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Schwach verkoppelte Ungleichungssysteme
und konvexe Spline-Interpolation

1. Einleitung

Die Frage, ob man durch n + 1 konvex angeordnete Punkte (x,, f;), (x,, f1),
..., (x,, f,) einen konvexen kubischen Spline legen kann, ldsst sich in dquiva-
lenter Weise auf die Losbarkeit des Ungleichungssystems

2mi +m; =371

=1,2,..., 1

m,'_1+2m,‘§ 3’[,' (l n) ( )
zuriickfiihren, falls man

Ti=£:h‘£:l, hi=x;— xi_) (2)

setzt, s. Neuman [5]. Die zu ermittelnden Gréssen mq, m,, ..., m, sind gleich
der ersten Ableitung des Interpolations-Splines in den Stiitzstellen xg, x,, ...,
xn. Das System (1) ist durchaus nicht immer 16sbar. Hinreichende Bedingun-
gen und einen Losungsvorschlag findet man bei Mettke und Lingner [4].

In der vorliegenden Mitteilung wird die beschriebene Aufgabe vollstindig
abgehandelt. Es werden fiir Ungleichungssysteme vom Typ (1) eine hinrei-
chende und notwendige Losbarkeitsbedingung angegeben und alle bei deren
Erfiilltsein vorhandenen Losungen konkret benannt. Der Aufwand zur Errech-
nung einer Losung ist dabei proportional zu n.

Zunichst erfolgt die Vorstellung des Losungsalgorithmus fiir Ungleichungs-
systeme vom Typ (1). Danach wird das zugrunde liegende allgemeine Prinzip
herausgestellt. Den Abschluss bilden Anwendungen der Ergebnisse iiber
Ungleichungssysteme auf die konvexe Spline-Interpolation. Insbesondere
ergibt sich, dass man zu streng konvex angeordneten Punkten immer konvexe
Interpolations-Splines finden kann, sofern man den Grad des Splines hoch
genug wihlt.

2. Der Losungsalgorithmus

Es wird das schwach verkoppelte Ungleichungssystem
ami_1+pim; =1
-1+ B (i=1,2...,n) 3)
yimi1+om=1;

fir die reellen Zahlen mgy, m,, ..., m, betrachtet. Die Konstanten «;, f§;, yi,
und 7; sollen den Bedingungen

N=n=..=T1, 4)

a,-+,8;==1, }’i+5,’=1 (i=1,2,...,n) (5)
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0<y,-<oc,-, 0<B,‘<(Si (i=1,2,...,N) (6)

geniigen. Das System (1) ist von diesem Typ, wobei die Forderung (4) im
Falle xp<x)<...<x, mit der konvexen Anordnung der Punkte (x;, f})
gleichwertig ist.

Das zu beschreibende Verfahren besteht aus einem Vorwirts- und einem
Riickwirtsschritt.

Vorwiartsschritt: Man setze
ag=— 00, b0=’L'1 (7a)

undfiiri=1,2,..., n, sofern a;_; = 1, gilt,

7, — i bi- Ti— O ;-
a; = max {r,-,———g—i———l—} , b,-=——ﬁi——~l. (7b)
Riickwirtsschritt: Man wdhle
my € [cn,dy] mit c,=a,, d,=b, (8a)
undfiiri=n,n—1,...,1
mi_y € [ci-y, di=1] mit
(8b)

t,-—é,-m,-

}5 di-l=min {bi—-la

Ti—ﬁimi

Ci—1 = max {ai_l,
i

Vi

Zum Beispiel kann man fiir m;_, stets die untere oder stets die obere
Intervallgrenze nehmen.
Das Hauptergebnis dieser Mitteilung ist der folgende

Satz 1: Das Ungleichungssystem (3) ist bei Vorliegen der Eigenschaften (4), (5)
und (6) genau dann losbar, wenn die Ungleichungen

a1=1 (=4,...,n) (9)

bestehen. Alle Losungen von (3) kénnen bei Erfiilltsein von (9) durch die Vor-
schrift (8) erhalten werden.

Bemerkung 1: Die in (9) fehlenden Ungleichungen
a=1, a =1, A =13

sind in der Tat entbehrlich, da sie, wie man leicht nachrechnet, immer gelten.
Das System (3) ist daher fiir n = 3 stets losbar.

Bemerkung 2: Der Satz 1 bleibt giiltig, wenn man in (7 a)
ap= (11— 0, 72)/7
oderin(7b) .
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. Ti— 0 di—y
b; = min r,-+1,———7—-
i
setzt.

Bemerkung 3: Andert man im Fall 7, = 0 den Start (7a) zu
a=0, by=r1

ab, wird die Bedingung (9) hinreichend und notwendig fiir die nichtnegative
Losbarkeit des Ungleichungssystems (3), und alle nichtnegativen Ldsungen
von (3) konnen mit Hilfe von (8) gefunden werden.

Beweis von Satz 1: Die Notwendigkeit der Forderung (9) sowie eine Lokali-
sierung der Losungen ergeben sich unmittelbar aus dem

Lemma 1: Falls es Zahlen my, m,, ..., m; gibt, welche den Ungleichungen (3)
firi=1,...,j (1 =j = n) geniigen, sind die Beziehungen _

a;—| §Tj, a_,~§mj§bj (10)
gliltig.
Dem Beweis von Lemma 1 wird die folgende Aussage vorangestellt:
Aussage 1: Es gelten

m_1=1, mz=r, (11)

sofern m;_,, m; die Ungleichungen (3) fiir i = j erfiillen.
In diesem Fall ergeben sich ndmlich

=By mi1=0-8) 7y,

@ o=Bnmm =0G-48)1,

woraus wegen o; 6; — f; y;= d; — f; > 0 bereits (11) folgt.

Das Lemma 1 kann nun durch Induktion bewiesen werden. Die fiir j =1 zu
bestiatigenden Ungleichungen ay = 7;, a; = m; = b; sind unter Beachtung von
(11) wegen ap = — 00, a; = 7, und b; = + oo giiltig.

Fiir den SchiuB von j — 1 auf j ist nach der Induktionsannahme

a_y=mj_ =b_,.
Wegen (11) gilt daher
a-1 =mj—| =71,.
Ebenso ist m; = 7;, und aus (3) folgen

G ymi-1 G ¥bin
_— b
9 o
Ti— oimj—y < Tj— 0 aj—

BB

m; =

mjé
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so dass sich in Abschluss des Induktionsbeweises fiir Lemma 1

a; = m; = bj
ergibt.
Bemerkung 4: Da es leicht moglich ist, Zahlen 7, = 1, < 13 < 74 50 zu wibhlen,
dass a3 > 14 wird, ist das zugehorige System (3) auf Grund von Lemma I
dann nicht 16sbar.

Um die Hinldnglichkeit der Forderung (9) zu bestédtigen, wird zunichst die
folgende Aussage bewiesen:

Aussage 2: Im Falle (9) gilt
a=b fir i=0,1,...,n. (12)

Denn fiir i=0 ist by— ap=+ o0 > 0, wihrend man beim Schluss von i —1
nach i sowohl im Fall q¢;= 7; zu

a.
b,'—" a,~=——'(r,-—— aH) =0

Bi
als auch im Fall a;= (7;— y; b;-1)/d; zu
i 1 1
bi— ai='§: (bi-1—ai-) + (‘['5" ‘5;) (ti—ai-1) =0,

also zur gewiinschten Ungleichung kommt.

Bemerkung 5: Berechnet man a; und b; auch beim Vorliegen von
g =1 fir i=4,5,...,j—1 und a-;>7

nach der Vorschrift (7b), so ergibt sich die unerwiinschte Ungleichung
a>b;.

In der Tat, es ist 7 — y;b;—1 = 1;— y;a;-1 < 1;— ¥; T;= 0; 1;; daher folgen a;=1;
und schliesslich

bj—-aj=-ﬁ(tj- aj..l) <0.
B
Lemma 2: Es gelte (9). Dann sind durch (8) Zahlen m,, m,_,, ..., mj_, er-
kldrt, welche die Ungleichungen (3) fiiri=n,n—1,...,j erfiillen, und es ist
cGa=mi_1=di; (j=1). (13)

Beweis durch Induktion: Fiir j=n+1 wird nur die mit (8a) iibereinstim-
mende Ungleichung ¢, = m, =d, verlangt. Der Schluss von j+1 auf j
erfordert zuerst den Nachweis von

Ci-1 =d-_, (14)
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um m;_; nach der Vorschrift (§b) wiahlen zu kdénnen. Wegen (7b) und der

Induktionsannahme (13) ist 7; = g; = ¢; = m; und somit unter Beachtung von
(5) und (6)

u—om _ 4= Bim

Y &

Ausserdem ergibt (7b) zusammen mit der Induktionsannahme (13)
G=0a-1t b= oyai- + Bimy,

L=%b-1+da;=ybi-1+ om;

daher erhilt man

u—om _ b= Bim
=0j-1, Gi-1= 5
Y By
so dass zusammen mit a;—; = b;_; aus Aussage 2 die Giiltigkeit von (14)
folgt. Es ist also m;_, erkldrt und wegen
T. — . m . T. e 5. m .
m}._lg j_1§._i__£j___j.’ mj—lgcj—l g__i__J—j_
% Vi
erfiillen m;_;, m; die Ungleichungen (3) fir i=j. Damit 1st das Lemma 2
bewiesen.
Dieses Lemma impliziert die Hinldnglichkeit von (9) fiir die Losbarkeit von
(3). Ausserdem ist bewiesen, dass die durch (8) jeweils definierten Zahlen
my, my, ..., my, eine Losung von (3) sind. Es bleibt der Nachweis, dass man
durch (8) alle Losungen von (3) erhalten kann.

In der Tat, falls mg, my,..., m, irgendeine Lésung von (3) ist, gilt nach
Lemma 1
a=m=5b fur i=0,1,...,n.

Insbesondere ist also ¢, = a, = m, = b, = d,. Es seien nun bereits
c=m;=d; fir i=nn—-1,...,j
bestitigt, dann liefert (3) fiir i =
Ti— 0; m; T, — fBim;
mj_lg__f____/__._j_’ mj_)é_f___._ﬁ_J__f,
Vi )

also ist auch ¢;_y = m;_; = d;_,. Die vorgegebene Losung kann daher durch
die Formel (8) erhalten werden. Dies vervollstindigt den Beweis des Satzes 1.

Bemerkung 6: Wird die Voraussetzung (6) durch
O<a;i<y, O0<di<fB (@(=12,...,n)
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ersetzt, ist das Ungleichungssystem (3) im Falle n = 2 widerspriichlich,
sofern nicht alle 7;’s gleich sind.
Denn ist z.B. 77 < 1;4), ergeben sich wie beim Nachweis der Aussage 1 wegen
0 — P <0, dj+1— Bj+1 < 0 die nicht zu vereinbarenden Ungleichungen m; = 1;
und mj= 1. Im Falle 11=0=...=1, ist my=m;=...=m,=1 die
Losung von (3)
Bemerkung 7: Wird an Stelle von (6)

0<CX,'=Y,‘, 0<ﬂ[=6( (i=1,2,...,n)

verlangt, geht (3) in ein 16sbares System von gestaffelten Gleichungen iiber.

3. Eine allgemeine Formulierung des Algorithmus

Es seien eine nichtleere Menge B und # nichtleere Teilmengen
WicBxB (i=12,...,n)

vorgegeben. Gesucht sind Elemente mg, m,..., m, € B, welche den Bedin-
gungen

(mi-y,m)eW; (i=1,2,...,n) (15)
geniligen.
v}
W,
my 4w

LY
]

Figur 1. Veranschaulichung von Aufgabe (15) fiir B = R!: Gibt es einen achsenparallelen beziiglich der
Winkelhalbierenden alternierenden Polygonzug durch W, W,, W3?

Im vorangehenden Beispiel ist B = R! zu setzen, wiihrend die Teilmengen
Wi={(x,y) e R aux+fiy=1, pix+8y= 1)



El. Math., Vol.39, 1984 91
Kegel im R?sind.

Das Losungsverfahren fiir die Aufgabe (15) setzt sich wiederum aus einem
Vorwirts- und einem Riickwartsschritt zusammen.

Vorwiartsschritt: Man setze

Py=B (16&)
undfiri=1,2,..., n, sofern P,_, * Q gilt,
P,={ye B:x¢€ P,y vorhanden mit (x,y) € W;}. (16 b)
y A
—_— - yd

. Oy

L H T B B
X
Figur 2. Veranschaulichung des Figur 3. Veranschaulichung des Riickwartsschrittes
Vorwirtsschrittes (16): Ubergang von P,_; zu P, (17): Ermittlung von Q;; zu m; € Q;

Wird der Vorwirtsschritt nicht vorzeitig beendet und ist auch P, # 0, kommt
€s zum

Riickwirtsschritt: Man wdhle

my € P, (172)
undfiuri=nn—1,...,1
mi-1€Qi1=P_1n{xeB:(x,m)eWi. (17b)

Dieser Algorithmus erlaubt die folgende Losbarkeitsaussage fiir die aus (15)
hervorgehende Aufgabe:

Satz 2: Die Aufgabe (15) ist genau dann lésbar, wenn die Beziehungen
Pi*+0 (=23,...,n (18)
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bestehen. Alle Losungen von (15) konnen bei Vorliegen von (18) durch den
Algorithmus (16), (17) erhalten werden.

Die in (18) fehlende Beziehung P; # @ braucht nicht angefiihrt zu werden, da
sie stets giiltig ist. Den Vorwirtsschritt kann man auch mit

Py={x € B:y € Bvorhanden mit (x, y) € W}

beginnen.
Auf die Wiedergabe eines Beweises zum Satz 2 wird verzichtet, da er dem
Prinzip nach wie beim Satz 1 gefiihrt werden kann.

4. Anwendung auf die konvexe Spline-Interpolation

Zur konvexen Spline-Interpolation liegen zahlreiche Arbeiten vor, u.a.
[1]—[9]. Die Absicherung der Konvexitdt des Splines erfolgt dort auf verschie-
dene Weise, etwa durch Aufstellung von weiteren, iiber (4) hinausgehenden
Bedingungen an die EingangsgroBen, durch Einfiihrung zusatzlicher Spline-
Knoten und durch Beeinflussung der Lage und Defekte der Spline-Knoten.
Jetzt wird vor allem gezeigt, dass man bei festen, streng konvex angeordneten
Eingangsdaten (xo, fo), (x1,f1), ---» (Xa, fu) stets konvexe Interpolations-
Splines konstruieren kann, wenn man nur den Grad des Splines hoch genug
wihlt.

Der Spline s vom Grad k = 3 sei auf dem Gitter

dra=xg<x1<...<xp=b

definiert und beispielsweise einmal stetig differenzierbar. Es werden bei vor-
gegebenen Werten f, f1,..., f» und mit Parametern mg, m,,..., m, die
Interpolations- und Glattheitsbedingungen

S(xi-1+0)=ficr, sCi—0)=/fi

St +0) =iy, (imO)=my B
sowie die speziellen Bedingungen
(X1 +0)=...=s%*D(x,1+0)=0 (=1,2,...,n)
gestellt, s. Neumann [7]. Der Ansatz
§(X) = fimr+mimy (x = xim) + pi (x = xi-)F 7 4 g (x = xi)F, (19)

giiltig fiir x;_; = x = x;, beriicksichtigt die den Knoten x;_; betreffenden
Forderungen, die restlichen fiihren auf

pi=tk t—mi— (k—1)mi_}/hf™?,
gi={mi+ (k—2)mi_— (k—1) t;}/h¥!
mit den durch (2) erklarten Zahlen 7;. Wegen
") =(k=1) (x = x;i.)* 3 {(k = 2) pi+ k q: (x — xi-1)}

(20)
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1st s (x) = 0 gleichwertig mit
pi§0, (k—2)p,+kh,q,%0 (i=1,2,...,n)
also gilt die
Aussage 3: Der einmal stetig differenzierbare Interpolations-Spline (19), (20)

vom Grade k = 3 ist genau dann konvex, wenn seine ersten Ableitungen in den
Knoten, ndmlich my, my, ..., m,, das Ungleichungssystem

(k——l)mi_1+m,-§kr,-,
k=2ym+2m;zk;

mit den Quotienten t; aus (2) erfiillen.

(i=1,2,...,n) (21)

Dieses Ungleichungssystem ist vom Typ (3), und es sind die Voraussetzungen
(5), (6) giiltig. Fiir k = 3 entsteht (1).
Die Losbarkeit des Systems (21) kann mit Hilfe des Satzes 1 entschieden
werden. Dazu ist zu iliberpriifen, ob die Bedingung (9) besteht; die Vorschrift
(7) lautet jetzt:

ap=—00, b0=T19 (223)

und fiiri=1, 2, ..., n, solange a;_| = 1, ist,

a; = max {r,-, bi_1+ i (ti— bi-1)¢

2 (22b)
bi=a,_1+k (ti—ai-1) .
Fiir (9) reicht offenbar
a=1 (=3,4,....,n—1) (23)

hin; a; =7; und a, = 7, gelten dabei stets. Falls nun der Grad k des Splines
als wihlbar angenommen wird, lasst sich (23) immer erreichen, sofern man
(4) zu

N<n<..<T, (24)
verschirft. In der Tat, wenn von q;=7; firi=1,2,...,j—1 (j = 3) ausgegan-
gen wird, erhdlt man a;,_; = 7;_; < 7;, womit a; und b; erklirt sind. Weiterhin
ergibt sich

b=ttt k(-2 =7,
falls nur

et _EL
G-17 -2
gilt, und es folgt b;_; + k (7;— bj_1)/2 = 1;. Daher wird a;= 7;. Zusammenfas-
send erhdlt man den
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Satz 3: Fiir die Differenzenquotienten t; aus (2) gelte (24), und k = 3 erfiille

Ti— Ti-2

k= (i=3,4,....,.n—1). (25)

Ti—1— Ti-2

Dann hat (21) eine Losung mg, my, ..., m, und der zugehorige einmal stetig
differenzierbare Interpolations-Spline (19), (20) vom Grade k ist konvex.

Bemerkung 8: Im Falle
=T=...=1,
ist mo=m;=... =m,=17; unabhéngig von k eine LOsung von (21). Daher

gibt es dann sogar einen konvexen Interpolations-Spline vom Grade 3. Ist da-
gegen z. B.

N=N<T3=14,

kann man mit Hilfe von k i. allg. nicht mehr a; = 74 erreichen. Somit ist bei
dieser Voraussetzung nicht in jedem Fall ein konvexer Interpolations-Spline
der Form (19), (20) vorhanden.

Es wird noch die folgende Erweiterung des Satzes 3 erwidhnt:

Satz 4: Bei Voraussetzung von (24) kann man einen u-mal stetig differenzierba-
ren konvexen Interpolations-Spline vom Grade k konstruieren, wenn k = 2u + 1
fiir u 2 1 die Ungleichungen

Ti— Ti-2

kzu (i=3,4,...,n—1) (26)

Ti—-1— Ti-2
erfiillt.

Der Nachweis kann wie beim Satz 3 erbracht werden, falls man das folgende
Ergebnis von Neumann [7] verwendet:

Ein dort explizit angegebener Interpolations-Spline vom Grade k ist genau
dann konvex, wenn fiir seine erste Ableitung in den Knoten das Unglei-
chungssystem

(k—-v,-+1) mi—;+ (v,-—-l)m,-é k1

(k—'Vi) miy+vim;zk; (= L,2,...,n) (27)

mit Zahlen v;€ {2,3,...,k—1} besteht. Der Spline ist ausserdem u-mal
stetig differenzierbar, sofern

u= xznin min (k — v, vi-; — 1)
gesetzt wird. Im Falle (26) ist (27) bei der Wahl vi=vw,=...=v,=pu+1 in
der Tat erfiillbar.

v J. W. Schmidt und W. Hess, Technische Universitidt Dresden
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Bemerkung zu einem Satz von Glauberman

Das Ziel dieser Note ist der Nachweis, dass der unten formulierte Satz von Glauber-
man ([1], S.270, Lemma 4.3, und [2], S.165-171) auch dann gilt, wenn die Charakteri-
stik des KoordinatenkOrpers gleich 2 ist. Dieser Satz spielt eine Rolle beim Beweis eines
sehr gewichtigen Theorems von Hering und Ostrom ([2], S.178, Theorem 35.10), das
von Kollineationsgruppen endlicher Translationsebenen handelt, die sich durch Sche-
rungen erzeugen lassen.

Satz (Glauberman). V # 0 sei ein endlicher Vektorraum und M < GL(V) ein System von
Vektorraumautomorphismen mit folgenden Eigenschaften:

I aeM=a""'eM.
II. M U {0} ist additiv abgeschlossen.
III. 1eM.

Dann ist M {0} ein Kérper.

Beweis: Wir beginnen mit einigen Vorbemerkungen. Der Koordinatenschiefkérper K
des Vektorraumes V ist natiirlich endlich. Ausserdem ist L:=M U {0} beziiglich der
Addition eine abelsche Gruppe, deren Exponent mit der Charakteristik von X tiberein-
stimmt. Hinsichtlich der Bezeichnungsweise ist anzumerken, dass mit (X) stets das
Erzeugnis der Teilmenge X < GL (V) in der linearen Gruppe GL (V) gemeint ist. Wir
nehmen jetzt unsere Betrachtungen auf mit der Begriindung einiger Einzelfeststellun-
gen.



	Schwach verkoppelte Ungleichungssysteme und konvexe Spline-Interpolation

