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Zerlegung von regulären 2/t-Ecken

Im Rahmen einer experimentellen Untersuchung über Tragwerke von Sonnenspiegeln

entdeckten wir eine interessante Eigenschaft regulärer 2 «-Ecke:

Figur 1

Ein reguläres 2 n-Eck kann in f 1 Rhomben gleicher Seitenlänge zerlegt werden

(Fig.l). K2J
Dieses Rhomben-Puzzle streift verschiedene Gebiete des Elementarunterrichts:
Symmetrien, Kombinatorik, Flächenzerlegung, arithmetische Folgen.
Zum Beweis der Zerlegungseigenschaft denken wir uns ein ebenes Gelenkmodell
gemäss Figur 2 (Figur für « 5) mit Gelenken in den Punkten AXJ und gleich langen
Stangen dazwischen. Im Rhombus_4/>;_4/+lj_4/+2t/+i^/+iv/+i (Fig-3) führen wir die
Winkel aXJ und ßXJ ein. Wir deformieren nun das Gelenkmodell so, dass

av={l~~)n und ^J=~n'
Dies ist widerspruchsfrei möglich, weil sich für einen innern Punkt AXJ die Winkelsumme

alJ + ßl-Xj + ax_2j_x+ßx_Xj_x

i-l fm i-2'(l- —)te+- n+ [l-1- )n+l- ^ 2
V « / « \ «/ «

ergibt.
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Figur 3
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In den Randpunkten erhält man folgende Innenwinkel:
a) Der Randpunkt Axx hat den Innenwinkel

aM=(l-±)„.

b) In den Randpunkten_4.x, ie \2,...,«- 1} erhält man den Innenwinkel

^+A-u-(i-7)«+v-«-(i-7>.
Analog verfährt man für die Randpunkte,4 M, ie\2,...,n—l}..
c) In den Randpunkten^„j undAnn erhält man die Innenwinkel

ßn-XA^ßn-X^-X^ W (l )*•
« \ n /

d) Wegen

^-(!-7)"-°
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fallen die Punkte An+x2,...,An+Xrx zusammen. In diesem Punkt erhält man den
Innenwinkel

(n-l)an_Xj (n-l)(l-^y=(l-^n.
Das deformierte Gelenkmodell bildet also ein regelmässiges 2 «-Eck.

Wir danken Herrn H Walser (Frauenfeld) für die grosszügige Mithilfe bei der Überarbeitung des

Aufsatzes, die originelle Idee des Gelenkmodells stammt von ihm

H. Pfeiffer und A. Romer, Minusio
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Ein Zerlegungssatz für punktsymmetrische konvexe Vielecke

Ein punktsymmetrisches Vieleck hat eine gerade Eckenzahl. Wir bezeichnen die
2«-Ecken («^2) mit Ax,...,An,Bx,...,Bn und beweisen mit Induktion nach « folgenden

Satz:

Ein punktsymmetrisches konvexes 2 n-Eck ist in Parallelogramme zerlegbar.

I. Für « 2 ist der Satz trivial.
II. Der Satz sei wahr für (« — 1).

_^
Wir verschieben nun die Ecken Bx,...,Bn um den Vektor ax BnAx und erhalten
mit den Bildpunkten B[,...,B'n eine Zerlegung des 2«-Eckes in («—1)
Parallelogramme BkBk+xB'k+xB'k, ke{l,...,«-1} und ein 2(« — 1)-Eck Ax,...,An

B[,...,B'n=Ax. Dieses 2(«-l)-Eck ist als Durchschnitt der beiden 2«-Ecke
Ax,...,An,Bx,...,Bn und A[,...,A'n,B'x,...,B'n ebenfalls konvex; ferner hat es ein
Symmetriezentrum, namhch das um ax/2 verschobene Symmetriezentrum des

ursprünglichen 2 «-Eckes.

Das 2(«—1)-Eck ist also nach Induktionsvoraussetzung in f
J Parallelogramme

zerlegbar. Damit ist das 2 «-Eck in («-!)+( )=(o) Paraiiei0"

gramme zerlegbar.

Zusätze

1. Esseiax BnAx,a2=AxA2,...,ak=Ak-.xAk,...,an=An_xAn.

Die (— Parallelogramme der Zerlegung sind diejenigen Parallelogramme, welche

durch je zwei Vektoren aus {ax,...,an} aufgespannt werden.
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