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Die Gleichungen der Steinerellipsen sind
Umellipse: 7 x2 - 3 xy+3/=25,
Inellipse: 28x2- I2xy+ 12/ 25

Man verifiziert leicht, dass die Punkte A, B und C auf der Umellipse und die
Seitenmitten auf der Inellipse liegen. Die Dreiecksmatrix

V6

u=
+ vT vT

erfüllt die Gleichung S=UU', und x= U~xy transformiert das Dreieck auf

_-(^), s.(^,.^), c-(-^.o).
Dieses Dreieck ist gleichseitig und hat die Seitenlänge VT.

Peter Nüesch, Departement de Mathematiques, ETH-Lausanne
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Über eine Formel für primitive Kongruenzwurzeln

Zu jeder ungeraden Primzahlpotenz/?0 gibt es genau </>(</>(pa)) Primitivwurzeln
modpa, wobei (ß («) die Eulersche ^-Funktion ist. Kennt man eine Primitivwurzel co

für die ungerade Primzahl p, so lässt sich eine Primitivwurzel modpa sofort explizit
angeben: Die Zahl

co* copP~l(l+p)

ist dann Primitivwurzel modpa.
Zur Ermittlung von Primitivwurzeln mod/? schreibt H. Hasse ([2], S.68): «Ein
systematisches Rechenverfahren zur Bestimmung einer primitiven Wurzel modp,
etwa der kleinsten, ist nicht bekannt. Man ist dazu auf Probierverfahren
angewiesen.» - Nach der Angabe eines Probierverfahrens zur Gewinnung von
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Primitivwurzeln mod;? bemerkt D. Shanks ([4], S. 79): "Gauss, and others, have
devised more efficient techniques, but no general, explicit, nontentative method has
been devised, and this, like a good criterion for primality, remains an important
unsolved problem."
Für spezielle Primzahlen p von besonderer Gestalt lassen sich dagegen Primitivwurzeln

modp explizit angeben. Beispielsweise1) ist ±6 Primitivwurzel modp für
alle Primzahlen der Form/? %q+ 1 mit ungerader Primzahl q.
Analog zu der Frage nach einer Formel2) für die «-te Primzahl pn stellt sich die

Aufgabe, eine Formel für Primitivwurzeln modp zu finden.
Es soll jetzt gezeigt werden:

Satz. Fürjede ungerade Primzahlp stellt die ganze Zahl

<»P PtrPrli{\-Ps) mit _>,= ,JüV-l) (1)
r=2 5=1 //=1

stets eine Primitivwurzel modp dar.

Beweis: Für ganze Zahlen a und ungerade Primzahlen p sei das Symbol (a)p
definiert durch:

II,
wennpXa und a Primitivwurzel modp

0, wennpXa und a nicht Primitivwurzel mod/?
— I,wenn p\a I

Unter Heranziehung des Wilsonschen Satzes

(p- l)!=s - Pfl (k- _)___ - 1 modp (p>2)
k 2

lässt sich damit das Primitivwurzel-Kriterium

H=ftV-l)mod/? (p>2) (2)
p=i

herleiten.
Man betrachtet jetzt die zahlentheoretische Funktion

F(r)= ~ H ff (1" H) ('* !)• (3)
j 0

1) Vergleiche dazu [1].

2) Man vergleiche etwa [3], S. 12 und 165.
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Bezeichnet man mit cbp die kleinste positive Primitivwurzel mod/?, so gilt
offensichtlich

10,
wenn l r^cbp- 1|

1, wenn r=cop \.
0, wenn cop + 1 __i r^pJ

Daraus folgt aber

cop PZrF(r). (4)
r=2

Aus (2), (3) und (4) ergibt sich schliesslich die Behauptung des Satzes.

Zur praktischen Berechnung einer Primitivwurzel modp ist die Formel (1) nicht
geeignet. Vom theoretischen Standpunkt aus betrachtet, kann aber aufgrund von
(1) die Frage nach der Existenz eines systematischen Rechenverfahrens zur Bestimmung

einer Primitivwurzel modp im positiven Sinne entschieden werden.
Horst Bergmann, Hamburg
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Integralungleichungen aus der Hübertraum-Theorie

In [3], S. 62, wird folgende Aufgabe gestellt:
Die Funktion f:[0,1]-+R sei stetig differenzierbar, und es gelte/(0)=/(l)=0. Man
zeige

(\f(x)dx) ^-~\r(x)]2dx.

Wann genau gilt Gleichheit?
Der Aufgabensteller verallgemeinert das Problem in [4], S. 380-381, Aufgabe P. 326:

Es sei/eine reellwertige «-mal stetig differenzierbare Funktion auf [0,1] mit/^O)
=/W(l)==0(A:=0,l,...,«-1). Man zeige

(]f(x)dx) <;(«!)2(2«+ l)"1 ((2«)!)-2J^(x)fdx
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