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W-Kurven in der ebenen Lie-Geometrie
(2. Teil)

4. Klassifikation der W-Kurvenscharen

Es gibt zwei Arten von Lie-W-Kurven, die mehr als nur eine einparametrige
Gruppe von Lie-Transformationen gestatten: Die Kreise (deren Gruppe
7-dimensional ist) und diejenigen Kurven, die den Raumkurven 3. Ordnung
in P3 entsprechen. Auf die letzteren gehen wir hier nicht näher ein.
Zur Klassifikation der übrigen W-Kurven bieten sich zunächst zwei Wege
an: Zum einen könnte man das Problem als eine Frage der linearen Algebra
ansehen: Man klassifiziere alle quadratischen Formen in einem vierdimensionalen

Vektorraum, in dem eine nicht ausgeartete schiefsymmetrische
Bilinearform co ausgezeichnet ist. In dieser Form tritt das Problem auch in
der klassischen Mechanik auf («quadratische Hamiltonfunktionen») und ist
1936 von J. Williamson [9] gelöst worden.
Zum andern kann man zurückgreifen auf die projektive Klassifikation der
W-Kurven auf Quadriken, wie sie 1960 von M. Barner und H. Kunle [1]
durchgeführt worden ist. Uns geht es hier vor allem um die Lie-geometrische Deutung

der obigen Ergebnisse.
Wir gehen nun der Reihe nach die einzelnen Typen von W-Kurvenscharen
durch. Die grobe Einteilung richtet sich nach dem projektiven Typ der
betreffenden Quadrik in P3. Für die feinere Unterteilung suchen wir unter den
Einparametergruppen von Projektivitaten, die eine Quadrik Q des jeweiligen
Typs festlassen, diejenigen heraus, deren Bahnkurven auf Q einem nichtaus-
gearteten linearen Komplex angehören. Dabei setzen wir einige Kenntnisse
über nichteuklidische Bewegungsgruppen voraus, die man z.B. bei Felix
Klein [4] nachlesen kann.
Dass die angegebenen Typen untereinander nicht Lie-äquivalent sind, folgt
aus der Verschiedenheit der charakteristischen Polynome von X, die im
folgenden aufgeführt sind. Die Vollständigkeit der Klassifikation ergibt sich
aus der Art der Aufzählung.

Fall 1: Q ist vom Typ der Kugel

Wir werden im folgenden für jeden Typ einer W-Kurvenschar eine Basis
bo,..., h3 von U suchen, bezüglich der co die Gestalt (15) hat, und bezüglich
der die Matrix A der zur W-Kurvenschar gehörigen quadratischen Form
besonders einfach wird. Die Gestalt, die die Matrizen A und X := - EA bezüglich

bo,...,b3 annehmen, bezeichnen wir als «Normalform». In dem gerade
betrachteten Fall I erhalten wir als Normalformen:
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0 0 0 1\
0

0

0

CO

— co

0
°\ (co > 0)

1 0 0 0/

_Y=-£_4

0 0 sinh /'
,_, ~ cos co / — sin co t 0

exp(/JQ= n n (22>
1 n sin co / cos co t 0 '

0 0 cosh t»

p(X) X4+(l-co2)X2-co2

p bezeichnet immer das charakteristische Polynom der Matrix X. Wenn wie
in (22) ein Parameter co in der Normalform auftritt, so ist immer implizit
behauptet, dass für verschiedene Werte von co aus dem angegebenen Bereich
(hier co > 0) die entsprechenden W-Kurvenscharen nicht Lie-äquivalent sind.
Wir können o.B.d.A. annehmen, dass bo, bi, b2, b3 mit den Vektoren ax,
iax, ct2, /ct2 zusammenfallen, wobei ax, a2 eine normierte Basis von U ist. Mit
Hilfe der Tabelle (19) finden wir dann für das zu der betrachteten
W-Kurvenschar gehörige Richtungsfeld die Koordinatendarstellung

0 Xo - x2 + co (x2 + x2)

—— (*o + x{) + —r- (*o ~ x^

co — l/7 - CO + 1
~ -+ -y-(^22 + X3) + --y-(^2-xi)

-y- (zz + cos<p) +-j- «z2, u) + 1) (23)

Um ein konkretes Beispiel herauszugreifen, betrachten wir speziell den Fall
co 1. (23) vereinfacht sich hier zu

zz + cos (p 0. (24)

Wegen cos (p _^ 1 liegen alle Linienelemente des Richtungsfeldes (24) im
Einheitskreis. Dieser wird von dem Richtungsfeld gerade zweifach überdeckt,
nur auf dem Rand (zz 1) gibt es für cp modulo 2n nur die Lösung tp 0

(Fig. 4b).
Dem Richtungsfeld sieht man noch an, dass Q eine topologische Sphäre ist:
Man erkennt zwei Kreisscheiben, die am Rand zusammengeheftet sind.
Die W-Kurven auf Q laufen asymptotisch gegen die Punkte (1,0,0,1)
(1,0 und (1,0,0,-1) (1,-/) (siehe Fig. 4a). Dem entspricht, dass die
Integralkurven des Richtungsfeldes (24) (d. h. die Lie-W-Kurven der betrachteten

Schar) gegen die Linienelemente (z, u) mit z ± i, u - 1 konvergie-
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Figur 4a Figur 4b

ren Aus (22) erhalt man leicht explizite Parameterdarstellungen der W-Kur-
ven So ist etwa die W-Kurve

t\-+exp(tX)x0, r0 (25)

(_Ywie in (22) mit co 1) gegeben durch

/sinh / + / cos / \

\sin t + i cosh tj
sinh t + i cos t

r(/)

z(t)
sin t + i cosh t

(26)

Fall II Q ist vom Typ des einschalten Hyperboloids

Eine Projektivität n P3 -» P3, die Q festlässt, induziert in jeder der beiden
Erzeugendenscharen von Q eine Projektivität (siehe [4] S 111 ff) Je nach der
Anzahl der Fixerzeugenden in der jeweiligen Schar können diese beiden von
n induzierten Projektivitaten elliptisch, parabolisch, hyperbolisch oder die
Identität sein Entsprechendes gilt fur Einparametergruppen von Projektivitaten

/ h» exp (tX), die Q festlassen Es ist klar, was gemeint ist, wenn wir X
elliptisch-elliptisch oder hyperbolisch-identisch ete nennen
Der Fall, dass X parabolisch-parabolisch ist, bleibt hier ausser Betracht, weil
die Bahnkurven in diesem Fall Kegelschnitte, also keine Komplexkurven
sind
Die drei Falle, in denen eine der beiden Erzeugendenscharen geradenweise
fest bleibt, kommen zwar als Lie-Einparametergruppen vor, sie liefern aber
keine interessanten W-Kurven Die Bahnkurven auf Q sind hier Geraden,
auf die Möbiusebene übertragen also Kreise Es bleiben noch fünf Falle
übrig

IIa) X ist elliptisch-elliptisch
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Normalform:

'1 0 0 0\ /0 0 0 -In
0 co 0 o\

v rl 0 0 -co 0,^0 0 o, 0 ' Jf—^" 0 co 0 0» (»<0,c-*-l)
U) 0 0 1/ \1 0 0 0/

(27)

cos f

cos CO t

sm co r

sin t

sin r

cos r

(28)

0

„ sin co t
exp (/X) A

0

/?(A) A4+(C02+1),12+C02.

Richtungsfeld:

0 xl + co x2 + CO x2 + x2

-^(xl + x]) + -^~(x2o-x\)

^^(*2 + xl)+?~- (X22~X23)

1 + co _ _x
1 — CO ^ / 7 9x—— (zxz{+ z2 z2) + ~y~ Re (zf - zi).

Zur geometrischen Beschreibung des Richtungsfeldes und seiner Integralkurven
ist es zweckmässig, vorher noch die Möbiustransformation

z-l 1 1

z=-J+T °der zi=~j7f (fi~~f2)> ^2 =-j^-(zi + z2) (29)

anzuwenden. Das transformierte Richtungsfeld hat die Gleichung

1 + co, __
1 —Ö> __ _x0 —— (z, z, + z2 z2) + —y- Re (2zi z2)

^4p (z I+ 1) + (1 - co) <z, w> (30)

oder, wenn wir wieder z statt z schreiben:

0 z z +1+-—- 2 <z, w>
1 + co

x /

,/z+>_^„)(7aH-;)+1-(i_^f. pi,\ l + 0> /\ 1 + Q> / \l + ft>/
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Das Richtungsfeld besteht also aus allen Linienelementen (z, u) mit der

folgenden Eigenschaft: Trägt man von z aus den Vektor
1 co

1 + co
u ab, so gelangt

man zu einem Punkt auf dem Kreis um den Ursprung mit Radius

^2

-Hf co

+ co
- 1. Aus co < 0 folgt

co

1+ CO
1>0 und a := > r.

1 + co

Es gibt für dieses Richtungsfeld eine interessante mechanische Deutung: Ein
Mann geht auf einem Kreis vom Radius r herum und zieht dabei an einer
Stange der Länge a einen Wagen.

Figur 5

Die Bahn, die der Wagen beschreibt, ist offenbar Integralkurve eines
Richtungsfeldes der obigen Art. Ein weiterer Gesichtspunkt ergibt sich, wenn man
um die Punkte eines Kreises vom Radius r Kreise vom Radius a schlägt. Die
Orthogonaltrajektorien der so entstandenen Kreisschar sind dann die
gesuchten Lie-W-Kurven.

Figur 6a Figur 6b

Die W-Kurven sind geschlossen oder nicht, je nachdem co rational oder
irrational ist.



72 El. Math., Vol. 39, 1984

IIb) X ist elliptisch-parabolisch

Normalform:

/l 0 1 °\
1° 1 0 ->\

1 0 0 °/Vo -1 0 0/
X=-EA=\

0 -1 0 0

1 0 0 0

0 1 0 -1
1 0 1 0

t\p(tX)

p(X) (X2 + l)2

/ cos t sin t 0 ° \1 — sint cos t 0 o \
l tsint t cos t cos t — sint J

\ / cos t — t sin t sin / cos tl

Richtungsfeld:

0 xl + x2 + 2 (xq x2 — xx x3)

— zz + 2(z9u).

(32)

(33)

Dieses Richtungsfeld entsteht aus (31) im Grenzfall co -» - oo, d.h. für r= a.
Sowohl die mechanische Interpretation der W-Kurven als auch ihre Deutung
als Orthogonaltrajektorien einer Kreisschar bleiben gültig.
Auf Q schmiegen sich die W-Kurven sowohl für / -> + oo als auch für
t -»— oo an die (einzige) Fixerzeugende von Q an (Fig. 7a). Dem entspricht,
dass in der Möbiusebene die W-Kurven gegen den Ursprung konvergieren,
der ja Lie-geometrisch als orientierter Kreis aufgefasst werden muss (Fig.
7b).
Bei der Inversion am Einheitskreis werden aus den Kreisen, deren
Orthogonaltrajektorien unsere W-Kurven sind, die Tangenten des Einheitskreises.

u

Figur 7a Figur 7b
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Weil die Inversion winkeltreu ist, werden aus den W-Kurven Orthogonaltrajektorien

dieser Tangenten, d. h. Kreisevolventen.

IIc) X ist elliptisch-hyperbolisch

Normalform:

A \

1 0 ; co 0

o l o co

co 00 i-l
0 -co

''

0 -1

X=-EA

o

— CO

co | 0

0 | 1 l)
0 1 0

0 i co

— CO /

0/

(co>0)

exp (tX) ¦

/cosh t 0

0 cosh t

0 sinh t

< sinh t 0

0

sinh /
cosh t 0

0 cosh t/

sinh t

cos (co t) sin (co /)
— sin (co t) cos (co /)

_____ _

0 0

p (X) X4 + 2 (co2 - 1) X2 + (co2 + 1 )2.

Richtungsfeld:

0 xl + x2- x2- x3 +2co (x0x2- x\ x3)

z z — 1 + 2 co (z, u)
— (z + co u) (z + CO u — 1 — co2.

sin (co t)cos (co t)

cos (co t)sin (co t)

n

Figur 8a Figur 8b
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Wieder kann man das Richtungsfeld wie in IIa deuten, hier aber mit a < r.
Auf Q C P3 schmiegen sich die W-Kurven für t -> oo an die beiden Fixgeraden

auf Q an. Die beiden orientierten Kreise, die diesen Geraden in der
Möbiusebene entsprechen, erscheinen in Fig. 8 b als die beiden Orientierungen

desselben unorientierten Kreises.

IId) X ist hyperbolisch-hyperbolisch

maü<3rm
0 0 0^

_

Jh cn 0 0
A=\

ü 0 — co 0
Vo 0 0 -1.

x=\

'0 o o r
0 0 co o

0 co 0 0

.10 0 0/

(co>0 co =1=1)

exp (tX)

''cosh t 0 0 sinh ts

0 cosh (co t) sinh (co t) 0

0 sinh (co t) cosh (co t) 0

< sinh/ 0 0 cosh//

p(X) X4-(l + co2)X2+co2.

Richtungsfeld:

0 xl + co x\ — co x2 - V2¦*3
1 + co, 1X l-co/?—— (zz-l) + ——-<z2+l,W>.

(34)

(35)

Um eine anschauliche Vorstellung von der W-Kurvenschar zu gewinnen, fragen

wir nach dem Ort der Punkte, in denen es genau ein Element des
Richtungsfeldes gibt. Mit Hilfe von (21) kann man zeigen, dass der gesuchte Ort
in zwei Kreise Kx, K2 durch die Punkte ± / zerfällt. Die W-Kurvenschar

Figur 9a Figur 9b
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besteht aus den Orthogonaltrajektorien einer Schar von Kreisen, die Kx und
K2 berühren (Fig 9 b)
Die vier Fixgeraden auf Q C P3 bilden em windschiefes Viereck Eine der
vier Ecken des Vierseits fungiert als Quelle, die gegenüberliegende Ecke als
Senke fur die Strömung auf Q (Fig 9 a)
In der Möbiusebene entsprechen den vier Fixgeraden auf Q vier orientierte
Kreise, namhch die Punkte ± i und die beiden Orientierungen des Einheitskreises

Diese Kreise gehören selbst auch zu den W-Kurven der Schar

He) X ist hyperbolisch-parabolisch

Normalform

A
/ ° 0 0-K
I ° 0 1 o\
l ° 1 0-1
\-l 0 -1 0/

X

0 1 °\
-1 0 M

0 1 °/
0 0 -1/

exp (tX)

/e' 0 te' ° \
1° e" 0 te-\
\° 0 e' °
\o 0 0 e"l

(36)

/»(„) („¦
Richtungsfeld

Im z +

1)2(A + 1)2

XoX3

1

-Z"U

X2X3

(37)

Wie m den Beispielen zu IIa)-c) die W-Kurven Schleppkurven des Kreises
waren, so haben wir hier Schleppkurven der Geraden, also Traktnzen Fig
10b zeigt das Bild einer solchen Schar von Traktnzen unter einer Inversion

K7

_^
Figur 10a Figur 10b
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Fall III: Q ist ein Kegel

Für den Nachweis, dass alle W-Kurven auf Kegeln, die gleichzeitig
Komplexkurven sind, in einem der beiden folgenden Typen enthalten sind,
verweisen wir auf die Arbeit [1] von M. Barner und H. Kunle.

IIIa) Gewöhnliche Schraubenlinien

Normalform:
/l 0 0 0\ /0 0 0 0

J0-1 ° °| J° °
A lo o-i oPIo-i

1

0

0

0

\o 0 0 0/ \l 0 0 0

exp (tX)

10 0 On

0 cos / sin / 0

0 -sin / cos / 0

t 0 OL
p(X) X2(X2+l).

Richtungsfeld:

0 4- V2
¦ X\ - V2x2

1

(z2, w) — — (1 + cos cp)

(38)

(39)

Stellt man sich Q als Zylinder im euklidischen Raum vor, so sind die
Bahnkurven auf Q gewöhnliche Schraubenlinien. In der Möbiusebene konvergieren

die W-Kurven für / -* + oo und / -> — oo gegen das Linienelement
(z, ü) (0, — 1), das der Kegelspitze entspricht (Fig. 11).

^igur IIa Figur IIb
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IHb) Hyperbel-Schraubenlinien

Normalform:

A

10 0 0

0 0

0 0

0 0 0 0

exp (tX)

p{X) X2{X2-

Richtungsfeld:

x=

10 0 On

0 cosh t sinh / 0

0 sinh / cosh / 0

>. 0 0 1,

0 0 0 0

0 0 1

0 0

0 0 0

1)

0 Xo + xx — x2

z z — — (l + coscp)

(40)

(41)

Für / -? oo konvergieren alle W-Kurven gegen das Linienelement
(z, u) (/, 1), für / -> - oo gegen (z, u) (-/, 1) (siehe Fig. 12 b).
Es bleiben noch fünf Fälle zu diskutieren: Q ist nullteilig, ein nullteiliger
Kegel, ein imaginäres Ebenenpaar, ein reelles Ebenenpaar, eine doppeltzählende

Ebene. In den ersten drei Fällen gibt es keine nichtkonstanten W-Kurven.

In den letzten beiden Fällen sind die W-Kurven orientierte Kreise, die
den Komplexgeraden in den Ebenen, in die Q zerlallt, entsprechen.

SM2

Figur 12a Figur 12b
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Wir geben noch eine Methode an, mit der man bei gegebenem X und A
entscheiden kann, welcher Typ vorliegt. Wenn A vom Rang ___ 2 oder Q
nullteilig ist, liegt einer der Fälle vor, die wir nicht ausführlich beschrieben
haben. Ansonsten sieht man am Vorzeichen der Determinante von A, ob
Fall I (detA < 0), Fall II (detA > 0) oder Fall III (detA 0) vorliegt. Für die
feinere Unterscheidung muß man das charakteristische Polynom p von X
betrachten. Die obige Klassifikation zeigt (man kann dies auch leicht direkt
einsehen), dass/? immer von der Form ist

p(X) X4 + bX2 + detX. (42)

Ein Vergleich mit den oben angegebenen Normalformen ergibt mit
D := b2 - 4 det X die folgende Tabelle:

Falll deU < 0 D>0 kR
Fall IIa D>0 b>0

b Z) 0 b>0
c deM > 0 D<0 beB.
d D>0 b<0
e Z) 0 b<0

Fall lila
b deU 0 Z)>0 b>0

b<0

(43)

U. Pinkall, Math. Institut Universität Freiburg i. Br.
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