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Elementarmathematik und Didaktik

Zerlegung von reguliiren 2 n-Ecken

Im Rahmen einer experimentellen Untersuchung iiber Tragwerke von Sonnen-
spiegeln entdeckten wir eine interessante Eigenschaft regulirer 2 n-Ecke:
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Figur 1

Ein regulires 2n-Eck kann in ('21 ) Rhomben gleicher Seitenlinge zerlegt werden
(Fig. 1).
Dieses Rhomben-Puzzle streift verschiedene Gebiete des Elementarunterrichts:
Symmetrien, Kombinatorik, Flachenzerlegung, arithmetische Folgen.
Zum Beweis der Zerlegungseigenschaft denken wir uns ein ebenes Gelenkmodell
gemiss Figur 2 (Figur fir n=>5) mit Gelenken in den Punkten 4,; und gleich langen
Stangen dazwischen. Im RhombusA;;4;,1;4;+2j+14i+1,+1 (Fig.3) fihren wir die
Winkel a;; und §;; ein. Wir deformieren nun das Gelenkmodell so, dass

i

a;;= (1_%)7[ und ﬁ’x/=~’—{n

Dies ist widerspruchsfrei moglich, weil sich fiir einen innern Punkt A;; die Winkel-
summe

aijtBi—rjtai_gj—1+Bi-1j-1

, 1 - 1
= (1———'—)n+———l m+ (1-—-——' )n+l———n=2n
n n n n

ergibt.
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Ai2,j4

Figur 3

In den Randpunkten erhilt man folgende Innenwinkel:
a) Der Randpunkt 4, hat den Innenwinkel

1
a],]= (1'— _‘)7[.
n

b) In den Randpunktend;,,ie!2,...,n— 1} erhilt man den Innenwinkel

a“+ﬁ,-__u= (1" ‘:7)7[‘" l——-n= (1"‘ ’“‘)7[.

n n

Analog verfihrt man fir die Randpunkted, ;,ie {2,...,n—1}.,
¢) In den Randpunkten 4, und 4, , erhilt man die Innenwinkel

n—1 1
ﬂn—1,1=ﬁn—1,n—1= n= (1"'*)71-

n n

d) Wegen
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fallen die Punkte 4, ,,,...,4,,1, zusammen. In diesem Punkt erhilt man den
Innenwinkel

(n—-l)a,,_ld-=(n-—1)(l-— ";l )n= (1——]-)715.

n

Das deformierte Gelenkmodell bildet also ein regelmissiges 2 n-Eck.

Wir danken Herrn H. Walser (Frauenfeld) fiir die grossziigige Mithilfe bei der Uberarbeitung des
Aufsatzes; die originelle Idee des Gelenkmodells stammt von ihm.

H. Pfeiffer und A. Romer, Minusio
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Ein Zerlegungssatz fiir punktsymmetrische konvexe Vielecke

Ein punktsymmetrisches Vieleck hat eine gerade Eckenzahl. Wir bezeichnen die
2n-Ecken (n=2) mit A4,,...,4,, B, ..., B, und beweisen mit Induktion nach » folgen-
den Satz:

n
Ein punktsymmetrisches konvexes 2 n-Eck ist in (

5 ) Parallelogramme zerlegbar.

I. Fiir n=2 ist der Satz trivial.

II. Der Satz sei wahr fiir (n—1). L

Wir verschieben nun die Ecken Bj,...,B, um den Vektor a,=B,A4, und erhalten
mit den Bildpunkten Bj,...,B; eine Zerlegung des 2n-Eckes in (n—1) Pa-
rallelogramme BBy, B, 1B}, ke!l,...n—1} und ein 2(n—1)-Eck 4,,...,4,
=Bj},...,B,=A,. Dieses 2(n—1)-Eck ist als Durchschnitt der beiden 2n-Ecke
Ay,..., Ay, By,...,B, und Aj,...,A}, Byi,..., B, ebenfalls konvex; ferner hat es ein
Symmetriezentrum, namlich das um a,/2 verschobene Symmetriezentrum des
urspriinglichen 2 n-Eckes.

Das 2(n—1)-Eck ist also nach Induktionsvoraussetzung in (n ) Parallelo-

-1
gramme zerlegbar. Damit ist das 2n-Eck in (n—1)+ (n 5 )= (;) Parallelo-
gramme zerlegbar.

Zusiitze

— e

1. Es seia|=B,,A s a2=A1A2, ...,ak=Ak_'1Ak, weny a,,=A,,_|A,,.

Die (—;—) Parallelogramme der Zerlegung sind diejenigen Parallelogramme, welche

durch je zwei Vektoren aus {q,,...,a,} aufgespannt werden.
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