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Bezeichnet man mit cbp die kleinste positive Primitivwurzel mod/?, so gilt
offensichtlich

10,
wenn l r^cbp- 1|

1, wenn r=cop \.
0, wenn cop + 1 __i r^pJ

Daraus folgt aber

cop PZrF(r). (4)
r=2

Aus (2), (3) und (4) ergibt sich schliesslich die Behauptung des Satzes.

Zur praktischen Berechnung einer Primitivwurzel modp ist die Formel (1) nicht
geeignet. Vom theoretischen Standpunkt aus betrachtet, kann aber aufgrund von
(1) die Frage nach der Existenz eines systematischen Rechenverfahrens zur Bestimmung

einer Primitivwurzel modp im positiven Sinne entschieden werden.
Horst Bergmann, Hamburg
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Integralungleichungen aus der Hübertraum-Theorie

In [3], S. 62, wird folgende Aufgabe gestellt:
Die Funktion f:[0,1]-+R sei stetig differenzierbar, und es gelte/(0)=/(l)=0. Man
zeige

(\f(x)dx) ^-~\r(x)]2dx.

Wann genau gilt Gleichheit?
Der Aufgabensteller verallgemeinert das Problem in [4], S. 380-381, Aufgabe P. 326:

Es sei/eine reellwertige «-mal stetig differenzierbare Funktion auf [0,1] mit/^O)
=/W(l)==0(A:=0,l,...,«-1). Man zeige

(]f(x)dx) <;(«!)2(2«+ l)"1 ((2«)!)-2J^(x)fdx
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mit Gleichheit genau fürf(x)=cxn (x— l)n.
In dieser Note wollen wir einige grundlegende Elemente der Hilbertraum-Theorie
zusammenstellen, die uns in die Lage versetzen, Ungleichungen vom obigen Typ zu
beweisen.
Durch Anwendung dieser Hilfsmittel auf konkrete Räume integrierbarer
Funktionen ergeben sich neben neuen Ungleichungen interessante Beziehungen zwischen
den jeweiligen Orthogonalpolynomen und Gram-Determinanten.

1. Hilfsmittel aus der Hilbertraum-Theorie

Es sei H ein Vektorraum mit Skalarprodukt (x,y) für x,yeH (siehe z.B. [2], S.79).
Die Norm von xeH sei die vom Skalarprodukt induzierte ||x|| := V(x,x). Weiterhin

sei x0,xx,x2,... eine Folge in H derart, dass jede endliche Teilmenge x0,xx,...,xk
linear unabhängig ist.
Nach dem Gram-Schmidtschen Orthonormalisierungsverfahren (siehe [1], S. 165-
166, Theorem 8.3.3) gewinnt man aus Linearkombinationen der xk durch die
rekursive Vorschrift

v*- X° v*- y» mitXo"iu0ir x"~yj mit
n-X

yn Xn~ Y (xH,X$xt («= 1,2,...) (1)
A:==0

eine orthonormale Folge x$,x^,x\,... aus H, d.h. es gilt (x*xp ötJ (ij 0,1,2,...).
Mit diesen Bezeichnungen erhalten wir

Satz 1.1. Für alle Elemente weH mit (w,xk) 0(k 0, l,...,n— 1) (d.h. w ist orthogonal

aufdem Unterraum (x0,xx,...,xn__x}) gilt die Ungleichung

\(w,xn)\<CJw\\ (2)

mitCn= min \\xn-bn_xxn_x b0x0\\

Die Konstante Cn ist bestmöglich, und Gleichheit gilt dann und nur dann, wenn

w=cx*, d.h. ein Vielfaches des n-ten durch Orthonormalisierung mit dem Gram-
Schmidtschen Verfahren gewonnenen Elementes x* ist.

Beweis: Nach Voraussetzung und unter Berücksichtigung von

\XQ,xx,...,xn_xy=\x09xX9...,x%_xy

gilt für alle Zahlen b'0,b'x,...,b'n_x

(w,xn)=(w,xn-b'n^xx*,x b'0x$9
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und eine Anwendung der Schwarzsehen Ungleichung liefert

\(w,xn)\^\\xn-b'n.xx^x tyxjl • ||w||. (3)

Nach bekannten Sätzen der Approximationstheorie in Hilberträumen (siehe [1],
S. 171-172, Theorem 8.5.1 und Korollar 8.5.2) gilt

n-X
xn~~ _L \xn>xk)xk

Jfc«0

n-X
xn~~ Zj bkx*k

k 0
(4)

für alle Zahlen b'Q,b[,...,b'n^x mit Gleichheit genau dann, wenn bk (xn,x*)
(k=0,1,...,«— 1) die Fourierkoeffizienten von xn sind. Damit wird das

min \\xn-bn„xxn_x b0x0\\
_»0,...,OB_i

tatsächlich angenommen, und die Ungleichung (2) ist bewiesen, wobei

C
n-l

Xn"~ 2-y (Xwxk)Xk
Jfc=0

die bestmögliche Konstante ist.
Ein Vergleich von (4) und (1) ergibt unmittelbar Cn \\yn\\. Stellen wir x* dar als
Linearkombination x%=Yk~oankxk> so &^ nach (1) für den Leitkoeffizienten
ann Wyn I"1» und wir erhalten

Q
1

(5)

Gleichheit gilt in der Ungleichung

\{w,xm)\-\(w,yn)\*\ym\-\M>\

genau dann, wenn w und yn linear abhängig sind (siehe [1], S. 159, Theorem 8.1.1),
d. h. wenn w=c'yn=cx* gilt.
Damit ist Satz 1.1 in allen Teilen bewiesen.
Bezeichnen wir mit gn die Determinante der Gram-Matrix

GM
1 C*o>^o) C*o>xx)... (Xq,xn)\

\(xn,x0) (xmxx)...(xn9xn)/
(« 0,1,2,...),
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so gilt nach [1], S. 183, Korollar 8.7.6, die Darstellung

147

*o=-öl/2*o>

*:-<_¦«-ig,r**

(»-1,2,...).

(Xq,Xq) (xx,Xq) ••• (xwxo)

(x0,xn_x) (xx,xn„x)... (xn,xn_x)
x0 xx xn

Durch Entwickeln der Determinante nach der letzten Zeile erkennt man, dass für
den Leitkoeffizienten a„„

0oo=go1/2> ö»»=
gn-X

gn
(#1=1,2,...)

gilt (vgl. [5], Problem E2863).
Also erhalten wir nach (5) für die optimale Konstante Cn in der Ungleichung (2) die
Beziehung

C0=8lo/2, C„=
Sn

«n-1
(n-1,2,...).

Für die Gram-Determinante ergibt ein Induktionsschluss

?»=n -j-&.-11 -3T (« 0,1,2,...).
* 0 öfcfc

(6)

Im folgenden werden wir die oben zusammengestellten allgemeinen Ergebnisse auf
einige Räume integrierbarer Funktionen mit Skalarprodukten der Gestalt

(f,g)=\f(x)g(x)w(x)dx
a

mit einer Gewichtsfunktion w(x)>0 anwenden.
Das System hnear unabhängiger Funktionen x0,xx,x2,... sei jeweils die Menge der
Monome 1, x,x2,x3,... auf dem Intervall (a,b).

2. Der Fall a,beR, w(x)= 1

Wir erhalten folgenden Satz:

Satz 2.1. Es sei \baxkf(x)dx 0 (fc 0,1, ...9n- 1). Dann gilt

1/2
}jc"/(x)dic| -^C^fj |/(x)|2€£x)
a I \<i /
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wobei

C„
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(n\)4(b-a)2n+x

(2«)!(2«+l)!

die bestmögliche Konstante ist. Gleichheit gilt genau dann, wenn

/(*)-*-£-[(*-a)(*-_)]»

ist.
Wählt man eine «-mal differenzierbare Funktion « mit h^n)(x)=f(x) und h^k)(a)

bf^(b)=0(k 0,l,...,n—l),so ergibt /c-malige partielle Integration

]hU(x)dx=t-^]xkhO+V(x)dx
a k\

(j=0,1,...,«— 1; k 0, l,...,n—j), und Satz 2.1 ist äquivalent zu

Satz 2.2. Es sei h n-mal differenzierbar und h^(a)=h^(b) 0(k 0,l,...,n-l).
Dann gilt

]h(x)dx <*Cn(]\hW(x)\2dx)
X/2

wobei

C„
(n\)2(b-a)2n+x

(2«)!(2«+l)!

die bestmögliche Konstante ist. Gleichheit gilt genau dann, wenn h(x) c(x — a)n

(x-bfist.

Wir verzichten auf die Anwendung von Satz 1.1 und beweisen Satz 2.2 ohne direkte
Verwendung der entsprechenden Orthogonalpolynome.

Beweis zu Satz 2.2: Nach Voraussetzung erhalten wir durch Anwendung der
Holderschen Ungleichung für alle Polynome P vom höchstens («- l)-ten Grade

\h(x)dx («!)"1 )xnh^(x)dx

(n\)~x\][xn-P(x)]hW(x)dx\

;(«!)-' (S\x"-P(x)\2dx^ ¦ (\\hW(x)\2dx\
1/2
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Gleichheit gilt genau für die Funktionen hft)(x)=c'[xn — P(x)], d.h. hffi ist ein
Polynom vom Grad «. Es folgt, dass «0 ein Polynom vom Grad 2 « ist, das an a und b
«-fache Nullstellen besitzt. Also muss «0 (x)=c(x- a)n (x - b)n gelten.
Für die Konstante Cn ergibt sich somit

C„ ]h0(x)dx .(]\h^(x)\2dx)~l/2
a \a /

Nach einigen kleinen Umformungen erhält man

b b

$h0(x)dx c](x-a)n(x-b)ndx (-l)nc(b-a)2n+xB(n+l,n+l)

mit der Eulerschen Betafunktion B (a + l,ß + 1):=

f an ^^ F(a + l)F(ß+l)\xa(l-xf dx=—— ——— sowie
S F(a+ß + 2)

i\h^(x)\2dx (-l)n^h0(x)h^(x)dx (-l)ncc(2n)\](x-a)n(x-b)ndx
a a a

\c\2(b-a)2n+x(2n)\B(n+l,n+l)

und insgesamt

Cn=((2n)\)-x/2(b-a)n+x/2[B(n+l,n+l)]x/2
n\(b-a)n+x/2[(2n)\(2n+l)\]-x/2.

Damit ist sowohl Satz 2.2 als auch Satz 2.1 bewiesen.
Aus obigem Beweis erhalten wir direkt eine Formel für die zugehörigen Ortho-
normalpolynome P%N(x)=Y?=oanjxJ- Da h^(x) den Leitkoeffizienten c(2«)!/«!
hat, gilt nach Satz 1.1 und (5)

V2«+l dn
-s __ / —-— \(x — a)(x — b)]n.

n\(b-a)n+x/2 dxn LV /v n

Im Spezialfall a= — l und b=l ist dies die bekannte Formel von Rodrigues für die
Legendrepolynome
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(in der Literatur werden die Legendrepolynome P\\*% üblicherweise durch

Pnx*(x)~V2/(2n+1) P°N(x)definiert. J

Wegen

b bl+J+x-al+J+x
(xl,xJ)=]x'+Jdx= —— (/,/ 0,l,2,...)

i + /+ 1

ist nach (6) und (5)

dctf* ' a'+J -frC2_fr m4(b-a)^
V i+j+l /^o, „ M) * M, (2A:)!(2A:+1)!

(«!!)'m\*

(2n+l)ü (b-ay,n2+2/i+l

wobei «!!:=1!2!3!...«! gesetzt wird.
Speziell für a 0 und b= 1 ergibt dies die interessante Determinantenformel

1 1/2 1/3 l/(«+l)
1/2 1/3 1/4 l/(« + 2)

1/("+!) l/ßn+l)

(«!!>!!Y*

(2«+l)ü

Sie ist ein Spezialfall der Determinantenformel von Cauchy (siehe [1], S. 268-269,
Lemma 11.3.1).

3. Der Fall a=0, b= + oo, w(x)=x°e"x(a> -1)

Durch Orthogonalisierung der Monome erhält man die verallgemeinerten
Laguerre-Polynome

^)w-_t(-i)*("+!)i^--rs-=_-TT[*'+^Jl-
*__o \n-kJk\ n\xae x dxn

Beachtet man

llLM(x)}2x«e-*dx~ r(n + a+l)

so ergeben sich die Orthonormalpolynome

(- IV1 («H1/2
pON(x)« v l> W'> L(a) (x)n W VF(n + a+l) Ln W
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mit dem Leitkoeffizienten ann=(F(n + a+ 1)«!) xl2. Somit erhalten wir als

Folgerung aus Satz 1.1 und (5):

Satz3A. Es sei fö xk+a e~xf(x)dx 0(k 0,l,...,n- l). Dann gilt

M2
| x"+ae~xf(x)dx <C„( J xae~x\f(x)\2dx)

wobei Cn Vn\T (n + a + l) die bestmögliche Konstante ist. Gleichheit gilt genau
dann, wennf(x) c Lna^ (x) ist.

Wegen

oo

(xl,xJ)=\xl+J+ae~xdx F(i+j+ a+l)
o

erhält man für die Gram-Determinante

det(r(/+/ + a + l))v__0, ,n=fllk\F(k + a+l)].
k 0

Insbesondere gilt für eine natürliche Zahl a

det((/+/ + a)!)„__0, ,n=fl[k\(k + a)\]
A: 0

und für a 0

1 1! 2! «!
1! 2! 3! («+!)!

«! (2*)!

II(*02 ("H)2.
fc 0

4.DerFalla= -oo,b= +oo, w(x) e"x2

Durch Orthogonalisierung der Monome erhält man die Hermite-Polynome

[n/2] o Y\n-2k An

H"w-"^?„<-1),*rar-<-,)"f"'^(^,'
Beachtet man

00

\ \H„(x)\2e-xldx=V^2ttnl,
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so ergeben sich die Orthonormalpolynome

P°N(x)= - Hn(x)
VV n 2nn\

mit dem Leitkoeffizienten

2n

«!V n

Als Folgerung aus Satz 1.1 und (5) ergibt sich:

Satz 4.1. Es sei $°2„ xkf(x) e~xl dx 0(k O,l,...,n-l). Dann gilt
M2

f xnf(x)e~x2dx
/ oo \l/2

^Cn{ ^\f(x)\2e-x2dxj

wobei Cn V2~nn\Vn die bestmögliche Konstante ist. Gleichheit gilt genau dann,
wennf(x) — cHn (x) ist.
Für die Gram-Matrix erhält man mit

00 1 /1 + / -h 1 \(*»,*/)- _£ x>+Je-*2dx= y [1 + (- l),+J]r (~y—) (fJ-0,1,...)

die Beziehung

— (n+l) n fc'
det((x',xO)1>/_o,i>...«=7t2 II^-

Weitere Anwendungen von Satz 1.1 auf konkrete Räume seien dem Leser
überlassen. Dabei ergeben auch Skalarprodukte der Gestalt

#*)-£*/(*,)«(*,) mit c>0

interessante Ungleichungen.
Wir merken an, dass mit Hilfe von Satz 2.1 und Satz 3.1 die Aufgaben 15 und 16 aus
[2], S. 99, gelöst sind. #

U. Abel, Mathematisches Institut, Universität Giessen
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