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Steinerellipsoide

Hans-Ulrich Krause zum 65. Geburtstag

In eine gegebene Ellipse lässt sich eine
Schaar grosster Dreiecke einbeschreiben

[ ]
Jacob Steiner (1845)

Einleitung

Eine Steinerellipse wird üblicherweise als eine einem Dreieck einbeschriebene
Ellipse definiert, deren Mittelpunkt mit dem Schwerpunkt des Dreiecks zusammenfällt.

Daraus folgt unmittelbar, dass sie die Seiten in den Mitten berührt.
Historisch hat Steiner ([2]; Band I, S.200, Theorem 11; Band 2, S.347, Theorem 6)
das Problem als Extremalproblem formuliert: Eine Steinerellipse ist die Inellipse
maximaler oder die Umellipse minimaler Fläche. Die Tatsache, dass die
Mittelpunkte in den Dreiecksschwerpunkt fallen, ist eine Folge dieser historischen
Definition.
Im folgenden wird direkt mit einem Simplex, also dem «-dimensionalen Analogon
des Dreiecks gearbeitet. In Anlehnung an den von Steiner behandelten Fall werden
die Umellipsoide minimalen respektive die Inellipsoide maximalen Volumens
Steinerellipsoide genannt. Während der klassische zweidimensionale Fall mit den
üblichen Methoden der Analysis, wie Lagrangemultiplikatoren, lösbar ist, versagt
dieses Vorgehen für höhere Dimensionen. Folgender Ansatz wird verwendet: Mit
Hilfe der Quadratwurzel der inversen Matrix der Konzentrationsmatrix ([1], S. 126)
der « + 1 Ecken des Simplexes wird es affin auf ein regelmässiges Polyeder transformiert,

für welches die Steinerellipsoide konzentrische Kugeln sind. Extremal- und
Symmetrieeigenschaften bleiben bei dieser Abbildung erhalten und gelten somit
auch für das Simplex. Gleichzeitig liefert dieser Ansatz die Gleichung der
Steinerellipsoide. Bei der Verallgemeinerung auf mehr als zwei Dimensionen treten
Berührungsprobleme tieferdimensionaler Seitenflächen auf, z.B. die Berührung der
Kanten eines Tetraeders. Die in diesem Zusammenhang nicht interessierenden
Zwischenellipsoide sind jedoch mit dem Abbildungsansatz sofort erhältlich.
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Notation

Der Kolonnenvektor xx ist der Ortsvektor der Ecke Xx,i=0, l,...,n, X ist die

«x(«+ 1)-Matrix mit den Kolonnen xr Zur Vereinfachung der Notation wird der
Ursprung des Systems im Schwerpunkt des Simplexes angenommen. Algebraisch
heisst das, dass alle Zeilensummen der Matrix X Null sind, also

X- 1=0,

wobei 1 der Vektor mit Komponenten Eins ist.

Die Matrix _P

Es wird angenommen, dass das Simplex nicht degeneriert ist. Die Konzentrationsmatrix

S=XX' ist dann eine reguläre Matrix der Ordnung «, und die Matrix

P=X'(XXTXX=X'S~XX

hat folgende Eigenschaften:
(i) P ist symmetrisch,
(ii) P ist idempotent der Ordnung « + 1,

(iii) Rang(P) «,
(iv) Pf=0,

(v) P I E, wobei / die Einheits-, E die Einermatrix ist, d. h.
n+ 1

« 1

Eigenschaft (i) folgt unmittelbar aus der Definition. Durch Rechnung verifiziert
man P2 P, also (ii).
Zu (iii): Rang (P)= Spur (P) ist eine Eigenschaft idempotenter Matrizen. Allgemein
gut Spur (AB)=Spur (BA). Somit ist Rang (P)=Spur (P) Spur (XX'S~X)=
Spur 1= «.
(iv) gilt wegen _¥1 =0, also wegen der speziellen Wahl des Ursprungs. Andererseits
bedeutet (iv), dass f ein Eigenvektor der Matrix P zum Eigenwert 0 ist.
Zu (v): Die Eigenwerte Xx idempotenter Matrizen sind entweder 0 oder 1. Dabei
bestimmt die Differenz von Ordnung und Rang die Anzahl verschwindender Eigenwerte.

Nach (ii) und (iii) hat P somit genau einen verschwindenden Eigenwert, z.B.
Xn+X. Wenn die den Eigenwerten Xx entsprechenden normierten Eigenvektoren mit
c, bezeichnet werden, gilt nach (iv) cn+ x l/V« + 1.
Die Spektralauflösung der Matrix P9

n+l n+l
*~ I Wn /- I CXC'X,

i=l i=l



El. Math., Vol 38, 1983 139

vereinfacht sich im vorliegenden Fall somit auf

n n+X \
P= L«'= Y clc'-cn+xc'n+l I- —— E.

j=i i=i «+1

Die Gleichung

Einerseits ist nach (v)pll n/(n+ 1), andererseits folgt aus der Definition der Matrix
P, dass/?n x'S~x xx ist. Somit ist

n
x'S~xx

n+l

die Gleichung des Umellipsoides des Simplexes.

Die Minimaleigenschaft

Da S eine positiv definite Matrix ist, kann mit einer regulären Matrix U faktorisiert
werden, S=UU'. [U ist nicht eindeutig. Hingegen sind Dreiecksmatrizen U bis aufs
Vorzeichen eindeutig.] x=Uy transformiert das Elhpsoid in die Kugel y'y c,
und gleichzeitig wird das «-Simplex \X0,Xx,...,Xn} in ein regelmässiges Polyeder
transformiert, da unter Verwendung der obigen Beziehungen fürpxl undpXJ gilt

(y-yJY(yl-yj)=&-iJym-ltrl(xl-xj
(x-xJ)'S-x(x-xj)
x;S~x xx + xJS~x Xj-i^Xj

Unabhängigkeit dieses Resultates von i und j beweist die Regelmässigkeit des

transformierten Simplexes. Überraschenderweise ist das Resultat aber auch
unabhängig von «.
Die Kugel y'y=c mit dem Volumen v* ist offensichtlich die minimale Umkugel
des regelmässigen Polyeders. Es gilt explizit

v* =__________

siehe z. B. Dempster ([1] S. 44, Formel (3.5.7)].
Jedes andere Umellipsoid hat aus Symmetriegründen notwendigerweise grösseres
Volumen v> v*. Der durch die Rücktransformation verursachte Faktor ist

detU= Vdet Udet U' Vdet UU' VdetS
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was für die rücktransformierte Umkugel, also das Steinereliipsoid, das Volumen
v*\/det5, für die Rücktransformation irgendeines Umellipsoides das Volumen
vVdetS ergibt. Aus v>v* folgt, dass das Steinereliipsoid x'S~xx n/(n+ 1) das

Umellipsoid minimalen Volumens ist.

Das einbeschriebene Elhpsoid

Mit M0 wird der Schwerpunkt der «-Seitenfläche des Simplexes bezeichnet, die auf
der Hyperebene durch Xx,...,Xn liegt. Wegen der Wahl des Ursprungs im Schwerpunkt

des vollen Simplexes ist

\ n —\
OM0=m0=—Yxl XQ,

n i n

und die Gleichung des Ellipsoides durch die Schwerpunkte Mx aller «-Seitenflächen
ist

Dieses Elhpsoid ist perspektiv-ähnlich dem Umellipsoid. Damit es sich tatsächlich
um ein Inellipsoid handelt, muss gezeigt werden, dass es die Hyperebene in Mx
tangiert. Sei Z^MQ ein beliebiger Punkt der Hyperebene durch Xx,...,Xn,z sein
Ortsvektor.

n

Z=YWiXi mit w->0, _£w.= l
*=1

v« 7 v j ' i j

(Z^V-i-E "?+___>,*.

gibt

n+l

Die Cauchy Ungleichung

(I«?),/2(_>?)1/23>I>A
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für ax wx, bt 1 lautet

Für Z=M0 sind alle wx= l/n und die Vektoren ä und b somit linear abhängig. Für
Z^Mq gilt die Ungleichung in der scharfen Form.
Somit ist

z'S~xz Yw? T> 7**—, 77 -m^S-xm0.^ n+l n n+l n(n+l) ° u

Das bedeutet, dass Z auf einem grösseren Elhpsoid als M0 liegt. M0 ist nicht nur
Punkt des Ellipsoides

x'S-xx= l
«(«+!)'

sondern auch Berührungspunkt von Hyperebenen und Elhpsoid. Mit dem gleichen
Argument wie beim Umellipsoid wird die Optimahtät auch hier bewiesen, d. h. das

einbeschriebene Steinereliipsoid hat maximales Volumen.

Die Zwischenellipsoide

k der «+ 1 Simplexecken bilden eine /c-Seitenfläche, k= 1,...,«. Die konzentrischen
Ellipsoide, die diese Seitenflächen in deren Schwerpunkten berühren, haben die
Gleichung x'S~xx ck mit

n-k+l
k(n+l)

(cx ist die Konstante der Gleichung des Umellipsoides, cn die des Inellipsoides).
Man verifiziert leicht, dass der Schwerpunkt der Seitenfläche auf diesem Elhpsoid
liegt. Dass es sich tatsächlich um eine Berührung handelt, zeigt man, indem im
vorhergehenden Abschnitt« durch k ersetzt wird.

Numerisches Beispiel

Die einzelnen Schritte werden am Beispiel des Dreiecks A(l93), B(l9-2),

C(-2, -l) illustriert. «=2 und X= Y Man sieht, dass die beiden

/6 3\ 1 / 14 — 3 \
Zeilensummen verschwinden. S« XX'= 1. Somit ist 5 [ — J.
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Die Gleichungen der Steinerellipsen sind
Umellipse: 7 x2 - 3 xy+3/=25,
Inellipse: 28x2- I2xy+ 12/ 25

Man verifiziert leicht, dass die Punkte A, B und C auf der Umellipse und die
Seitenmitten auf der Inellipse liegen. Die Dreiecksmatrix

V6

u=
+ vT vT

erfüllt die Gleichung S=UU', und x= U~xy transformiert das Dreieck auf

_-(^), s.(^,.^), c-(-^.o).
Dieses Dreieck ist gleichseitig und hat die Seitenlänge VT.

Peter Nüesch, Departement de Mathematiques, ETH-Lausanne
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Über eine Formel für primitive Kongruenzwurzeln

Zu jeder ungeraden Primzahlpotenz/?0 gibt es genau </>(</>(pa)) Primitivwurzeln
modpa, wobei (ß («) die Eulersche ^-Funktion ist. Kennt man eine Primitivwurzel co

für die ungerade Primzahl p, so lässt sich eine Primitivwurzel modpa sofort explizit
angeben: Die Zahl

co* copP~l(l+p)

ist dann Primitivwurzel modpa.
Zur Ermittlung von Primitivwurzeln mod/? schreibt H. Hasse ([2], S.68): «Ein
systematisches Rechenverfahren zur Bestimmung einer primitiven Wurzel modp,
etwa der kleinsten, ist nicht bekannt. Man ist dazu auf Probierverfahren
angewiesen.» - Nach der Angabe eines Probierverfahrens zur Gewinnung von
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