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Eine Bemerkung zur Periodenldngenbestimmung bei
einem verallgemeinerten Fibonacci-Generator

Im Zusammenhang mit der Untersuchung mehrfach rekursiver linearer Kongruenzge-
neratoren zur Erzeugung von Pseudozufallszahlen ist von Interesse, ob die erzeugten
Zahlenfolgen ausreichende Periodenldngen besitzen. Fiir den besonders einfach gela-
gerten Spezialfall eines dreifach rekursiven additiven Kongruenzgenerators soll im fol-
genden eine Methode dargestellt werden, mit der sich schnell und auf elementare Weise
iiberpriifen ldsst, ob eine bestimmte, akzeptable Periodenldnge vorliegt.

Sei p eine Primzahl, und seien x,,x,,x, nichtnegative ganze Zahlen, die kleiner als p
sind. Dann heisst die Rekursionsbeziehung

anxn—l+xn—3(m0dp)9 Oéxn<p’ ng3 (1)

verallgemeinerter Fibonacci-Generator. Die durch (1) beschriecbene Zahlenfolge (x,), . o
heisst verallgemeinerte Fibonacci-Folge, das Tripel (x,,x,,x,) Startvektor der Folge
und die Primzahl p Modul.

Diese Bezeichnungen erkldren sich dadurch, dass die Rekursionsbeziehung

anxn-l+xn—2(m0dp)’ Oéxn<p, ngz’ (xOle)z(O!l)

die Folge der modulo p reduzierten Fibonacci-Zahlen liefert.

Die Untersuchung des dreifach rekursiven additiven Kongruenzgenerators (1) solite
nicht dazu dienen, ihn fiir die Praxis zu empfehlen, da gegen seine Verwendung Vorbe-
halte bestehen (siehe z.B. [1], 3.2.2). Ziel war es vielmehr, elementare Untersuchungs-
methoden fiir mehrfach rekursive lineare Kongruenzgeneratoren zu entwickeln.

Der folgende Satz entspricht Theorem 1 in [3]. Der dort angegebene Beweis lésst sich
direkt tibertragen.

Satz 1. Eine verallgemeinerte Fibonacci-Folge (x,),s, ist reinperiodisch, das heisst, es
existiert ein Index r 2 1 mit (xg, X;,X,) = (X,, X, 1+ 1, X, 4 2)-

Beweis: Aus der Folge (x,),., lassen sich hochstens p* verschiedene Tripel der Form
(X4 X4+ 15X 4+,) bilden. Es existieren daher Indizes ¢ > s 20, so dass (x,x,,,X,,,)

= (X, X, 41, X, +,) gilt. Durch Umindizieren erhilt man aus (1)

Xyt =Xypy~ X, (modp),  0=x,_,<p, nzl.
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Daraus folgt x,_, = x,_,,X,_, = X,_5,..., % = x,_,. Mit r = t — s > 1 gilt daher (x,, x,, x,)
= (xrsxr+l’xr+2)‘ E]

Aufgrund dieses Satzes ist es moglich, die Periodenldnge einer verallgemeinerten Fibo-
nacci-Folge in der folgenden Weise zu definieren. Sie hingt vom Modul p wie auch
vom Startvektor (x,,x;,x,) ab und ist gegeben durch

A (D5 X, Xy, X,) :=mmin {K e N|(Xo, X1, X;) = (X, X 4 15 X + D} (2)
In [2] wird der dreifach rekursive additive Kongruenzgenerator
anxn~2+xn—-3(m0dp)9 ngn<p7 ng3

betrachtet und mit Hinweis auf zahlentheoretische Untersuchungen mitgeteilt, dass die
Periodenldnge bei diesem Generator fiir gewisse Primzahlen p den Wert p>+ p + 1 an-
nimmt, jedoch fiir keine Primzahl ein grésserer Wert erreicht wird. Bestimmt man z. B.
fiir den Generator (1) mit dem Startvektor (0,0, 1) und fiir die 60 kleinsten Primzahlen
p die Periodenlidnge 4 (p;0,0, 1), so stellt man fest, dass sie ebenfalls stets kleiner oder
gleich p* + p + 1 ist und fiir 18 der 60 Primzahlen A (p;0,0,1) = p* + p + 1 gilt. Da man
eine grosse Periodenlinge anstrebt und der Wert p> + p + 1 fiir praktisch interessie-
rende Primzahlen p bereits als befriedigend angesehen werden kann, stellt sich die
Frage, ob bei einem vorgegebenen Modul p fiir alle Startvektoren (x,, x,,x,) # (0,0,0)
jeweils die Periodenldnge A (p; x,, x;,x,) = p* + p + 1 auftritt. Wir wollen daher im fol-
genden eine Methode entwickeln, die dies zu iiberpriifen gestattet. Nach einer geringen
Modifikation ldsst sich diese Methode auch fiir die dreifach rekursiven additiven Kon-
gruenzgeneratoren in [2] verwenden. Auf die Frage nach der Existenz von Primzahlen
p, fir die sich bei Generatoren der Form (1) Periodenldngen grosser als p* +p + 1
ergeben, soll hier nicht weiter eingegangen werden.

Zur Vereinfachung der Schreibweise betrachten wir die Matrix

001
A:=<100
011

und setzen x":=(x,,x,.,X,.,) fir alle n =0, so dass die Rekursionsbeziehung (1) in
X"V A =x®(modp), O0=x,,,<p, nzl 3)

iibergeht, wobei die Modulorechnung wie im folgenden elementweise zu verstehen ist.
Die Matrix 4 nennen wir Generatormatrix. Insbesondere gilt dann

X9 A"= x"(modp) fiiralle n2=1. “

Der folgende Satz stellt einen Zusammenhang zwischen der Periodenlidnge einer verall-
gemeinerten Fibonacci-Folge und den Matrizen 4" her.
Im folgenden bezeichnen A stets die Generatormatrix und 7 die Einheitsmatrix.
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Satz 2. Es gilt
A (p; Xxg, X1, X,) 2 min {keN|det(4* — I) = 0(mod p)}

fiir alle Startvektoren (x,,x,,x,) # (0,0,0). Ausserdem existiert ein Startvektor, fiir den
die Gleichheit gilt.

Beweis: Aus (2) und (4) ergibt sich
A (D3 X0, X%, %) = min {k eN|x® = x®}

= min {k eN|x? = x@ - 4*(mod p)}

= min {k eN[x© - (4* — I) =(0,0,0)(mod p)}

= min {k eN|det(4* — I) = 0(modp)}
fir alle Startvektoren (x,,x;,x;)#(0,0,0). Die Ungleichung gilt, weil aus
(Xps X1, X,)  (A*— 1) = (0,0,0)(mod p) fiir eine Primzahl p die Kongruenz
det(4* — I) = 0(mod p) folgt. Andererseits folgt aus det(4* — I) = 0(mod p), dass ein
Startvektor (x,,x;,x,) # (0,0,0) mit (x,, x,, x,) - (4* — I) = (0,0,0) (mod p) existiert. [J

Satz 3. Ist keN und A* = I(mod p), dann ist die Periodeniinge A (p; Xy, x,,X,) ein Teiler
von k fiir alle Startvektoren (x,, x,, x,) # (0,0,0).

Beweis: Aus 4% = I (mod p) folgt mit (4)

x® = x0 . g4k = xO(modp).
Also ist 4 (p;xy,x;,x,) < k. Fiir k gibt es dann eine Darstellung mit ganzen Zahlen r
und s der Form k=r- A (p;x,x,,X,) + 5, wobei r 21 und 0 <5 < A(p;x,,x,,Xx,) gilt.
Da aus dem Beweis von Satz 2 insbesondere

X" Ao = x®M (modp) fiir alle n =0
folgt, ergibt sich

X0 = x® = x9 - 474600 = x9(modp).

Alsoist s =0. O

Folgerung. Sei k eine Primzahl mit A*=I(modp). Dann ist die Periodenlinge
A(p;x,, X, X,) = k fiir alle Startvektoren (xy,x,,x,) # (0,0,0).

Beweis: Da k eine Primzahl ist, gilt nach Satz 3 4 (p;x,,x,, x,)€{1,k} fiir alle Startvek-
toren (x,, x,, X,) # (0,0,0). Aus A (p;xy,Xx;,X,) = 1 ergibt sich mit (1)

(%9 X1 X3) = (X, X9, X3) = (X3, X, X + X,) (mod p),

also x, = x, = x, = x, + x,(mod p). Daraus folgt x,=x,=x,=0. O
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Satz 4. keN sei keine Primzahl und t,, ... t, seien ihre Primteiler. Ist dann A* = I(mod p)
und det(A%? — 1) #0(modp) fir alle i€{l,...,r}, so ist die Periodenlinge
A (D; x4, Xy, X,) = Kk filir alle Startvektoren (x,,x,,x,) # (0,0,0).

Beweis: Wegen Satz 3 geniigt es zu zeigen, dass fiir jeden Startvektor (x,,x,,Xx,)
#(0,0,0) und alle ie{1,...,r} die Periodenlinge 4 (p; x,, x,, x,) kein Teiler von k/¢, ist.
Wir nehmen an, dass A(p;x,,x,x,) s=k/t, fir seN, ie{l,...,r} und (x,x,x,)
# (0,0, 0) gilt. Nach dem Beweis von Satz 2 ist dann

X0 - A®) = xO . giCixox1) 1 = xO (mod p),

woraus man x@ - (4% — I) = (0,0,0)(mod p) erhilt. Dies steht im Widerspruch zur
Voraussetzung det(4%? — ) £ 0(modp). O

Dieser Satz und die Folgerung aus Satz 3 bilden die Grundlage fiir einen Algorithmus,
mit dem fiir eine vorgegebene Primzahl p iiberpriift werden kann, ob der verallgemei-
nerte Fibonacci-Generator (1) mit Modul p fiir alle Startvektoren (x,, x,,x,) # (0,0,0)
die Periodenlinge p> + p + 1 besitzt.

Algorithmus. Seien A die Generatormatrix, I die Einheitsmatrix und p eine Primzahl.
Setze k:=p*+p+ 1.

1. Bestimme eine Matrix B = A*(modp) und teste, ob B = I(modp) gilt; falls ja—2,
falls nein —6.

2. Teste, ob k eine Primzahl ist; falls ja—, falls nein —3.

3. Bestimme die Primteiler t,,...,t, von k und setze i+ 1.

4. Bestimme eine Matrix B,= A%?(modp) und teste, ob det(B,— I) = 0(mod p) gilt;
falls ja—6; falls nein —5.

5. Setze i—i+ 1 und teste, ob i > r gilt; falls ja—'1; falls nein —»4.

6. Es existiert ein Startvektor (x,,x,,x;) # (0,0,0) mit 1 (p; Xy, x,,X,) # k. Ende.

7. Es gilt A (p; Xy, X,,X,) = Kk fiir alle Startvektoren (x,,x,,x,) # (0,0,0). Ende.

Die grossten Zahlen, die im Rechner exakt dargestellt werden miissen, treten in den
Schritten 1 und 4 auf und lassen sich durch 3 p? nach oben abschitzen. Schritt 3 ist fiir
grosse Primzahlen p unter Umstinden mit sehr grossem Rechenaufwand verbunden.
Dagegen ist Schritt 2 auch fiir sehr grosse Primzahlen mit geeigneten Algorithmen sehr
schnell durchzufiihren. Hinweise auf solche Algorithmen findet man in [1], vol.Il, ch.4.
J. Eichenauer und J. Lehn

Technische Hochschule Darmstadt
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