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Aufgaben

Aufgabe 880. Durch je drei von n Punkten des Raumes (n> 3) denke man sich eine
Ebene gelegt. Man zeige, dass diese Ebenen den Raum in maximal

1
T5be (n°—9n8—48n" + 1098 n6— 6711 n+ 20079 n*— 29890 13+ 17712 n?

— 9361+ 1296)

Gebiete zerlegen. [Aufgabe 643, El. Math. 26, 46 (1971), beinhaltet das analoge

Problem fiir die Ebene.]
K. Wirth und A.S. Dreiding, Ziirich

Losung der Aufgabensteller:

Man denke sich die Lage der n Punkte so, dass die betrachteten Ebenen, ihre
, Schnittgeraden und Schnittpunkte in keiner vermeidbaren speziellen Weise in-
zidieren und keine Parallelititen auftreten. Unter dieser Voraussetzung, die wir bei
allen nachfolgenden kombinatorischen Uberlegungen stillschweigend verwenden,
wird der Raum in eine maximale Anzahl G von Gebieten zerlegt. Ist nun F die
Gesamtzahl der Flichen, K und E diejenige der Kanten bzw. Ecken, die diese
Gebiete beranden, so gilt:

G=F—K+E+1 (1)

Der Beweis dieser Formel erfolgt im wesentlichen durch vollstindige Induktion
nach der Gebietszahl G und stiitzt sich auf den Eulerschen Polyedersatz (die unbe-
schrinkten Gebiete ersetzte man durch geeignete konvexe Polyeder).

Zur Vorbereitung fithren wir Begriffe ein und nehmen einige Anzahlbestimmungen
vorweg, ehe wir F, K und E der Reihe nach. berechnen. Bezeichnet e die Anzahl der
betrachteten Ebenen und g diejenige der Verbindungsgeraden von je 2 der n
Punkte, so ist:

() 5=(3)
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Jede Verbindungsgerade ist die Schnittgerade von n—2 Ebenen. Genau zwei
Ebenen gehen durch jede der iibrigen Schnittgeraden, die wir Nebengeraden
nennen. Es kommen zwei Arten von Nebengeraden vor: Nebengeraden 1.Art,
die genau einen, und Nebengeraden 2. Art, die keinen der n vorgegebenen Punkte
enthalten (siehe Figuren).

Ecken, die auf einer Verbindungsgeraden liegen, sollen Hauptecken, die iibrigen
Nebenecken heissen; trivialerweise ist jeder der n vorgegebenen Punkte eine Haupt-
ecke. Eine Verbindungsgerade enthdlt offenbar stets v+2 Hauptecken mit

-2
v= (n 3 ) Eine Nebengerade 1.Art hat stets 3 und eine solche 2. Art 6 Haupt-
ecken (siche Figuren). Fiir die Anzahlen @ und b der Nebenecken auf einer Neben-
geraden 1. bzw. 2. Art erhilt man mit einfacher Kombinatorik:

a=(";1)—2m—3L b=[(§)—z]-6m—3y 3)

.Ausserdem verifiziert man, dass in jeder Ebene 3 Verbindungsgeraden, a8 Neben-
geraden 1. Art und b Nebengeraden 2. Art liegen:

a=3(";3), 5=(";3). )

Um nun F zu berechnen, bestimmen wir vorerst die Anzahl F’ der Flichen in einer
Ebene, denn es ist F=e F’. Dies geschieht mit Verwendung der planimetrischen
Version von (1): F’'=K’—E’+ 1. Es sind also die Anzahlen K’ und E’ der Kanten
bzw. Ecken in dieser Ebene zu ermitteln. Weil jede Schnittgerade eine Kante mehr
als Ecken aufweist, ergibt sich: K’=3(v+3)+a(a+4)+b(b+7). Zur Bestimmung
von E’, zihlen wir zuerst die Hauptecken: Insgesamt 3+ 3 v liegen auf den 3 Ver-

-3 1
bindungsgeraden, die sich in der Ebene befinden, und die iibrigen (n 5 > = 3 a

nur auf solchen, die sie durchstossen. Da sich in einer Nebenecke genau zwei
Nebengeraden der Ebene schneiden, ist aa+bb die doppelte Anzahl der Neben-
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1 1
ecken. Daraus folgt: E’=3+3v+ —a+ — (a a+bb). Nun lisst sich F angeben und
man bekommt nach Umformen:

1 _ 11 -
F= - e@a+bb)+e (—3— a+7b+7).
Um die Gesamtzahl K der Kanten zu finden, erinnern wir uns daran, dass jede
Schnittgerade eine Kante mehr als Ecken besitzt. Weil durch jede Nebengerade

1 | R
genau zwei Ebenen gehen, sind ) ea und ) eb die Anzahlen der Nebengeraden 1.
bzw. 2. Art. Somit ist:

1 | B
K=g(v+3)+ 5 eda(a+4)+ 5 eb(b+7).
Zur Bestimmung von E schliesslich sei bemerkt, dass auf allen Verbindungsgeraden
insgesamt n+ g v Hauptecken liegen und durch jede Nebenecke genau drei Neben-
geraden gehen. Hieraus ergibt sich:

1
E=n+gv+ 3 e(@a+bb).
Mit Verwendung von (1) erhélt man nun nach Umformen

1 1 5 . 7 -
G——n—-3g+l+e(—6—aa < bb+ S a+ b+ )
und nach Einsetzen von (2), (3) und (4) mit mithsamer Rechnung das behauptete
Resultat.

Aufgabe 88S. In einer hyperbolischen Ebene bezeichne U, die Grenzfigur einer
Folge reguldrer n-Ecke, deren Seiten unbeschrinkt wachsen derart, dass aufein-
anderfolgende Seiten schliesslich parallel werden. Die Berithrungspunkte des dem
Polygon U, einbeschriebenen Kreises mit den Seiten von U, bilden die Ecken eines
reguldren n-Ecks P,. Man berechne die Winkel von P,

C. Bindschedler, Kiisnacht

Losung: Wir benutzen das Poincaré’sche Modell der hyperbolischen Ebene. Die
Seiten von U, und P, sind in diesem Fall Bégen von Orthogonalkreisen des Ein-
heitskreises. Sei P die Mitte einer Seite von U,, @ der eine Endpunkt von ihr, M
der Mittelpunkt des Einheitskreises und Z das Zentrum des Orthogonalkreises,
zu welchem die durch P (und Q) verlaufende Seite von U, gehort. Weil sich die
aufeinanderfolgenden Seiten von U, auf dem FEinheitskreis treffen, muss das zu
einer von P auslaufenden Seite (des einbeschriebenen Polygons P,) gehorige Kreis-
zentrum O auf der Gerade MQ liegen. Die Orthogonalitit der Seiten(verldngerun-
gen) von U, und P, beziiglich des Einheitskreises dussert sich in der Eigenschaft, dass
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die Strecke ZO normal zu MZ liegt und ZQ senkrecht auf MQ steht. (MOZ) ist
also ein bei Z rechtwinkliges Dreieck mit der Hohe ZQ und dem Winkel (n /n) bei
M; ferner ist P ein Punkt auf der Kathete MZ, mit PZ=QZ.

Weil dieses funktionentheoretische Modell die hyperbolische Ebene konform
wiedergibt, diirfen wir den Winkel ¢, als Schnittwinkel zweier Kreistangenten auf-
fassen. Etwas direkter kann zwar der halbe Winkel (er werde mit a bezeichnet)
berechnet werden: a ist der Winkel, den die Tangente im Endpunkt des Radius OP
mit der Strecke PM bildet und stimmt mit dem Dreieckswinkel £ (POZ) iiberein,
und deshalb gilt:

tana=Z7’:O—_Z.

Zusammen mit ZP=ZQ, OZ=ZQ/(cos(n/n)) und a=¢,/2 erhalten wir den
gesuchten Wert der Winkel von £,:

¢,=2arctan (cos(n/n)) .
Hj. Stocker (Wiadenswil ZH)

Hj. Stocker (Wédenswil) sandte eine zweite Losung.

Aufgabe 886. Es sei

(o 1)
0 1
die Ubergangsmatrix einer Markovkette. Die Zufallsvariable 7T sei definiert als die

Anzahl der bis zur Absorption erforderlichen Schritte. Man bestimme Var (7).
U. Abel, L. Pilz, Heidelberg, BRD

Solution: The time T is at least » if and only if the Markov chain, which, supposedly,
starts in the nonabsorbing state, stays there for at least »n transitions, i.e.

P(T=n)=p" !, (n=1,2,..),

or P(T=n)=(1-p)p"~ ! (n=1,2,...). It follows that E(T)=>.nP(T=n)=1/(1-p)
and E(T(T—-1))=Y.n(n—1)P(T=n)=2p/(1—p)* and hence Var(T)=E(T?
—(ET=p/(-p).

O.P. Lossers, Eindhoven, NL

Weitere Losungen sandten U. Heierle (Gersau), A. A. Jagers (Enschede, NL), Hj.
Stocker (Widenswil), M. Vowe (Therwil).
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Neue Aufgaben

Die Losungen sind getrennt nach den einzelnen Aufgaben in Maschinenschrift
erbeten bis 10. April 1984 an Dr. H. Kappus. Dagegen ist die Einsendung von
Losungen zu den mit Problem... A, B bezeichneten Aufgaben an keinen Termin
gebunden.

Bei Redaktionsschluss dieses Heftes sind noch ungeldst: Problem 601A (Band 25,
S.67), Problem 625B (Band 25, S.68), Problem 645A (Band 26, S.46), Problem
672 A (Band 27, S.68), Aufgabe 680 (Band 27, S.116), Problem 724 A (Band 30,
S.91), Problem 764 A (Band 31, S.44), Problem 862 A (Band 36, S.68), Problem
887 A (Band 37, S.151).

Aufgabe 900. Es seien A, s, h. die Hohen, r der Inkreisradius eines ebenen Dreiecks.
Man schitze

ho—r  hy—r L h.—r
ho+r  hy+r h.+r

bestmoglich nach unten ab.
M. D. Milosevic, Pranjani, YU

Aufgabe 901. Die Funktion f:{zeC||z| <1} = {zeC||z| <1} sei holomorph und es
sei f(0)=0. Dann trifft genau eine der beiden folgenden Aussagen zu:

1
|| f(x)dx|<2/3. 1)
-1

, Es gibt eine Konstante a e C mit |a | =1 derart, dass

f(@=az. @)

Dies ist zu zeigen.
P. von Siebenthal, Ziirich



	Aufgaben

