Wegen (7b) und der
Induktionsannahme (13) ist t, _=i a} __i c, ___ ra, und somit unter Beachtung von
(5) und (6)

Tj~öjmj ^ *j-ßjmj
yj

~
ay

Ausserdem ergibt (7 b) zusammen mit der Induktionsannahme (13)

Xj o, a,-i + ßjbj^ (Xj üj-X + ßjmj9

Tj*y,b,-i + öJaJ^yJbJ-X + öjmj9

daher erhält man

V__V__<Z, a ,<_________.

so dass zusammen mit a3-X __i b}-X aus Aussage 2 die Gültigkeit von (14)
folgt. Es ist also ra,_i erklärt und wegen

J Xj- ßjmj Xj - öjm}
ra,_i ^ dj-x ^ -1 3—*-, ra7_, i_ Cj.x =\ -1 J—L

o, yj

erfüllen m3-X9 m} die Ungleichungen (3) für i—j. Damit ist das Lemma 2

bewiesen.
Dieses Lemma impliziert die Hinlänglichkeit von (9) für die Lösbarkeit von
(3). Ausserdem ist bewiesen, dass die durch (8) jeweils definierten Zahlen
ra0,rai,...,ra„ eine Lösung von (3) sind. Es bleibt der Nachweis, dass man
durch (8) alle Lösungen von (3) erhalten kann.
In der Tat, falls mo,mx, ...,mn irgendeine Lösung von (3) ist, gilt nach
Lemma 1

al=\ml^bl für / 0, 1,..., zi.

Insbesondere ist also cn an^mn^ bn dn. Es seien nun bereits

cl=\ml^dl für / n9 n — 1,..., j
bestätigt, dann liefert (3) für / j

„ ^ Tj-fymj „ ^IiZÄUll
y, a;

also ist auch c,_i __i m3-X __i d}-X. Die vorgegebene Lösung kann daher durch
die Formel (8) erhalten werden. Dies vervollständigt den Beweis des Satzes 1.

Bemerkung 6: Wird die Voraussetzung (6) durch

0<at<yl9 0<öt<ßt (/= 1,2, ...,/*)
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ersetzt, ist das Ungleichungssystem (3) im Falle n ü 2 widersprüchlich,
sofern nicht alle t/s gleich sind.
Denn ist z.B. xj < ty+i, ergeben sich wie beim Nachweis der Aussage 1 wegen
öj — ßj< 0, Sj+\ - ßj+\ < 0 die nicht zu vereinbarenden Ungleichungen ra, _^ t,
und ra,^T7+i. Im Falle ti t2 t„ ist mo- mx mn- xx die
Lösung von (3)

Bemerkung 7: Wird an Stelle von (6)

0<a,= yl, 0<#Ä<5, (i= 1,2,...,»)
verlangt, geht (3) in ein lösbares System von gestaffelten Gleichungen über.

3. Eine allgemeine Formulierung des Algorithmus

Es seien eine nichtleere Menge B und n nichtleere Teilmengen

WtczBxB (i=l,2,...,/!)
vorgegeben. Gesucht sind Elemente ra0, ml9..., mn e _5, welche den
Bedingungen

(m^X9mt)eWt (i= 1, 2,..., ri) (15)

genügen.

m. .._,_

Figur 1 Veranschaulichung von Aufgabe (15) fur B =* R1 Gibt es einen achsenparallelen bezüglich der
Winkelhalbierenden alternierenden Polygonzug durch Wj, W2, W3?

Im vorangehenden Beispiel ist B R{ zu setzen, während die Teilmengen

Wl~{(x9y)€R2: cttx + ßty **xt9 yfx + 8ty ^ r,}
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Kegel im R2 sind.
Das Lösungsverfahren für die Aufgabe (15) setzt sich wiederum aus einem
Vorwärts- und einem Rückwärtsschritt zusammen.

Vorwärtsschritt: Man setze

Po B

undfür i= 1,2,...,«, sofern Pt- x
4= 0 gilt,

Pt-{yeB:xe P,_i vorhanden mit (x9 y) e W^

(16a)

(16b)

yn

m,--

m. --

Qr!
I 1 1 U+J

Figur 2. Veranschaulichung des

Vorwärtsschrittes (16): Übergang von P^ zu P,.

Figur 3 Veranschauhchung des Rückwärtsschrittes
(17): Ermittlung von Q,_j zu m^ e Q,.

Wird der Vorwärtsschritt nicht vorzeitig beendet und ist auch Pn 4= 0, kommt
es zum

Rückwärtsschritt: Man wähle

mnePn

undfür / «,« — 1,..., 1

mt-\ Gß/_,=P/-,n{xG B:(x9mt) e W,}.

(17a)

(17b)

Dieser Algorithmus erlaubt die folgende Lösbarkeitsaussage für die aus (15)
hervorgehende Aufgabe:

Satz 2: Die Aufgabe (15) ist genau dann lösbar, wenn die Beziehungen

P,*0 0 2,3,...,«) (18)
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bestehen. Alle Lösungen von (15) können bei Vorliegen von (18) durch den
Algorithmus (16), (17) erhalten werden.

Die in (18) fehlende Beziehung Px 4= 0 braucht nicht angeführt zu werden, da
sie stets gültig ist. Den Vorwärtsschritt kann man auch mit

Po= {x e B :y e B vorhanden mit (x, y) e Wx}

beginnen.
Auf die Wiedergabe eines Beweises zum Satz 2 wird verzichtet, da er dem
Prinzip nach wie beim Satz 1 geführt werden kann.

4. Anwendung auf die konvexe Spline-Interpolation

Zur konvexen Spline-Interpolation liegen zahlreiche Arbeiten vor, u.a.
[l]-[9]. Die Absicherung der Konvexität des Splines erfolgt dort auf verschiedene

Weise, etwa durch Aufstellung von weiteren, über (4) hinausgehenden
Bedingungen an die Eingangsgrößen, durch Einführung zusätzlicher Spline-
Knoten und durch Beeinflussung der Lage und Defekte der Spline-Knoten.
Jetzt wird vor allem gezeigt, dass man bei festen, streng konvex angeordneten
Eingangsdaten (x0,fo), (xx,fx), (xn9fn) stets konvexe Interpolations-
Splines konstruieren kann, wenn man nur den Grad des Splines hoch genug
wählt.
Der Spline s vom Grad k i__ 3 sei auf dem Gitter

A: a xo<x\ < < xn b

definiert und beispielsweise einmal stetig differenzierbar. Es werden bei
vorgegebenen Werten fo,f\9...9fn und mit Parametern ra0, rai,..., mn die
Interpolations- und Glattheitsbedingungen

j(x,-i + 0) =/,-,, s(x-0)=f (i= 1, 2,..., «)
s' (xt-X + 0) ra,_i, s' (xt - 0) ra,

sowie die speziellen Bedingungen

j"(jc,-, + 0) J(*"2)(jcf-, + 0) 0 (i 1, 2,..., «)

gestellt, s. Neumann [7]. Der Ansatz

s (*) =//-i + mi-\ (* ~ *«-i) + Pi(x- xt-x)k~] + qt(x- xt-x)k, (19)

gültig für x,-i __i x _ü xl9 berücksichtigt die den Knoten xt-X betreffenden
Forderungen, die restlichen führen auf

pt {k xt — mt- (k — 1) raj-iJ/Af"2

qt {ra, + (k - 2) mt-X - (k-l) xt}/hkt

mit den durch (2) erklärten Zahlen xt. Wegen

s»(x) ___ (k - 1) (x - x,_i)*-3 {(k -2)Pl + kqt(x- xt.x)}

(2°)
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ist /' (x) =\ 0 gleichwertig mit

/>,_*<), (k-2)pl + khlql1^0 (i= 1,2,...,«)
also gilt die

Aussage 3: Der einmal stetig differenzierbare Interpolations-Spline (19), (20)
vom Grade k=\3 ist genau dann konvex, wenn seine ersten Ableitungen in den
Knoten, nämlich mo,mx, ...9mn, das Ungleichungssystem

(k — 1) ra,-! + mt __i k xt,
_ n _V >_ («=1,2,...,«) (21)

(k — 2) mt-X + 2mt =\ k xt

mit den Quotienten xt aus (2) erfüllen.

Dieses Ungleichungssystem ist vom Typ (3), und es sind die Voraussetzungen
(5), (6) gültig. Für k 3 entsteht (1).
Die Lösbarkeit des Systems (21) kann mit Hilfe des Satzes 1 entschieden
werden. Dazu ist zu überprüfen, ob die Bedingung (9) besteht; die Vorschrift
(7) lautet jetzt:

tf0 -oo, feo Ti, (22a)

und für / 1, 2,..., «, solange at-X _=i t, ist,

at max \xl9 bt-\ + — (t, - bt-i)\
1 2 J

(22 b)
bl al-i + k(xt-al-i).

Für (9) reicht offenbar

at Xt (i=3, 4,...,«- 1) (23)

hin; ax xx und a2= x2 gelten dabei stets. Falls nun der Grad k des Splines
als wählbar angenommen wird, lässt sich (23) immer erreichen, sofern man
(4) zu

Ti < T2 < < Xn (24)

verschärft. In der Tat, wenn von at xt für i 1, 2,..., j' - 1 (jr i__ 3) ausgegangen

wird, erhält man a}-\ t,_i < t,, womit a3 und b} erklärt sind. Weiterhin
ergibt sich

bj-\ t,_2 + k (Xj-X - Xj-2) i_; t,

falls nur

Xj-i-Xj-2
gilt, und es folgt bj-X + k (t,- bj-X)/2 _^ t,. Daher wird a}=x}. Zusammenfassend

erhält man den
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Satz 3: Für die Differenzenquotienten xt aus (2) gelte (24), und k ^ 3 erfülle

k ^ x-Xt-2 (/aB3j4jiitj^1)t (25)
T,_i - T,-2

Da«« hat (21) eine Lösung /«o, mX9 ...9mn und der zugehörige einmal stetig
differenzierbare Interpolations-Spline (19), (20) vom Grade k ist konvex.

Bemerkung 8: Im Falle

Ti T2 Xn

ist mo-mx mn— xx unabhängig von k eine Lösung von (21). Daher
gibt es dann sogar einen konvexen Interpolations-Spline vom Grade 3. Ist
dagegen z. B.

Tl T2 < X3 _§i T4

kann man mit Hilfe von k i. allg. nicht mehr a3 __E T4 erreichen. Somit ist bei
dieser Voraussetzung nicht in jedem Fall ein konvexer Interpolations-Spline
der Form (19), (20) vorhanden.
Es wird noch die folgende Erweiterung des Satzes 3 erwähnt:

Satz 4: Bei Voraussetzung von (24) kann man einen p-mal stetig differenzierbaren
konvexen Interpolations-Spline vom Grade k konstruieren, wenn k ^ 2p + 1

für p^.1 die Ungleichungen

k^p x~Xl~2 (i=3949...,n-l) (26)
T,_i - T,_2

erfüllt.

Der Nachweis kann wie beim Satz 3 erbracht werden, falls man das folgende
Ergebnis von Neumann [7] verwendet:
Ein dort explizit angegebener Interpolations-Spline vom Grade k ist genau
dann konvex, wenn für seine erste Ableitung in den Knoten das
Ungleichungssystem

Cfc-v. + Dm.-. + fo-Dm,**., {.= xx n) (2?)
(k — vt) mt~\ + vlml'^kxt

mit Zahlen v, € {2, 3, ...9k-1} besteht. Der Spline ist ausserdem //-mal
stetig differenzierbar, sofern

p— min min (k- v„ v,-i — 1)
1» 2, n

gesetzt wird. Im Falle (26) ist (27) bei der Wahl vi v2 vn p + 1 in
der Tat erfüllbar.

J. W. Schmidt und W. Hess, Technische Universität Dresden
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Bemerkung zu einem Satz von Glauberman

Das Ziel dieser Note ist der Nachweis, dass der unten formulierte Satz von Glauberman

([1], S.270, Lemma 4.3, und [2], S. 165-171) auch dann gilt, wenn die Charakteristik

des Koordinatenkörpers gleich 2 ist. Dieser Satz spielt eine Rolle beim Beweis eines
sehr gewichtigen Theorems von Hering und Ostrom ([2], S. 178, Theorem 35.10), das

von Kollineationsgruppen endlicher Translationsebenen handelt, die sich durch
Scherungen erzeugen lassen.

Satz (Glauberman). V 4= 0 sei ein endlicher Vektorraum und M czGL(V) ein System von

Vektorraumautomorphismen mit folgenden Eigenschaften:

I. (xeM=xx~leM.
II. M u {0} ist additiv abgeschlossen.

III. leM.
Dann ist M u {0} ein Körper.

Beweis: Wir beginnen mit einigen Vorbemerkungen. Der Koordinatenschiefkörper K
des Vektorraumes V ist natürlich endlich. Ausserdem ist L:-Mu {0} bezüglich der
Addition eine abelsche Gruppe, deren Exponent mit der Charakteristik von K übereinstimmt.

Hinsichtlich der Bezeichnungsweise ist anzumerken, dass mit <_0 stets das

Erzeugnis der Teilmenge X cz GL (V) in der linearen Gruppe GL (V) gemeint ist. Wir
nehmen jetzt unsere Betrachtungen auf mit der Begründung einiger Einzelfeststellungen.
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