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Über die konvexe Hülle von Zufallspunkten in Eibereichen

Es bezeichne V$ (K) den Erwartungswert des Volumens der konvexen Hülle von «

Punkten, die zufällig nach der Gleichverteilung und unabhängig voneinander in
einem (eigentlichen) ^-dimensionalen konvexen Körper K gewählt werden.
Explizite Werte von V^(K) für d=2 und beliebiges « sind nur in den Fällen
bekannt, dass K ein Polygon [1] oder eine Ellipse [2] ist. Beispielsweise gilt:

# (Flächeninhalt 1) « 3 n-4 H 5 * 6

Dreieck J_
12

1

6

43

180

3

10

0,08333 0,16667 0,23889 0,30000

Parallelogramm
11

144 ii72

79

360

199

720

0,07639 0,15278 0,21944 0,27639

Reguläres Sechseck
289

3888

289

1944

149347

699840
62647

233280
0,07433 0,14866 0,21340 0,26855

Kreis oder Ellipse
35

48 t.2

35

24 TT2

175 23023
72tt2 6912tü4

175 23023

48 ti2 2304t.4

0,07388 0,14776 0,21207 0,26682

Für d=3 und beliebiges « kennt man V^(K) nur für die Ellipsoide [2]; die ersten
nichttrivialen Werte sind:

K (Volumen 1) n 4 n 5 n 6 H=7

Kugel oder Elhpsoid
9

715

0,01259

9

286

0,03147

3105

58786

0,05282

531

7106

0,07473

In höheren Dimensionen ist bisher anscheinend nur der Spezialfall n d+l für die
Ellipsoide gelöst worden:

*r»<»-M*)'{tn) V(K),

wobei V(K) das Volumen des Ellipsoids K bezeichnet. Für gerades d ist also

V%-V(K)/V(K) rational und für ungerades d wegen (m- l/2)\ Vn (2m)\/22mm\
ein rationales Vielfaches von n~^d~ x\ Dieses schöne Resultat stammt von Kingman
[7]. Weiteres hat Groemer [3, 4] nachgewiesen, dass Vfi (K) bei festem d und festem

« genau dann sein Minimum unter allen konvexen Körpern K gleichen Volumens
annimmt, wenn K ein Elhpsoid ist. Einen Überblick über verwandte Resultate
findet man bei Gruber [5], Kendall und Moran [6], Klee [8] und Reed [9].
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In der vorhegenden Arbeit wird gezeigt, dass für beliebige ebene konvexe Körper K

V$\K)=2Vf(K)

und für behebige dreidimensionale konvexe Körper K

*?>(*)-{¦ Vf)(K)

erfüllt ist.

Satz 1. Es sei K ein ebener konvexer Körper. Dann gilt:

V^(K)=2V^(K).
Beweis: O.B.d.A. sei der Flächeninhalt von K gleich 1. Es bezeichne E{n2\x(K) den
Erwartungswert der Eckpunktanzahl der konvexen Hülle Hn+X von n+l in K
zufällig und unabhängig voneinander gewählten Punkten. Die Wahrscheinlichkeit,
dass einer dieser Punkte Eckpunkt von Hn+ x ist, stimmt mit der Wahrscheinlichkeit
überein, dass dieser Punkt nicht in der konvexen Hülle Hn der übrigen « Punkte
hegt, was mit Wahrscheinhchkeit 1 - JA2) (K) der Fall ist. Da alle Punkte
unabhängig und identisch verteilt sind, folgt E(2lx(K)=(n+l)(l-Vn2)(K)) beziehungsweise

VQ)(K)=\--^-EVll(K).
n+ l

Die Anzahl der Eckpunkte von Hn+X ist zugleich die Anzahl der Seiten von Hn+X.
Die Verbindungsstrecke PXP2 zweier Zufallspunkte Px und _P2 ist Seite von Hn+X,
wenn alle übrigen «—1 Punkte auf ein und derselben Seite der Gerade g(Px,P2)
durch Px und P2 liegen, was mit Wahrscheinlichkeit vn~x + (l—V)n~x der Fall ist,
wobei V=V(PX,P2) den durch g(Px,P2) abgetrennten kleineren Flächeninhalt
bezeichnet. (Die Wahrscheinhchkeit, dass drei Punkte auf einer Gerade liegen, ist

null.) Da es f Möglichkeiten gibt, aus n+ 1 Punkten zwei auszuwählen, und

die Punkte unabhängig und identisch verteilt sind, folgt

*& i (*>- (" 2l) n i^""'+o - w~ 'i^i dp2 >

jf)(_T)-l--?-JJ[P"-I + (l-P)--1]dPl<ö,2.
L KK
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Aus dieser Darstellung erhalten wir

V$)(K)=l-2\\[p + (l-V?]dPxdP2
KK

l-3M\v2 + (l-V)2-\]dPldP2
KK*- 3 J

2(l-yj|J[J* + (l-P)2]„/V/_)

-2Ff)(__).

Satz 2. Es sei K ein dreidimensionaler konvexer Körper. Dann gilt:

Beweis: Wir nehmen wieder o.B.d.A. an, dass das Volumen von K gleich 1 ist. Es

bezeichne E£lx(K) den Erwartungswert der Eckpunktanzahl und F^lx(K) den

Erwartungswert der Facettenanzahl der konvexen Hülle Hn+X von n+l in K
zufallig und unabhängig voneinander gewählten Punkten. Ähnlich wie im Beweis

von Satz 1 zeigt man

n3)w=i--h-£&,(*),
«+1

-$,(-0« ("tMjn [Pn-2+(i-vr-2]dPldp2dp3>
\ J /KKK

wobei V= V(PX,P2,P3) das Volumen des durch die Ebene durch PX,P2 und _?3 von
K abgetrennten kleineren Teils bezeichnet. Da Hn+ x fast sicher simplizial ist, beträgt
die Kantenanzahl fast sicher das 3/2-fache der Facettenanzahl. Aus der Eulerschen
Polyederformel folgt daher

£ai(Ä)-yf?i1(Ä)+2,

und wir erhalten

mK)=i-^(\m^H2)

«+i iz KKK
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Aus dieser Darstellung ergibt sich

2 5
*¥HK)= T - T \ J | [P + (1 - Pftrfp, dP2dP3 3

2_ 5

3

KKK
3

yJJj[^+(i-^)2-|l^,^2^3z KKKL •*J

y(y -JH [**+<i- P)2]^,^.^)
KKK '

}n3)w.

C. Buchta, Institut für Analysis, Technische Mathematik und
Versicherungsmathematik, Technische Universität Wien

LITERATURVERZEICHNIS

1 C. Buchta: Zufallspolygone in konvexen Vielecken. J. reine angew. Math., im Druck.
2 C. Buchta: Das Volumen von Zufallspolyedern im Elhpsoid. Eingereicht.
3 H. Groemer: On some mean values associated with a randomly selected simplex in a convex set.

Pacific J. Math. 45, 525-533 (1973).
4 H. Groemer: On the mean value of the volume of a random polytope in a convex set. Areh. Math. 25,

86-90(1974).
5 P.M. Gruher: Approximation of convex bodies. In: P.M. Gruber, J.M. Wills, ed.: Convexity and its

apphcations. Birkhauser, Basel 1983.
6 M.G. Kendall und P.A.P. Moran: Geometrical probabihty. Griffin, London 1963.

7 J.F.C. Kingman: Random secants of a convex body. J.Appl. Prob. 6, 660-672 (1969).
8 V. Klee: What is the expected volume of a simplex whose vertices are chosen at random from a

given convex body? Am. Math. Monthly 76, 286-288 (1969).
9 W. J. Reed: Random points in a simplex. Pacific J. Math. 54, 183-198 (1974).

© 1983 Birkhauser Verlag, Basel 0013-6018/83/060153-04$1.50+ 0.20/0


	Über die konvexe Hülle von Zufallspunkten in Eibereichen

