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Ein einfacher Beweis des Satzes von Euler-Schlifli

1. Einleitung

In den Jahren 1750 und 1751 hat Leonhard Euler [3, 4] den berithmten Satz ver-
offentlicht, dass in jedem konvexen Polyeder des 3dimensionalen Raumes die
Summe der Ecken- und der Flichenzahl um 2 grosser ist als die Kantenzahl.

Rund 100 Jahre spiter hat Ludwig Schlifli [22] den Satz auf Polyeder im d-dimen-
sionalen Raum ausgedehnt. In der Terminologie von [10] (vgl. den folgenden
Abschnitt 2.3) kann der Satz von Euler-Schlifli so formuliert werden:

Fiir jedes Polytop P R? gilt

d
2 (= 1s=1, M

wo s; die Anzahl der i-dimensionalen Seiten von P bedeutet.

Dabei wird dem Polytop P, sofern es ein eigentliches ist (d. h. nicht in einer Hyper-
ebene enthalten), genau eine d-dimensionale Seite zugeschrieben, so dass s;=1 zu
setzen ist.

Schliflis Beweis ist allerdings erst in neuerer Zeit von Bruggesser und Mani [2]
liickenlos durchgefithrt worden, nachdem der Satz bekanntlich schon frither im
Rahmen der algebraischen Topologie auf ganz anderem Wege bewiesen worden
war.

Einen neuen Zugang zum Satz und weiteren Problemen hat H. Hadwiger mit den
Arbeiten [11] bis [16] eroffnet, zusammen mit P. Mani in den beiden letzten. Er
beruht auf einer neuartigen Definition der Eulerschen Charakteristik als additives
Funktional auf dem (die Polytope enthaltenden) «Konvexring». Die Arbeiten von
Hadwiger sind von verschiedenen Autoren weitergefiihrt und verallgemeinert
worden, vor allem von Groemer [5-9], Klee [17] und Lenz [18], vgl. auch [20]. Im
folgenden soll ein, wie wir glauben, besonders einfacher und anschaulicher Beweis
des Satzes von Euler-Schlifli vorgestellt werden. Er beruht auf einer ebenfalls auf
Hadwiger [14] zuriickgehenden Ausdehnung des (jetzt auf Polyeder beschrinkten)
Definitionsbereichs der Eulerschen Charakteristik, derart, dass dieser auch die
relativ offenen konvexen Polyeder (im folgenden als Zellen bezeichnet) umfasst.
Dadurch wird es moglich, den Satz direkt aus gewissen Zellenzerlegungen eines
Polytops abzulesen.
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2. Grundbegriffe
2.1 Ebenen und Halbrdume

Ist f(x)=2¢_oar &+ B eine nichtkonstante lineare Funktion auf dem d-dimen-
sionalen Raum R4, so bezeichnen wir:
— mit F? die Hyperebene f~1(0),
— mit F*, F~ die offenen Halbrdume f~ ! (R*), f~1(—R*)
(woR*t={]eR: 1>0}),
— mitclosF*=F+*UF=cplF~
und clos F-=F~ UF’=cpl F*
die zugehorigen abgeschlossenen Halbraume.
Als Ebene bezeichnen wir jeden nichtleeren Durchschnitt von Hyperebenen. R?
selber ist eine Ebene, ebenso jede aus einem einzigen Punkt bestehende Menge.

2.2 Zellen

Unter einer Zelle verstehen wir einen nichtleeren Durchschnitt einer Ebene M mit
endlich vielen offenen Halbraumen f}* :

C=Mnjﬂ Fr#¢. @)

Jede Ebene ist eine Zelle, insbesondere jede aus einem einzigen Punkt x e R? be-
stehende Menge.
Die Zellen sind konvexe Mengen. Da aus (2) folgt

affC=M 3)

(vgl. [19], Satz 7; 4), ist jede Zelle eine offene Teilmenge ihrer affinen Hiille, weshalb
wir sie als relativ offen bezeichnen.

2.3 Polyeder

Als Polyeder bezeichnen wir jede Vereinigung von endlich vielen Zellen. Leicht
einzusehen ist, dass jedes Polyeder sogar als Vereinigung von endlich vielen paar-
weise disjunkten Zellen darstellbar ist. Eine solche Partition nennen wir Zellenzer-
legung des Polyeders.

Die Zellen selber sind natiirlich Polyeder, und zwar relativ offene und konvexe.
Es lasst sich zeigen, dass umgekehrt auch jedes relativ offene und konvexe Polyeder
eine Zelle ist (vgl. [19], Satz 7; 3).

Nebenbei sei hier ein Resultat von H. Bieri [1] erwdhnt: Eine Teilmenge Q = R¥ ist
genau dann ein Polyeder, wenn Q und cplQ Vereinigungen von endlich vielen
relativ offenen Mengen sind.
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Eine wichtige Klasse von Polyedern wird durch die polyedrischen Mengen (vgl. [10],
S.26) gebildet, d.h. durch die nichtleeren Durchschnitte einer Ebene N und endlich
vielen abgeschlossenen Halbraumen:

5
P=Nn (] closGy. 4)
k=1
Ohne Einschrinkung der Allgemeinheit (vgl. [19], 7; (4)) nehmen wir im folgenden
an:
PEGY (k=1,...,5). %)

Dass die polyedrischen Mengen Polyeder sind, folgt aus clos G;" = G}u G;*. Daraus

ergibt sich ndmlich, dass die durch (4) dargestellte polyedrische Menge P die
(disjunkte) Vereinigung aller nichtleeren unter den Mengen

S
S=Nn([)Gg, wo oy=+oder=0(k=1,...,5) (6)
k=1

ist. Diese Mengen sind Zellen. Sie sind im iibrigen die (als relativ offen aufge-
fassten) Seiten des Polyeders P (vgl. [19], Satz 7; 8). Ist & die Menge aller Seiten der
polyedrischen Menge P, so ist also

p= s (7
Se&

eine Zellenzerlegung von P.
Fiir die durch (6) dargestellte Seite S e & ist nach (3)

affS=Nn [ GY. @®
Ok=0
Wir setzen
dim S:=dim aff s. 9)

Offensichtlich ist dim S< dim N fiir jede Seite S von P. Es gibt genau eine Seite S,
deren Dimension= dim N ist, nimlich der relativ offene Kern

So=relintP=Nn () G} (10)
k=1

([19], Satz 7; 2).

Die polyedrischen Mengen sind offensichtlich abgeschlossene konvexe Polyeder.
Man kann zeigen, dass umgekehrt jedes abgeschlossene konvexe Polyeder eine
polyedrische Menge ist ([19], Satz 7; 2).
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Jede beschrinkte polyedrische Menge ist die konvexe Hiille gewisser endlich vieler
Punkte (seiner Ecken), also (vgl. [10], S.31) ein Polytop. Umgekehrt ist jedes Polytop
eine beschrinkte polyedrische Menge (vgl. [19], Sitze 7; 2-7; 18-7; 25).

Wir konnen also den Satz von Euler-Schlifli wie folgt formulieren:

Fiir jede beschrdnkte polyedrische Menge gilt (1). (11)

3. Die Eulersche Charakteristik

Die Eulersche Charakteristik y (P) eines Polyeders P kann wie folgt definiert
werden:

X@)=0, (12.1)
X(C)=(—1)4mC  wenn C eine Zelle ist, (12.2)
X(P)=k$lx(Ck), wenn P=kL:j1 Cy (12.3)

eine Zellenzerlegung von P ist.

Fiir den einfachen Beweis (insbesondere dafiir, dass das so definierte X (P) von der
Zellenzerlegung in (12.3) unabhingig ist) vergleiche man [21].

Ist P eine polyedrische Menge, so wird also nach (7)

X(P)=2 X(S)= 2, (—1)dimS= io(- s, (13)

Se& Se8

wo 5; die Anzahl der Seiten von P mit dim §=i bedeutet.

4. Beweis des Satzes von Euler-Schliifli
Nach (11) und (13) bleibt zu zeigen, dass
X(P)=1 (14)

ist fiir jede beschrénkte polyedrische Menge P.

Diesen Nachweis erbringen wir durch Betrachtung einer zweiten Zellenzerlegung
von P, die aus (7) durch eine geeignete Unterteilung von Sy=relintP entsteht.
Dazu wihlen wir ein zerelint P. Sei &, die Menge aller Seiten S# relint P von P,
d.h. (vgl. (10)) mit dim S <dim S,. Jeder Seite Se &, ordnen wir die relativ offene
Pyramide S* «mit Spitze z und Grundfliche S» zu, genauer:

S*=/yeR%: y=z+A(x—2z) mit xeS,0<i<l}. (15)
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Ist z.B. S eine 1dimensionale Seite von P (also eine offene Strecke), so ist S* ein
offenes Dreieck in der durch S und z erzeugten Ebene. Ist S eine Odimensionale
Seite (eine Ecke), so ist S* eine offene Strecke auf der durch S und z erzeugten
Geraden. Die Figur veranschaulicht fir den Fall dim P=2 die Mengen S} und S$%
zu zwei ausgewihlten Seiten S| und S, der Dimensionen O und 1.

Anschaulich einleuchtend und leicht zu beweisen ist nun:

Fiir jede Seite S € S ist $* eine Zelle und dim S*=dim S+ 1. (16.1)
Die Zellen S € &, $* (mit S € &) und {z} bilden eine Zellenzerlegung von P.
(16.2)

Wir verzichten auf den ganz und gar routinemissigen Beweis.
Aus (16) folgt nun mit (12):

X(P)y=x(z)+ 2, (X(S)+X(S*) =x(izh=1, (17)

SESO

womit der Satz (vgl. (14)) bewiesen ist.
Walter Nef, Bern
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Eine Ramsey-Zahl fiir fiinf Knoten und acht Kanten

Als klassische Ramsey-Zahl r (p) bezeichnet man die kleinste natiirliche Zahl
n, fiir die bei jeder 2-Fiarbung der Kanten des vollstindigen Graphen mit »
Knoten, K,, ein einfarbiger Teilgraph K, vorkommt. Es sind r(3) =6 und
r(4) =18 wohlbekannt. Jedoch schon fiir p=5 weiB man bisher nur
42 =r(5) = 55.

In der Literatur sind verschiedene Variationen der Ramsey-Zahlen zu finden
[2, 4]. Hier sollen eine andere Abwandlung und erste Ergebnisse fiir p=5
vorgestellt werden. Ahnliche Verallgemeinerungen wurden schon in [1, 3] be-
handelt.
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