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Bezeichnet man mit &, die kleinste positive Primitivwurzel modp, so gilt offen-
sichtlich

0, wenn lér_s_c"op—— 1
I, wennr=a
0,wenn @, +1=r=p

F(r)=

o

Daraus folgt aber

&)P=pil rF(r). “)

r=2

Aus (2), (3) und (4) ergibt sich schliesslich die Behauptung des Satzes.
Zur praktischen Berechnung einer Primitivwurzel modp ist die Formel (1) nicht
geeignet. Vom theoretischen Standpunkt aus betrachtet, kann aber aufgrund von
(1) die Frage nach der Existenz eines systematischen Rechenverfahrens zur Bestim-
mung einer Primitivwurzel mod p im positiven Sinne entschieden werden.

Horst Bergmann, Hamburg
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Integralungleichungen aus der Hilbertraum-Theorie

In [3], S. 62, wird folgende Aufgabe gestellt:
Die Funktion f:[0, 1] R sei stetig differenzierbar, und es gelte f(0)=/(1)=0. Man
zeige ‘

1 2 11
(gf(x)dx) <47 [ pax,

Wann genau gilt Gleichheit?

Der Aufgabensteller verallgemeinert das Problem in [4], S. 380-381, Aufgabe P.326:
Es sei f eine reellwertige n-mal stetig differenzierbare Funktion auf [0, 1] mit f®)(0)
=f®)(1)=0(k=0,1,...,n— 1). Man zeige

2
(;'f(x)dx) <m)?*@2n+1)71(2n)Y) "2i ™ ()P dx
0 0
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mit Gleichheit genau fir f(x)=cx" (x— 1)".

In dieser Note wollen wir einige grundlegende Elemente der Hilbertraum-Theorie
zusammenstellen, die uns in die Lage versetzen, Ungleichungen vom obigen Typ zu
beweisen.

Durch Anwendung dieser Hilfsmittel auf konkrete Rédume integrierbarer Funk-
tionen ergeben sich neben neuen Ungleichungen interessante Beziehungen zwischen
den jeweiligen Orthogonalpolynomen und Gram-Determinanten.

1. Hilfsmittel aus der Hilbertraum-Theorie

Es sei H ein Vektorraum mit Skalarprodukt (x,y) fur x,ye H (siehe z.B. [2], S.79).
Die Norm von x € H sei die vom Skalarprodukt induzierte | x| := Vv (x,x). Weiter-
hin sei xg, x, X5, ... eine Folge in H derart, dass jede endliche Teilmenge xg, xy, ..., Xk
linear unabhingig ist.

Nach dem Gram-Schmidtschen Orthonormalisierungsverfahren (siehe [1], S.165-
166, Theorem 8.3.3) gewinnt man aus Linearkombinationen der x, durch die
rekursive Vorschrift

Xo Vn .
Xh= , x¥*= mit
0 Ixol © 7"yl
n—
y,,=x,,——k20(x,,,x,§)xz (n=1,2,..) (1)

eine orthonormale Folge xg, x{, x3, ... aus H, d. h. es gilt (x}, x)=0;(j=0,1,2,..).
Mit diesen Bezeichnungen erhalten wir

Satz 1.1. Fiir alle Elemente we H mit (w,x;,)=0(k=0,1,...,n—1) (d.h. w ist ortho-
gonal auf dem Unterraum {xy,x,,...,X,_1)) gilt die Ungleichung

[w, x )| < C,llwl )
mit C,,= mibn I x,—by_1Xp_1— - —bgxoll -
Qs-+5Up—1

Die Konstante C, ist bestméglich, und Gleichheit gilt dann und nur dann, wenn
w=cx¥ d.h. ein Vielfaches des n-ten durch Orthonormalisierung mit dem Gram-
Schmidtschen Verfahren gewonnenen Elementes x¥ ist.
Beweis: Nach Voraussetzung und unter Beriicksichtigung von

Xy X 15 ey X 1) =XG XT, s X0 1)

gilt fur alle Zahlen by, b1,...,b,_

(W’xn)=(w’xn—br’l——1x:— | “’b(')xg),
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und eine Anwendung der Schwarzschen Ungleichung liefert
| (W, x,)| < I x,—bf_ 1 x%_1— - —bixEl - Iwl . 3)

Nach bekannten Sidtzen der Approximationstheorie in Hilbertriumen (siehe [1],
S.171-172, Theorem 8.5.1 und Korollar 8.5.2) gilt

s‘

n—1
Xp— D, bl x*
o k*k

n—1
x,.—kzo (X XF) x2

C))

fir alle Zahlen bg,bi,...,b,_; mit Gleichheit genau dann, wenn b;=(x,,x})
(k=0,1,...,n—1) die Fourierkoeffizienten von x, sind. Damit wird das

mibn Ixp=bp—1Xp—1— - —boxol
0"“9 n"“

tatsichlich angenommen, und die Ungleichung (2) ist bewiesen, wobei

n—1

Xp— kZO s Xg) X5

C,=

die bestmogliche Konstante ist.

Ein Vergleich von (4) und (1) ergibt unmittelbar C,=|y,l. Stellen wir x¥ dar als
Linearkombination x*=)7_,a,.x,, so gilt nach (1) fir den Leitkoeffizienten
, ay,,=ly,I~1, und wir erhalten

C,= _l_ (5)
ann

Gleichheit gilt in der Ungleichung
LW, x )| = 1w,y )| < Iyull - 1wl

genau dann, wenn w und y, linear abhingig sind (siehe [1], S.159, Theorem 8.1.1),
d.h. wenn w=c"y,=cx} gilt.

Damit ist Satz 1.1 in allen Teilen bewiesen.

Bezeichnen wir mit g, die Determinante der Gram-Matrix

((Xo, xp) (xp,x1) ... (xp, xn))
G,= (n=0,1,2,..)),
(xm xO) (xm xl) (xm xn)
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so gilt nach [1], S. 183, Korollar 8.7.6, die Darstellung
x4=85""xq,

(X0, X0) (X1, x0) .. (xpX0)
xX5=(gn 1872 : :
(xO’xn—l) (xlsxn——l) (xmxn—-l)

xo X1 Xn

(n=1,2,..).

Durch Entwickeln der Determinante nach der letzten Zeile erkennt man, dass fiir
den Leitkoeffizienten a,,,,

a00=85'72, a,,= Bn-1 (n=12,..)

En

gilt (vgl. [5], Problem E2863).
Also erhalten wir nach (5) fur die optimale Konstante C, in der Ungleichung (2) die
Bezichung

Co=gl?, C,= /-gig"—l (n=1,2,..).
o

Fiir die Gram-Determinante ergibt ein Induktionsschluss

1
g.=11 5 (=0,1,,..). ©6)
k=0 Gy

Im folgenden werden wir die oben zusammengestellten allgemeinen Ergebnisse auf
einige Rdume integrierbarer Funktionen mit Skalarprodukten der Gestalt

b -
f.8)= gf (x) g (x)w(x)dx

mit einer Gewichtsfunktion w(x)> 0 anwenden.
Das System linear unabhingiger Funktionen xy, x;, x,,... sei jeweils die Menge der
Monome 1, x, x2,x3, ... auf dem Intervall (a, b).

2.Der Falla,beR,w(x)=1
Wir erhalten folgenden Satz:

Satz 2.1. Es sei {5 x* f(x)dx=0 (k=0,1,...,n—1). Dann gilt

<6, (freias)”,

?x”f(x) dx
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wobei

_ (n!)4(b_a)2n+1

Cn= 2n)! 2n+1)!

die bestmagliche Konstante ist. Gleichheit gilt genau dann, wenn

n

d
fe)=e— [(x—a) (x=b)P

ist.
Wihlt man eine n-mal differenzierbare Funktion A mit A® (x)=f(x) und A% (a)
=h® (B)=0(k=0,1,...,n— 1), so ergibt k-malige partielle Integration

— 1)k b .
o § Xk h0+5 (x) dx

a

b (

(RO (x)dx=

a
(G=0,1,...,n—1; k=0,1,...,n—j), und Satz 2.1 ist &quivalent zu

Satz 2.2. Es sei h n-mal differenzierbar und h® (a)=h® B)=0(k=0,1,...,n—1).
Dann gilt

/b 1/2
<C, (j | A (x)lzdx)

b
[hx)dx

wobei

- (n!)Z(b_a)2n+l
"N @) Q2n+1)!

die bestmdgliche Konstante ist. Gleichheit gilt genau dann, wenn h(x)=c(x—a)"
(x—Db)" ist.

Wir verzichten auf die Anwendung von Satz 1.1 und beweisen Satz 2.2 ohne direkte

- Verwendung der entsprechenden Orthogonalpolynome.

Beweis zu Satz 2.2: Nach Voraussetzung erhalten wir durch Anwendung der
Holderschen Ungleichung fiir alle Polynome P vom hochstens (n— 1)-ten Grade

=(n!)"! Ifx" h™ (x)dx l

a

b
[h(x)dx

=(n!)"!

’f [x"— P (x)| A" (x)dx l

1/2 /
s(n!)—l(f X—P@)I2dx) - ('f Ih(")(x)lzdx)l .
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Gleichheit gilt genau fir die Funktionen A§)(x)=c’[x"— P (x)], d.h. A{ ist ein
Polynom vom Grad n. Es folgt, dass A, ein Polynom vom Grad 2 n ist, das an ¢ und b
n-fache Nullstellen besitzt. Also muss g (x)=c (x —a)" (x — b)" gelten.

Fiir die Konstante C, ergibt sich somit

C,=

lfho(x)dx : (lf lhg')(x)wdx)_‘/?

Nach einigen kleinen Umformungen erhilt man
b b
fho)ydx=c[(x—ay'(x—by'dx=(—1)y'c(b—aP"*'B(n+1,n+1)
a a
mit der Eulerschen Betafunktion B(a+ 1,8+ 1):=
rFa+H)rg+1

1
“(1—x) dx = i
gx (1—x)P dx TGtft2) . sowie

b -
[ 1A (x)12dx=(— 1)"?!20 (x) BE™ (x)dx=(— 1)”Ec(2n)!lf)(x—-a)"(x—b)"dx
=|c|2(b—a)"*'Qn)!B(n+1,n+1)
und insgesamt

C,=(@2n)!) "\ 2(b—ay+'2[B(n+1,n+1)]'/2
=nl(b—ay+12[2n)! Qn+ )12,

Damit ist sowohl Satz 2.2 als auch Satz 2.1 bewiesen.

Aus obigem Beweis erhalten wir direkt eine Formel fiir die zugehorigen Ortho-
normalpolynome P9V (x)=zj’-'=0a,,jxf. Da h{’(x) den Leitkoeffizienten c(2n)!/n!
hat, gilt nach Satz 1.1 und (5)

n! y _ 1 n! 4n "
P,?N(x)—anncan), h§) (x)= C. @an)l e [(x—a)(x—D)]
V2n+1l  dn

- nt(b—ay+1/2 gxn [(x—a)(x—-D)]".

Im Spezialfall a= —1 und b=1 ist dies die bekannte Formel von Rodrigues fiir die
Legendrepolynome

vV2n+l a°
PN )= otz g 2= 1.
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(In der Literatur werden die Legendrepolynome PL¢8 iiblicherweise durch

PLee(x)=v2/@n+1) PO¥(x) deﬁniert.)

Wegen

bititl_ gi+i+1

b
(!, )= [x*idx= (1,j=0,1,2,..)
a

i+j+1
ist nach (6) und (5)
det(bi+j+l__ai+j+l) _ n C2._ n (k!)4(b_a)2k+l
i+j+1 ij=0,...,n ;[;Io i QKNQK+1)
— (n”)4 n2+2n+1
antu @79 ’

°
wobei n!l:=11213!...n! gesetzt wird.

Speziell fiir a=0 und b= 1 ergibt dies die interessante Determinantenformel

1 12 1/3 ... 1/(n+1)
12 13 1/4 .. 1/m+2)|_ @)
.........................................  @n+ )N

Sie ist ein Spezialfall der Determinantenformel von Cauchy (siehe [1], S.268-269,
Lemma 11.3.1).

3. DerFalla=0,b=+ 0, w(x)=x%"*(a> —1)

Durch Orthogonalisierung der Monome erhdlt man die verallgemeinerten
Laguerre-Polynome

L n+a\ 1 1 dr
— k _ a ,—
Lﬁ,“)(x)—k;o(— D (n—k)ﬁxk_ n!x%e™* dx" e,
Beachtet man
© I'(n+a+1)
(a) 2 ya ,— -
g [L® (x)2 x* e > dx - ,

so ergeben sich die Orthonormalpolynome

(= 1y ()
VI (n+a+1)

PN (x)= LY (x)
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mit dem Leitkoeffizienten a,,= (I (1+a+ 1)n!)~1/2. Somit erhalten wir als Fol-
gerung aus Satz 1.1 und (5):

Satz 3.1. Es sei [§ x**2 e *f(x)dx=0(k=0,1,...,n—1). Dann gilt

' O(jjx’“’“ e*f(x)dx ’ <C, (:]j x%e™* lf(x)lzdx)l/2 ,

wobei C,=\/n'I' (n+a+1) die bestmégliche Konstante ist. Gleichheit gilt genau
dann, wenn f(x)=c L' (x) ist.

Wegen
. IS w . .
(xi,x)y= [ xititee>dx=T (i+j+a+1)
0

erhilt man fur die Gram-Determinante

det (I (i+j+a+1));;-0

.....

=[] [kK!'T (k+a+1)].
k=0
Insbesondere gilt fiir eine natiirliche Zahl a

det(G+j+a)!); =0, H (k! (k+a)!]

und fira=0
1120 Lo
1020 30 L DY ST k2= (2,
................................. k=0
. J— Qn)!

4.DerFalla= — c0,b= + 0, w(x)=e"*
Durch Orthogonalisierung der Monome erhilt man die Hermite-Polynome

_ [n/2] B (2x)n—2k . dr
Hn(x)—n!kéo( l)kwk!(n—Zk)' =(—1ye” e

(™).
Beachtet man

o
[ 1H,(x)|?e ™ dx=\/n 2"n!,
—oc
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so ergeben sich die Orthonormalpolynome

PO¥(x)= ——— H,(x)

vVVr2tn!

mit dem Leitkoeffizienten

2"
a oy .
"N

Als Folgerung aus Satz 1.1 und (5) ergibt sich:

Satz 4.1. Es sei [®  x*f(x)e *dx=0(k=0,1,...,n—1). Dann gilt

© © 12
l _j x"f(x)e™ dx SC,,(_[ If(x)lze"‘zdx) ,

wobei C,=+/27" n\n die bestmigliche Konstante ist. Gleichheit gilt genau dann,
wenn f(x)=c H,(x) ist.
Fiir die Gram-Matrix erhilt man mit

e 1 i+l ~
(i, x)= | x’*‘fe“"zdx=?[l+(—~1)‘+f]r('—%——> (.j=0,1,..)
— 00

die Beziehung

.....

Weitere Anwendungen von Satz 1.1 auf konkrete Riume seien dem Leser iiber-
- lassen. Dabei ergeben auch Skalarprodukte der Gestalt

(f,g)-‘—jo;cjf(xj){g_(};) mit ¢;=0

interessante Ungleichungen.
Wir merken an, dass mit Hilfe von Satz 2.1 und Satz 3.1 die Aufgaben 15 und 16 aus
[2], S.99, gelést sind. ’

U. Abel, Mathematisches Institut, Universitit Giessen
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