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Ein einfacher Beweis des Satzes von Euler-Schläfli

1. Einleitung

In den Jahren 1750 und 1751 hat Leonhard Euler [3, 4] den berühmten Satz
veröffentlicht, dass in jedem konvexen Polyeder des 3dimensionalen Raumes die
Summe der Ecken- und der Flächenzahl um 2 grösser ist als die Kantenzahl.
Rund 100 Jahre später hat Ludwig Schläfli [22] den Satz auf Polyeder im d-dimen-
sionalen Raum ausgedehnt. In der Terminologie von [10] (vgl. den folgenden
Abschnitt 2.3) kann der Satz von Euler-Schläfli so formuliert werden:
Fürjedes Polytop PaRd gilt

I(-1H=1, (1)
*=o

wo sx die Anzahl der i-dimensionalen Seiten von P bedeutet.
Dabei wird dem Polytop P, sofern es ein eigentliches ist (d.h. nicht in einer Hyperebene

enthalten), genau eine ^/-dimensionale Seite zugeschrieben, so dass sd= 1 zu
setzen ist.
Schläflis Beweis ist allerdings erst in neuerer Zeit von Bruggesser und Mani [2]
lückenlos durchgeführt worden, nachdem der Satz bekanntlich schon früher im
Rahmen der algebraischen Topologie auf ganz anderem Wege bewiesen worden
war.
Einen neuen Zugang zum Satz und weiteren Problemen hat H. Hadwiger mit den
Arbeiten [11] bis [16] eröffnet, zusammen mit P. Mani in den beiden letzten. Er
beruht auf einer neuartigen Definition der Eulerschen Charakteristik als additives
Funktional auf dem (die Polytope enthaltenden) «Konvexring». Die Arbeiten von
Hadwiger sind von verschiedenen Autoren weitergeführt und verallgemeinert
worden, vor allem von Groemer [5-9], Klee [17] und Lenz [18], vgl. auch [20]. Im
folgenden soll ein, wie wir glauben, besonders einfacher und anschaulicher Beweis
des Satzes von Euler-Schläfli vorgestellt werden. Er beruht auf einer ebenfalls auf
Hadwiger [14] zurückgehenden Ausdehnung des (jetzt auf Polyeder beschränkten)
Definitionsbereichs der Eulerschen Charakteristik, derart, dass dieser auch die
relativ offenen konvexen Polyeder (im folgenden als Zellen bezeichnet) umfasst.
Dadurch wird es möglich, den Satz direkt aus gewissen Zellenzerlegungen eines

Polytops abzulesen.
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2. Grundbegriffe

2.1 Ebenen und Halbräume

Ist f(x)=Yi=*oak£k + ß euie nichtkonstante lineare Funktion auf dem rf-dimen-
sionalen Raum Rä9 so bezeichnen wir:
— mit F° die Hyperebene/-1 (0),
— mit F+, F~ die offenen Halbräume/-x (R+),/-x (- R+)

(woR+ UeR:A>0}),
— mit clos F+ F+ u F° cpl F"

und clos F" F~ u F° cpl F+
die zugehörigen abgeschlossenen Halbräume.

Als Ebene bezeichnen wir jeden nichtleeren Durchschnitt von Hyperebenen. Rd

selber ist eine Ebene, ebenso jede aus einem einzigen Punkt bestehende Menge.

2.2 Zellen

Unter einer Zelle verstehen wir einen nichtleeren Durchschnitt einer Ebene M mit
endhch vielen offenen Halbräumen F+:

C=MnnF.+ M (2)^Qf/^.
Jede Ebene ist eine Zelle, insbesondere jede aus einem einzigen Punkt x e Rd
bestehende Menge.
Die Zellen sind konvexe Mengen. Da aus (2) folgt

affC=M (3)

(vgl. [19], Satz 7; 4), ist jede Zelle eine offene Teilmenge ihrer affinen Hülle, weshalb
wir sie als relativ offen bezeichnen.

2.3 Polyeder

Als Polyeder bezeichnen wir jede Vereinigung von endlich vielen Zellen. Leicht
einzusehen ist, dass jedes Polyeder sogar als Vereinigung von endlich vielen
paarweise disjunkten Zellen darstellbar ist. Eine solche Partition nennen wir Zellenzerlegung

des Polyeders.
Die Zellen selber sind natürlich Polyeder, und zwar relativ offene und konvexe.
Es lässt sich zeigen, dass umgekehrt auch jedes relativ offene und konvexe Polyeder
eine Zelle ist (vgl. [19], Satz 7; 3).
Nebenbei sei hier ein Resultat von H. Bieri [1] erwähnt: Eine Teilmenge QczRd ist

genau dann ein Polyeder, wenn Q und cplß Vereinigungen von endlich vielen
relativ offenen Mengen sind.
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Eine wichtige Klasse von Polyedern wird durch die polyedrischen Mengen (vgl. [10],
S.26) gebildet, d.h. durch die nichtleeren Durchschnitte einer Ebene _V und endlich
vielen abgeschlossenen Halbräumen:

P Nn f] closG+ (4)

Ohne Einschränkung der Allgemeinheit (vgl. [19], 7; (4)) nehmen wir im folgenden
an:

P4=G° (k=l,...,s). (5)

Dass die polyedrischen Mengen Polyeder sind, folgt aus clos G£ GkvG£. Daraus
ergibt sich nämlich, dass die durch (4) dargestellte polyedrische Menge P die
(disjunkte) Vereinigung aller nichtleeren unter den Mengen

S=Nn fl G£*, wo ok= +oder=0(k= l,...,s) (6)
k=X

ist. Diese Mengen sind Zellen. Sie sind im übrigen die (als relativ offen aufge-
fassten) Seiten des Polyeders P (vgl. [19], Satz 7; 8). Ist 8 die Menge aller Seiten der
polyedrischen Menge P, so ist also

P=\J S (7)
SeB

eine Zellenzerlegung von P.
Für die durch (6) dargestellte Seite SeS ist nach (3)

äffS=Nnf]G°k. (8)

Wir setzen

dim S:= dim äffS. (9)

Offensichtlich ist dimS^ dimiV für jede Seite S von P. Es gibt genau eine Seite S0,
deren Dimension=dim _V ist, nämlich der relativ offene Kern

S0=relintF=_Vn f] G+ (10)
&= l

([19], Satz 7; 2).
Die polyedrischen Mengen sind offensichtlich abgeschlossene konvexe Polyeder.
Man kann zeigen, dass umgekehrt jedes abgeschlossene konvexe Polyeder eine
polyedrische Menge ist ([19], Satz 7; 2).
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Jede beschränkte polyedrische Menge ist die konvexe Hülle gewisser endlich vieler
Punkte (seiner Ecken), also (vgl. [10], S. 31) ein Polytop. Umgekehrt ist jedes Polytop
eine beschränkte polyedrische Menge (vgl. [19], Sätze 7; 2-7; 18-7; 25).
Wir können also den Satz von Euler-Schläfli wie folgt formulieren:

Fürjede beschränkte polyedrische Menge gilt (1). Hl)

3. Die Eulersche Charakteristik

Die Eulersche Charakteristik x(B) eines Polyeders P kann wie folgt definiert
werden:

X(</>)-0, (12.1)
X (C)=(- l)dimC, wenn C eine Zelle ist, (12.2)

X(P)= i X(Ck)9 wennP= \J Ck (12.3)
*=i *-i

eine Zellenzerlegung von P ist.
Für den einfachen Beweis (insbesondere dafür, dass das so definierte X(P) von der
Zellenzerlegung in (12.3) unabhängig ist) vergleiche man [21].
Ist P eine polyedrische Menge, so wird also nach (7)

x(P)= y *(s)- Y (- i)dimS= t (- iyst9 (B)
SeS Se& i-0

wo s, die Anzahl der Seiten von P mit dim S= i bedeutet.

4. Beweis des Satzes von Euler-Schläfli

Nach (11) und (13) bleibt zu zeigen, dass

*(/>)-1 (14)

ist für jede beschränkte polyedrische Menge P.
Diesen Nachweis erbringen wir durch Betrachtung einer zweiten Zellenzerlegung
von P9 die aus (7) durch eine geeignete Unterteilung von S0«relintP entsteht.
Dazu wählen wir ein zerelintP. Sei S0 die Menge aller Seiten S^relintP von P,
d.h. (vgl. (10)) mit dim5<dim5'0. Jeder Seite SeS0 ordnen wir die relativ offene
Pyramide 5# «mit Spitze z und Grundfläche S» zu, genauer:

S*~\yeRd:y**z+k(x-z) mit xeS,0<A<l}. (15)
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Ist z.B. S eine ldimensionale Seite von P (also eine offene Strecke), so ist S* ein
offenes Dreieck in der durch S und z erzeugten Ebene. Ist S eine Odimensionale
Seite (eine Ecke), so ist S* eine offene Strecke auf der durch S und z erzeugten
Geraden. Die Figur veranschaulicht für den Fall dimP=2 die Mengen Sx und S2

zu zwei ausgewählten Seiten Sx und S2 der Dimensionen 0 und 1.

Anschaulich einleuchtend und leicht zu beweisen ist nun:

Für jede Seite S e @0 ist S* eine Zelle und dim S* dim S+l. (16.1)
Die Zellen Se ®0, S* (mit Se ©0) und \z\ bilden eine Zellenzerlegung von P.

(16.2)

Wir verzichten auf den ganz und gar routinemässigen Beweis.

Aus (16) folgt nun mit (12):

X(P) X(\z}) + Y (X(S) + X(S*))=X(\z})=l, (17)

womit der Satz (vgl. (14)) bewiesen ist.
Walter Nef, Bern
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Eine Ramsey-Zahl für fünf Knoten und acht Kanten

Als klassische Ramsey-Zahl r (p) bezeichnet man die kleinste natürliche Zahl
n9 für die bei jeder 2-Färbung der Kanten des vollständigen Graphen mit n

Knoten, Kn9 ein einfarbiger Teilgraph Kp vorkommt. Es sind r(3) 6 und
r(4) 18 wohlbekannt. Jedoch schon für p=5 weiß man bisher nur
42_ür(5)_l_55.
In der Literatur sind verschiedene Variationen der Ramsey-Zahlen zu finden
[2,4]. Hier sollen eine andere Abwandlung und erste Ergebnisse für p 5

vorgestellt werden. Ähnliche Verallgemeinerungen wurden schon in [1, 3]
behandelt.
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