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Steinerellipsoide

Hans-Ulrich Krause zum 65. Geburtstag

In eine gegebene Ellipse ldsst sich eine
Schaar grisster Dreiecke einbeschrei-
ben [...]

Jacob Steiner (1845)

Einleitung

Eine Steinerellipse wird iiblicherweise als eine einem Dreieck einbeschriebene
Ellipse definiert, deren Mittelpunkt mit dem Schwerpunkt des Dreiecks zusammen-
fallt. Daraus folgt unmittelbar, dass sie die Seiten in den Mitten beriihrt.

Historisch hat Steiner ([2]; Band I, S.200, Theorem 11; Band 2, S.347, Theorem 6)
das Problem als Extremalproblem formuliert: Eine Steinerellipse ist die Inellipse
maximaler oder die Umellipse minimaler Fliche. Die Tatsache, dass die Mittel-
punkte in den Dreiecksschwerpunkt fallen, ist eine Folge dieser historischen
Definition.

Im folgenden wird direkt mit einem Simplex, also dem n-dimensionalen Analogon
des Dreiecks gearbeitet. In Anlehnung an den von Steiner behandelten Fall werden
die Umellipsoide minimalen respektive die Inellipsoide maximalen Volumens
Steinerellipsoide genannt. Wihrend der klassische zweidimensionale Fall mit den
tiblichen Methoden der Analysis, wie Lagrangemultiplikatoren, 16sbar ist, versagt
dieses Vorgehen fiir hohere Dimensionen. Folgender Ansatz wird verwendet: Mit
Hilfe der Quadratwurzel der inversen Matrix der Konzentrationsmatrix ([1], S. 126)
der n+ 1 Ecken des Simplexes wird es affin auf ein regelméssiges Polyeder transfor-
miert, fiir welches die Steinerellipsoide konzentrische Kugeln sind. Extremal- und
Symmetrieeigenschaften bleiben bei dieser Abbildung erhalten und gelten somit
auch fir das Simplex. Gleichzeitig liefert dieser Ansatz die Gleichung der Steiner-
ellipsoide. Bei der Verallgemeinerung auf mehr als zwei Dimensionen treten
Berithrungsprobleme tieferdimensionaler Seitenflichen auf, z. B. die Berithrung der
Kanten eines Tetraeders. Die in diesem Zusammenhang nicht interessierenden
Zwischenellipsoide sind jedoch mit dem Abbildungsansatz sofort erhéltlich.
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Notation

Der Kolonnenvektor %; ist der Ortsvektor der Ecke X,-,i=0,1,.;.,n, X ist die
n X (n+ 1)-Matrix mit den Kolonnen X;. Zur Vereinfachung der Notation wird der
Ursprung des Systems im Schwerpunkt des Simplexes angenommen. Algebraisch
heisst das, dass alle Zeilensummen der Matrix X Null sind, also

X-1=0,

wobei I der Vektor mit Komponenten Eins ist.

Die Matrix P

Es wird angenommen, dass das Simplex nicht degeneriert ist. Die Konzentrations-
matrix S= X X’ ist dann eine reguldre Matrix der Ordnung rn, und die Matrix

P=X'XX)'X=X'S"'X

hat folgende Eigenschaften:

(i) P istsymmetrisch,

(i1) P istidempotent der Ordnung n+ 1,
(iii) Rang (P)=n,

(iv) P1=0,
1
(v) P=I- 1 E, wobei I die Einheits-, E die Einermatrix ist, d. h.
_n _ 1
Pi=51 PiT TN

Eigenschaft (i) folgt unmittelbar aus der Definition. Durch Rechnung verifiziert
man P2= P, also (ii).

Zu (iii): Rang (P)=Spur (P) ist eine Eigenschaft idempotenter Matrizen. Allgemein
gilt Spur (4B)=Spur (BA). Somit ist Rang (P)=Spur (P)=Spur (XX’'S™ =
Spur I=n.

(iv) gilt wegen X 1=0, also wegen der speziellen Wahl des Ursprungs. Andererseits
bedeutet (iv), dass I ein Eigenvektor der Matrix P zum Eigenwert 0 ist.

Zu (v): Die Eigenwerte A; idempotenter Matrizen sind entweder 0 oder 1. Dabei
bestimmt die Differenz von Ordnung und Rang die Anzahl verschwindender Eigen-
werte. Nach (ii) und (iii) hat P somit genau einen verschwindenden Eigenwert, z. B.
/n+1- Wenn die den Eigenwerten A; entsprechenden normierten Eigenvektoren mit
¢; bezeichnet werden, gilt nach (iv) é,,,=1/Vn+1.

Die Spektralauflosung der Matrix P,

n+1 n+1
= Z A€ ¢, = G ¢l
i=1 j==1

4

-~
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vereinfacht sich im vorliegenden Fall somit auf

n ntl 1
P= ) &= &él—é,,,8, =1—
i%i i n+1%n+1
i=1 i=1 n+1

E.

Die Gleichung

Einerseits ist nach (v) p;;=n/(n+ 1), andererseits folgt aus der Definition der Matrix
P, dass p;;=%/S™! %, ist. Somit ist

die Gleichung des Umellipsoides des Simplexes.

Die Minimaleigenschaft

Da S eine positiv definite Matrix ist, kann mit einer reguldren Matrix U faktorisiert
werden, S= U U’. [U ist nicht eindeutig. Hingegen sind Dreiecksmatrizen U bis aufs
Vorzeichen eindeutig.] X= Uy transformiert das Ellipsoid in die Kugel y’'y=c,
und gleichzeitig wird das »n-Simplex !X, X;,...,X,} in ein regelmissiges Polyeder
transformiert, da unter Verwendung der obigen Beziehungen fir p;; und p;; gilt

0i—¥) Oi—y)= (ji_)zj),(U,)_l Ulx— X;)
= (j,_ .i'j)’S_l ()?‘— 5&1)

2 —pi=2{" ! } _

20i=p 2{n+1 TS

Unabhingigkeit dieses Resultates von i und j beweist die Regelmissigkeit des
transformierten Simplexes. Uberraschenderweise ist das Resultat aber auch unab-
hingig von n.

Die Kugel y’j=c mit dem Volumen v* ist offensichtlich die minimale Umkugel
des regelmissigen Polyeders. Es gilt explizit

e (nc)n/Z
I’(%+l>

siche z. B. Dempster ([1] S. 44, Formel (3.5.7)].
Jedes andere Umellipsoid hat aus Symmetriegriinden notwendigerweise grosseres
Volumen v> v*. Der durch die Riicktransformation verursachte Faktor ist

s

detU=VdetUdetU’' =V detUU =V det S,
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was fiir die riicktransformierte Umkugel, also das Steinerellipsoid, das Volumen
v*VdetS, fir die Riicktransformation irgendeines Umellipsoides das Volumen
vV detS ergibt. Aus v>v* folgt, dass das Steinerellipsoid ¥’ S~ !'%¥=n/(n+ 1) das
Umellipsoid minimalen Volumens ist.

Das einbeschriebene Ellipsoid

Mit M, wird der Schwerpunkt der n-Seitenfldche des Simplexes bezeichnet, die auf
der Hyperebene durch X|,..., X, liegt. Wegen der Wahl des Ursprungs im Schwer-
punkt des vollen Simplexes ist

— 1 -

’=

und die Gleichung des Ellipsoides durch die Schwerpunkte M; aller n-Seitenflichen
ist
1 1 n 1

my S~ ig= — %, S 1 %= — = m/S~\m;.
0 07 270 "W a+l n@m+l)

Dieses Ellipsoid ist perspektiv-dhnlich dem Umellipsoid. Damit es sich tatsichlich
um ein Inellipsoid handelt, muss gezeigt werden, dass es die Hyperebene in M;
tangiert. Sei Z# M, ein beliebiger Punkt der Hyperebene durch X,...,X,,Z sein
Ortsvektor.

n
7= Y w% mit w>0, D w=1
i=1

§li= ( iji)’S*l (Z Wj%‘):Z PRATEANES =22 Wiw;py
i J i J

=Zw'2p“+z%zwi“’ﬂ”ij= LW+ (—
i it

n+1

) Zww,

n+1/ 55

(Z w,-)2= 1=;w,3+zz W, W;

gibt

81z

1 .
Die Cauchy Ungleichung

(Xa)'2 ()" 2> a;b,
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fiir ;= w;, b;= 1 lautet

1
2wz —

Fiir Z= M, sind alle w;= 1/n und die Vektoren d und b somit linear abhingig. Fiir
Z # M, gilt die Ungleichung in der scharfen Form.
Somit ist

1 1 1 1
>——-_

= 1y
n+l n n+l1 nn+1)

my.

7SVi=) wi-

=i} S~

Das bedeutet, dass Z auf einem grisseren Ellipsoid als M|, liegt. M|, ist nicht nur
Punkt des Ellipsoides

1

= S__l - —
X T (n+1)’

sondern auch Berithrungspunkt von Hyperebenen und Ellipsoid. Mit dem gleichen
Argument wie beim Umellipsoid wird die Optimalitidt auch hier bewiesen, d.h. das
einbeschriebene Steinerellipsoid hat maximales Volumen.

Die Zwischenellipsoide

k der n+ 1 Simplexecken bilden eine k-Seitenflache, k= 1,...,n. Die konzentrischen
Ellipsoide, die diese Seitenflichen in deren Schwerpunkten berithren, haben die
Gleichung X’ S~! X =¢, mit

o n—k+1
T k(n+1)

(c; ist die Konstante der Gleichung des Umellipsoides, ¢, die des Inellipsoides).
Man verifiziert leicht, dass der Schwerpunkt der Seitenfliche auf diesem Ellipsoid
liegt. Dass es sich tatsdchlich um eine Berithrung handelt, zeigt man, indem im
vorhergehenden Abschnitt n durch k ersetzt wird.

L

Numerisches Beispiel

Die einzelnen Schritte werden am Beispiel des Dreiecks 4(1,3), B(1,—2),
1 1 -2

C(—2,—1) illustriert. n=2 und X= (3 -2 ~-1

). Man sieht, dass die beiden

i hwinden. S=Xxx'= (% >).s 't'ts-1~—1——(14_3)
Zeilensummen verschwinden. S= = ( 31 4). omit is =5\ -3 ¢/
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Die Gleichungen der Steinerellipsen sind

Umellipse: 7x2—3x y+3)?=25,

Inellipse: 28 x2— 12 x y+ 12)2=125

Man verifiziert leicht, dass die Punkte 4, B und C auf der Umellipse und die
Seitenmitten auf der Inellipse liegen. Die Dreiecksmatrix

Ve 0
U=

1 5
—V6 —V2

2 2
erfiillt die Gleichung S= U U’, und X= U~!y transformiert das Dreieck auf

(B, p(FE), o (-F)

Dieses Dreieck ist gleichseitig und hat die Seitenldnge VvV 2 .
Peter Niiesch, Département de Mathématiques, ETH-Lausanne
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- Uber eine Formel fiir primitive Kongruenzwurzeln

Zu jeder ungeraden Primzahlpotenz p® gibt es genau ¢ (¢ (p?)) Primitivwurzeln
mod p?, wobei ¢ (n) die Eulersche ¢-Funktion ist. Kennt man eine Primitivwurzel w
fur die ungerade Primzahl p, so lisst sich eine Primitivwurzel mod p® sofort explizit
angeben: Die Zahl

w*=w”"" (1+p)

ist dann Primitivwurzel mod p®.

Zur Ermittlung von Primitivwurzeln modp schreibt H. Hasse ([2], S.68): «Ein
systematisches Rechenverfahren zur Bestimmung einer primitiven Wurzel modp,
etwa der kleinsten, ist nicht bekannt. Man ist dazu auf Probierverfahren an-
gewiesen.» - Nach der Angabe eines Probierverfahrens zur Gewinnung von
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