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Uber die konvexe Hiille von Zufallspunkten in Eibereichen

Es bezeichne V¥ (K) den Erwartungswert des Volumens der konvexen Hiille von n
Punkten, die zufillig nach der Gleichverteilung und unabhingig voneinander in
einem (eigentlichen) d-dimensionalen konvexen Kérper K gewéhlt werden.
Explizite Werte von V@ (K) fiir d=2 und beliebiges n sind nur in den Fillen
bekannt, dass K ein Polygon [1] oder eine Ellipse [2] ist. Beispielsweise gilt:

K (Flicheninhalt 1) n=3 n=4 n=>5 n=6
Dreieck 1 1 43 3
12 6 180 10
=0,08333 =0,16667 =0,23889 =0,30000
Parallelogramm i 1 I3 13
144 72 360 720
~0,07639 =0,15278 =0,21944 =0,27639
) 289 289 149347 62647
Regultires Sechseck 3888 1944 699840 233280
=0,07433 =0,14866 =0,21340 = 0,26855
TP 35 35 175 23023 175 23023
P 4872 242 722 69127 4872 23047
=0,07388 =0,14776 =0,21207 =0,26682

Fiir d=3 und beliebiges n kennt man V¥ (K) nur fiir die Ellipsoide [2]; die ersten
nichttrivialen Werte sind:

K (Volumen 1) n=4 n=>5 n=6 n=7
. 9 9 3105 531
Kugel oder Ellipsoid 715 786 58786 7106
=0,01259 =0,03147 =0,05282 =0,07473

In hoheren Dimensionen ist bisher anscheinend nur der Spezialfall n=d+ 1 fiir die
Ellipsoide gelost worden:

Vi = ‘?’1——1‘( dc/iz )d( dzdjz' )—' V(K),

wobei V(K) das Volumen des Ellipsoids K bezeichnet. Fiir gerades d ist also
V@-1(K)/V (K) rational und fir ungerades d wegen (m—1/2)!=V'n (2m)! /22" m!
ein rationales Vielfaches von z~@-1, Dieses schone Resultat stammt von Kingman
[7]. Weiteres hat Groemer [3, 4] nachgewiesen, dass V¥ (K) bei festem d und festem
n genau dann sein Minimum unter allen konvexen Korpern K gleichen Volumens
annimmt, wenn K ein Ellipsoid ist. Einen Uberblick iiber verwandte Resultate
findet man bei Gruber [5], Kendall und Moran [6], Kiee [8] und Reed [9].
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In der vorliegenden Arbeit wird gezeigt, dass fiir beliebige ebene konvexe Korper K

VP K)=2 7P (K)

und fir beliebige dreidimensionale konvexe Korper K
3) > 3)
VO K= - V9 (K)

erfullt ist.

Satz 1. Es sei K ein ebener konvexer Korper. Dann gilt:

VP (0=2VP (K).

Beweis: O.B.d.A. sei der Fliacheninhalt von K gleich 1. Es bezeichne E),(K) den
Erwartungswert der Eckpunktanzahl der konvexen Hiille H,,, von n+1 in K
zufillig und unabhingig voneinander gewéhlten Punkten. Die Wahrscheinlichkeit,
dass einer dieser Punkte Eckpunkt von H,, , , ist, stimmt mit der Wahrscheinlichkeit
iiberein, dass dieser Punkt nicht in der konvexen Hiille H, der iibrigen n Punkte
liegt, was mit Wahrscheinlichkeit 1— V) (K) der Fall ist. Da alle Punkte unab-
hingig und identisch verteilt sind, folgt E?) , (K)=(n+1)(1— VP (K)) beziehungs-
weise

1
Vﬁz’(K)=1——nT‘l‘Eﬁzln(K)-

Die Anzahl der Eckpunkte von H, , , ist zugleich die Anzahl der Seiten von H,, ;.
Die Verbindungsstrecke P, P, zweier Zufallspunkte P, und P, ist Seite von H,, |,
wenn alle iibrigen n— 1 Punkte auf ein und derselben Seite der Gerade g (P, P;)
durch P, und P, liegen, was mit Wahrscheinlichkeit 7"~ !+ (1— Py*~! der Fall ist,
wobei V=V (P,,P,) den durch g(P,,P,) abgetrennten kleineren Flicheninhalt
bezeichnet. (Die Wahrscheinlichkeit, dass drei Punkte auf einer Gerade liegen, ist

+1
null)) Da es (n 5 ) Moglichkeiten gibt, aus n+ 1 Punkten zwei auszuwéhlen, und
die Punkte unabhingig und identisch verteilt sind, folgt

1 = "
B @0= ("3 )10 = P apiap,

VO (K)=1- —;—;{;(n"f"'w(l— Py-11dP, dP,.
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Aus dieser Darstellung erhalten wir

VP (K)=1-2[ [ [*+ (- V)3 dP,dP,
KK
T e 1
y 3££[W+(1 Py 3]dp,d1>2
3 - -
( ?ilj{[W+(l-—V)2]dP,dP2)
=2VP(K).

Satz 2. Es sei K ein dreidimensionaler konvexer Korper. Dann gilt:

5
&)= 5 W (K).

Beweis: Wir nehmen wieder 0.B.d.A. an, dass das Volumen von K gleich 1 ist. Es
bezeichne E),(K) den Erwartungswert der Eckpunktanzahl und F{),(K) den
Erwartungswert der Facettenanzahl der konvexen Hiille H,,, von n+1 in K
zufillig und unabhingig voneinander gewihlten Punkten. Ahnlich wie im Beweis
von Satz 1 zeigt man

VO 0=1- —— EQ) (K).

o= (" )gu (7"~24 (1— Py'~2]dP, dP,dP;,

wobei V=V (P,, P,, P;) das Volumen des durch die Ebene durch P;, P, und P; von
K abgetrennten kleineren Teils bezeichnet. Da H,,, | fast sicher simplizial ist, betréagt
die Kantenanzahl fast sicher das 3/2-fache der Facettenanzahl. Aus der Eulerschen
Polyederformel folgt daher

1
EQ (K)= EE,311(K)+2,

und wir erhalten

1

1
O K)=1- — (5 FL (<)+2)

g (n-l)n

=1- [ § {2+ —-P)y~2dP,dP,dP;.
n+1 KKK
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Aus dieser Darstellung ergibt sich

2 ~ "
VO (K)= = — = [ [ { [+ (1— 7] dP, dP, dP,
3 3 KKK

2 5 _ 1
= ?_Tiii[wﬂl_mz_ ?]dPlszdPg,

53 _ _
> (% - 1§ {2 +a-pPrap, P, dP;)

2\5 KKK

5
=5 K.

C. Buchta, Institut fiir Analysis, Technische Mathematik und
Versicherungsmathematik, Technische Universitit Wien
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