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W-Kurven in der ebenen Lie-Geometrie
(2. Teil)

4. Klassifikation der W-Kurvenscharen

Es gibt zwei Arten von Lie-W-Kurven, die mehr als nur eine einparametrige
Gruppe von Lie-Transformationen gestatten: Die Kreise (deren Gruppe
7-dimensional ist) und diejenigen Kurven, die den Raumkurven 3. Ordnung
in IP? entsprechen. Auf die letzteren gehen wir hier nicht niher ein.

Zur Klassifikation der iibrigen W-Kurven bieten sich zunichst zwei Wege
an: Zum einen konnte man das Problem als eine Frage der linearen Algebra
ansehen: Man klassifiziere alle quadratischen Formen in einem vierdimen-
sionalen Vektorraum, in dem eine nicht ausgeartete schiefsymmetrische
Bilinearform w ausgezeichnet ist. In dieser Form tritt das Problem auch in
der klassischen Mechanik auf («quadratische Hamiltonfunktionen») und ist
1936 von J. Williamson [9] gelOst worden.

Zum andern kann man zuriickgreifen auf die projektive Klassifikation der
W-Kurven auf Quadriken, wie sie 1960 von M. Barner und H. Kunle [1] durch-
gefithrt worden ist. Uns geht es hier vor allem um die Lie-geometrische Deu-
tung der obigen Ergebnisse.

Wir gehen nun der Reihe nach die einzelnen Typen von W-Kurvenscharen
durch. Die grobe Einteilung richtet sich nach dem projektiven Typ der be-
treffenden Quadrik in IP3, Fiir die feinere Unterteilung suchen wir unter den
Einparametergruppen von Projektivitiaten, die eine Quadrik Q des jeweiligen
Typs festlassen, diejenigen heraus, deren Bahnkurven auf Q einem nichtaus-
gearteten linearen Komplex angehoren. Dabei setzen wir einige Kenntnisse
iiber nichteuklidische Bewegungsgruppen voraus, die man z.B. bei Felix
Klein [4] nachlesen kann.

Dass die angegebenen Typen untereinander nicht Lie-dquivalent sind, folgt
aus der Verschiedenheit der charakteristischen Polynome von X, die im
folgenden aufgefiihrt sind. Die Vollstandigkeit der Klassifikation ergibt sich
aus der Art der Aufzéhlung.

Fall 1: Q ist vom Typ der Kugel

Wir werden im folgenden fiir jeden Typ einer W-Kurvenschar eine Basis
by, ..., b3 von U suchen, beziiglich der w die Gestalt (15) hat, und beziiglich
der die Matrix 4 der zur W-Kurvenschar gehérigen quadratischen Form be-
sonders einfach wird. Die Gestalt, die die Matrizen 4 und X := — EA beziig-
lich by, ..., b; annehmen, bezeichnen wir als «Normalform». In dem gerade
betrachteten Fall I erhalten wir als Normalformen:
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1 0 0 0 0 o 0 1\
0 w 0 0 0 0 —-w 0
== F— — 0
=00 -0 o) *"E=lo & o o0 (@>0)
0 0 0 -1 1 0 0 0
cosh ¢ 0 0 sinh ¢
0 coswt —sinw't 0
tX)= 2
exp (1 X) 0 sin @ ¢ cos w t 0 (22)
sinh ¢ 0 0 cosh ¢

pA)=2+(1- 0 1’- o

p bezeichnet immer das charakteristische Polynom der Matrix X. Wenn wie
in (22) ein Parameter w in der Normalform auftritt, so ist immer implizit
behauptet, dass fiir verschiedene Werte von w aus dem angegebenen Bereich
(hier w > 0) die entsprechenden W-Kurvenscharen nicht Lie-dquivalent sind.
Wir konnen o.B.d.A. annehmen, dass by, b;, by, b; mit den Vektoren a;,
iay, az, [ a zusammenfallen, wobei a;, a; eine normierte Basis von U ist. Mit
Hilfe der Tabelle (19) finden wir dann fiir das zu der betrachteten W-Kur-
venschar gehorige Richtungsfeld die Koordinatendarstellung

0=xt—x3+w(x}+xd)

1+ w 5 5 l—w
. +x1) +
> (x5 + x1) 5

-1 +1
w2 (x%+x%)+w2

—1+w(zf+cos )+1_
2 SO

(x3 — xf)

+ (x3—x3)

2 K2 u)+1). (23)

Um ein konkretes Beispiel herauszugreifen, betrachten wir speziell den Fall
w = 1. (23) vereinfacht sich hier zu

zZ+cosp=0. (24)

Wegen cos ¢ =1 liegen alle Linienelemente des Richtungsfeldes (24) im Ein-
heitskreis. Dieser wird von dem Richtungsfeld gerade zweifach iiberdeckt,
nur auf dem Rand (zZ=1) gibt es fiir ¢ modulo 27 nur die Lésung ¢ =0
(Fig. 4b).

Dem Richtungsfeld sieht man noch an, dass Q eine topologische Sphire ist:
Man erkennt zwei Kreisscheiben, die am Rand zusammengeheftet sind.

Die W-Kurven auf Q laufen asymptotisch gegen die Punkte (1,0,0,1) =
(1,7) und (1,0,0,—1) = (1, —i) (sieche Fig. 4a). Dem entspricht, dass die
Integralkurven des Richtungsfeldes (24) (d. h. die Lie-W-Kurven der betrach-
teten Schar) gegen die Linienelemente (z, #) mit z =% i, u = — 1 konvergie-
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Figur 4a Figur 4b

ren. Aus (22) erhalt man leicht explizite Parameterdarstellungen der W-Kur-
ven: So ist etwa die W-Kurve

tpexp (tX) 1, r0=(;) (25)
(X wie in (22) mit w = 1) gegeben durch
. (t)_(sinht+icost )
sint +icosht
sinh ¢ + i cos ¢
sinf+icosht

z() = (26)

Fall II: Q ist vom Typ des einschaligen Hyperboloids

Eine Projektivitit m: P? — P2 die Q festlisst, induziert in jeder der beiden
Erzeugendenscharen von Q eine Projektivitat (siehe [4] S. 111ff.). Je nach der
Anzahl der Fixerzeugenden in der jeweiligen Schar konnen diese beiden von
n induzierten Projektivititen elliptisch, parabolisch, hyperbolisch oder die
Identitdt sein. Entsprechendes gilt fiir Einparametergruppen von Projektivi-
titen ¢ — exp (1 X), die Q festlassen. Es ist klar, was gemeint ist, wenn wir X
elliptisch-elliptisch oder hyperbolisch-identisch etc. nennen.

Der Fall, dass X parabolisch-parabolisch ist, bleibt hier ausser Betracht, weil
die Bahnkurven in diesem Fall Kegelschnitte, also keine Komplexkurven
sind.

Die drei Fille, in denen eine der beiden Erzeugendenscharen geradenweise
fest bleibt, kommen zwar als Lie-Einparametergruppen vor, sie liefern aber
keine interessanten W-Kurven. Die Bahnkurven auf Q sind hier Geraden,
auf die Mobiusebene iibertragen also Kreise. Es bleiben noch fiinf Fille
tibrig:

Ila) X ist elliptisch-elliptisch
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Normalform:
1 0 0O 0 0 0 -1
0 w 0 0 0 0 —w 0
= X=—FEA= 0, w*+—1
A=l 0w 0] 0w 0 0 (@<, oF—1)
0 0 0 1 1 0 0 0
(27)
cos t 0 0 —sin ¢
0 coswt —sinwt 0
tX)=
exp (1 X) 0 sin w ¢t cos w t 0
sin ¢ 0 0 cos ¢
p (D) =1+ (@*+1) A2+ 2.
Richtungsfeld:
0=x}+wx}+ w x3+ x}
1+ 1—
=== (4 xD) +—5— (- xD
(28)
+1 —
=22 e+ 2L (- 0)
2 2
1+ w _ _ l—w 5
== (z1Z1+ 2222 + 5 Re (z1 — z9) .

Zur geometrischen Beschreibung des Richtungsfeldes und seiner Integralkur-
ven ist es zweckmaissig, vorher noch die Mobiustransformation

-1

1 1
Z=2,._,+1 oder 21=—V—§—(z"l-z"2), 22=—V—-—5(51+fz) (29)

anzuwenden. Das transformierte Richtungsfeld hat die Gleichung

1+ w l—w

0= (f]f‘+f2§2)+

Re (251 fz)

1+
2

oder, wenn wir wieder z statt Z schreiben:

EZ+1)+ (1—- w){z, 0) (30)

_ - o
0=zZ+1+ 1_'_w2<z,u>

=(z+11_:wu)(z+I-wu)-{-l—(l_-w)z. (31)

w 1+ w 1+ w
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Das Richtungsfeld besteht also aus allen Linienelementen (z, #) mit der fol-

genden Eigenschaft: Trigt man von z aus den Vektor “u ab, so gelangt

man zu einem Punkt auf dem Kreis um den Ursprung mit Radius

1— w\2 1-— 2 —
r=|/(———63)—1. Aus o <0 folgt (J)—1>0 und a:=1 Csr
1+ w 1+ w 1+ w

Es gibt fiir dieses Richtungsfeld eine interessante mechanische Deutung: Ein
Mann geht auf einem Kreis vom Radius » herum und zieht dabei an einer
Stange der Linge a einen Wagen.

Figur §

Die Bahn, die der Wagen beschreibt, ist offenbar Integralkurve eines Rich-
tungsfeldes der obigen Art. Ein weiterer Gesichtspunkt ergibt sich, wenn man
um die Punkte eines Kreises vom Radius r Kreise vom Radius a schldgt. Die
Orthogonaltrajektorien der so entstandenen Kreisschar sind dann die ge-
suchten Lie-W-Kurven.

Figur 6a Figur 6b

Die W-Kurven sind geschlossen oder nicht, je nachdem w rational oder irra-
tional ist.
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I1b) X ist elliptisch-parabolisch

Normalform:
1 0 ! 1 0 0 -1 ! 0 O
0 1!'0-—1 1 0!'0 O
A=l----4----—- , X=—FEA=|---—~~ e
1 0 i 0 0 0 1 E 0—1
0-11'0 O 1 01 O
32
cos ¢ sin ¢ : 0 0 (32)
—_ Q1 t t |
exp ([X): __gl.}.l______ggs___ll__g ______ O -
tsint rcost | cost —sint
tcost —tsint : sin ¢ cos ¢
p(A)=(*+1)2.
Richtungsfeld:
0=x%+xf+2(xox2——x1x3)
=zz+2{z,uy. (33)

Dieses Richtungsfeld entsteht aus (31) im Grenzfall ® — — oo, d.h. fiir r = a.
Sowohl die mechanische Interpretation der W-Kurven als auch ihre Deutung
als Orthogonaltrajektorien einer Kreisschar bleiben giiltig.

Auf Q schmiegen sich die W-Kurven sowohl fiir + = + oo als auch fiir
t - — o0 an die (einzige) Fixerzeugende von Q an (Fig. 7a). Dem entspricht,
dass in der Mobiusebene die W-Kurven gegen den Ursprung konvergieren,
der ja Lie-geometrisch als orientierter Kreis aufgefasst werden muss (Fig.
7b).

Bei der Inversion am FEinheitskreis werden aus den Kreisen, deren Ortho-
gonaltrajektorien unsere W-Kurven sind, die Tangenten des Einheitskreises.

Figur 7a Figur 7b
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Weil die Inversion winkeltreu ist, werden aus den W-Kurven Orthogonaltra-
jektorien dieser Tangenten, d. h. Kreisevolventen.

Ilc) X ist elliptisch-hyperbolisch

Normalform:
1 0 L w 0 0 w ! 0 1
0 1 ' 0-w - 0 !1
I - b X=—Ed=|-—————- S 0
© 0 1=170 0 T 10w (@>0)
0 —w ' 0 —1 1 0w O
cosh ¢ 0 | 0 sinh ¢
0 cosh ¢t !sinh ¢ 0
B ] TR VL __
exp (1 X) ( 0 sinht*{cosht 0
sinh ¢ 0 | 0 cosh ¢
cos (wt) sin(w i) ! 0 0
A osin(wy) cos(wf) , O 0
0 0 | cos (w ) —sin(w 1)
0 0 | sin(w?)  cos (w 1)

p(A)=24+2(0?=1) 2+ (0*+1)°.
Richtungsfeld:
0=x3+x}—x3—x}+ 2w (xox2— X1 X3)
=zZ—1+2w{z,u)

=z+ou(ztou)—1-o’.

Figur 8a Figur 8b
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Wieder kann man das Richtungsfeld wie in Ila deuten, hier aber mit a < r.
Auf Q C IP? schmiegen sich die W-Kurven fiir  — oo an die beiden Fixgera-
den auf Q an. Die beiden orientierten Kreise, die diesen Geraden in der
Moébiusebene entsprechen, erscheinen in Fig. 8b als die beiden Orientierun-
gen desselben unorientierten Kreises.

11d) X ist hyperbolisch-hyperbolisch

Normalform:
1 0 0 0 0 0 0 1
0 w 0 0 0 0 w O
A= 3 = O :#:1
00 -0 0] “Nowoof @0eFD
0 0 0 -1 1 0 0 O
cosh ¢ 0 0 sinh ¢
0 cosh (w t) sinh (w 1) 0
tX)= 34
(= 0 Gnh(ws) cosh(@r) 0 (34)
sinh ¢ 0 0 cosh ¢
p (D) =211+ 1*+ .
Richtungsfeld:
0=x3+ wx?— wx3— x3
+ J—
_ zw(zZ—l)+1 2w<22+1,u>. (35)

Um eine anschauliche Vorstellung von der W-Kurvenschar zu gewinnen, fra-
gen wir nach dem Ort der Punkte, in denen es genau ein Element des Rich-
tungsfeldes gibt. Mit Hilfe von (21) kann man zeigen, dass der gesuchte Ort
in zwei Kreise K;, K, durch die Punkte *i zerfallt. Die W-Kurvenschar

" Figur 9a Figur 9b
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besteht aus den Orthogonaltrajektorien einer Schar von Kreisen, die K; und
K, beriihren (Fig. 9b).

Die vier Fixgeraden auf Q C IP? bilden ein windschiefes Viereck. Eine der
vier Ecken des Vierseits fungiert als Quelle, die gegeniiberliegende Ecke als
Senke fiir die Stromung auf Q (Fig. 9a).

In der Mobiusebene entsprechen den vier Fixgeraden auf Q vier orientierte
Kreise, nimlich die Punkte i und die beiden Orientierungen des Einheits-
kreises. Diese Kreise gehoren selbst auch zu den W-Kurven der Schar.

Ile) X ist hyperbolisch-parabolisch

Normalform:
0 01 0-I 1 011 0
O 0!' 1 0 0-1,0 1
A=[-----~- oo , X=| -z
0 1., 0-1 0 oi 1 0
1 01-1 0 0 01 0—1
(36)
e 0 :te’ 0
0 e’ 0 te!
(X} =] s e st
xp () =\ 70 Te 0
0O 0 ' 0 o
pA=A-1D2A+1)2.
Richtungsfeld:
0=x1x2—x0x3—x2x3
1 -
=Im(z+?u). (37

Wie in den Beispielen zu I1a)—c) die W-Kurven Schleppkurven des Kreises
waren, so haben wir hier Schleppkurven der Geraden, also Traktrizen. Fig.
10b zeigt das Bild einer solchen Schar von Traktrizen unter einer Inversion.

Figur 10a Figur 10b
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Fall I11: Q ist ein Kegel

Fiir den Nachweis, dass alle W-Kurven auf Kegeln, die gleichzeitig Kom-
plexkurven sind, in einem der beiden folgenden Typen enthalten sind, ver-
weisen wir auf die Arbeit [1] von M. Barner und H. Kunle.

IIl1a) Gewohnliche Schraubenlinien

Normalform:
1 0 0 O 0O 0 0 O
0-1 0 0 0O 01 0
A= Py —
0 0-1 0 X 0-1 0 O
0O 0 0O 1 0 0 O
| 0 0 o0
0 cost sint O
t X} = 38
exp (1.X) 0 —sinz cost O (38)
t 0 0 1
p(AD)=2121*+1).
Richtungsfeld:
0=x3—x}—x3
1
={z% u) — 5 (1+ cosgp) . (39)

Stellt man sich Q als Zylinder im euklidischen Raum vor, so sind die Bahn-
kurven auf Q gewohnliche Schraubenlinien. In der MGbiusebene konver-
gieren die W-Kurven fiir t = + 00 und t - — o0 gegen das Linienelement
(z, u) = (0, — 1), das der Kegelspitze entspricht (Fig. 11).

Figur 11a Figur 11b
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111b) Hyperbel-Schraubenlinien

Normalform:
1 0 0 O 0 0 0 O
01 00 0 01 0
A= ., X=
0 0-1 0 01 0O
0 0 0 O 1 0 0 O
(40)
| 0 0 0
0 cosht sinhz 0
XP = ) sinhs coshs 0
t 0 0 1
p(D =i -1).
Richtungsfeld:
0=x¢+x}—x3
1
=zf—-7(1+cos¢). (41)

Fir ¢ — oo konvergieren alle W-Kurven gegen das Linienelement

(z,u)y=(@,1), fir t—>—o00 gegen (z,u)=(—i,1) (siehe Fig. 12b).

Es bleiben noch fiinf Fille zu diskutieren: Q ist nullteilig, ein nullteiliger
Kegel, ein imagindres Ebenenpaar, ein reelles Ebenenpaar, eine doppeltzih-
lende Ebene. In den ersten drei Fillen gibt es keine nichtkonstanten W-Kur-
ven. In den letzten beiden Fillen sind die W-Kurven orientierte Kreise, die
den Komplexgeraden in den Ebenen, in die Q zertillt, entsprechen.

~,\\\\\\\'lll/!{’}’

Figur 12a Figur 12b
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Wir geben noch eine Methode an, mit der man bei gegebenem X und 4 ent-
scheiden kann, welcher Typ vorliegt. Wenn 4 vom Rang =2 oder Q null-
teilig ist, liegt einer der Falle vor, die wir nicht ausfiihrlich beschrieben
haben. Ansonsten sieht man am Vorzeichen der Determinante von A4, ob
Fall I (det4 < 0), Fall IT (detA4 > 0) oder Fall III (det4 = 0) vorliegt. Fiir die
feinere Unterscheidung muB3 man das charakteristische Polynom p von X
betrachten. Die obige Klassifikation zeigt (man kann dies auch leicht direkt
einsehen), dass p immer von der Form ist

p(AD=A+bi2+detX. (42)

Ein Vergleich mit den oben angegebenen Normalformen ergibt mit
D := b*— 4 det X die folgende Tabelle:

Fall I det4 < 0 D>0 be R
Fall lla D>0 b>0
b D=0 b>0
c det4 >0 D <0 beR 43)
d D>0 b<0
e D=0 b<0
Fall Ila _ b>0

U. Pinkall, Math. Institut Universitdt Freiburg i. Br.
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