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A Result for the 'other' variable ofRamanujan's sum

In [1], Grytczuk shows that

Y\Cd(n)\-(k,n)2°>(k^), (1)
d\k

where Cd(n) is Ramanujan's sum and co (n) is the number of distinct prime divisors
of «. In this note we derive an analogous result for the sum

Y\Ck(d)\. (2)
d\n

It is well-known (e.g. [3], p. 56) that Ck(n) is multiplicative in the variable k for each
fixed «. That is, if (k,j)=l, then Ck(n)Cj(n)=Ckj(n). Grytczuk uses this
multiplicative property of Ramanujan's sum to derive the identity (1). This is a Standard
technique for proving such identities. Ramanujan's sum is not multiphcative in its
other variable and thus the same technique cannot be applied directly to evaluating
the analogous sum (2). However, in [4] the following reciprocity law for
Ramanujan's sum is proved. Let k be the core of k (the largest square-free divisor

t ofk) and k* k/k, then for all« and k,

M$) p(n)
-j^- Ck(nk*) —^- Cn(kn*). (3)

It is also shown in [4] that

Ck(nk*)~k*Cü(n). (4)

These two results make the sum (2) tractable.
It is routine to prove the following Lemma.

Lemma 1. Let Fk(n)=Yd\n I Q(&)l >
then Fk(n) is multiplicative in the variable nfor

eachfixed k.

Lemma 2. Fix k. Then

Fk(n)=U(<t+l)Ula(p-l)+l]>
P°U p«ln
pXk p\k
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where pa\\n denotes that pa\n but pa+x X n. (This gives Grytczuk's result ifn is square-
free.)

Proof: Recall that

c'w~| -1 if pXk

[2]. By Lemma 1 we may assume that n=pa. Then,

Fk(n)=Y \Q(k)\
d\p*

\Cx(k)\+a\Cp(k)\.

So that

\a+\ if pXkFk(n)~~ *a(p-l)+l if p\k.

The result now follows.

Theorem 1

Z U* II (a+l) Un[a(p-l)+l] if**|/i
P*\n/k* r\

P\k
k*

pJfk
K

Proof: If k*Xd then Ck(d) 0 [2], thus the sum is zero if k*Xn. Additionally, we

may write (if/c*|«)

Eic*w)i= Y \ck{dk*)\
d\n d\ —

k*

=** Y
d\—

k*

Cd(kd*)
d* (by3)

"k* Y IQ(/c)|, (by4)

k*

=k* n (fl+o n [a(p-i)+i].
pa\n/k* p**-"

_-*
pJfk ilp\k

Kenneth R. Johnson
North Dakota State University, Fargo, ND.
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Aufgaben

Aufgabe 880. Durch je drei von « Punkten des Raumes («> 3) denke man sich eine
Ebene gelegt. Man zeige, dass diese Ebenen den Raum in maximal

(«9-9«8-48«7+1098«6-6711«5 + 20079«4-29890«3+17712«2
1296

-936«+1296)

Gebiete zerlegen. [Aufgabe 643, El. Math. 26, 46 (1971), beinhaltet das analoge
Problem für die Ebene.]

K. Wirth und A. S. Dreiding, Zürich

Lösung der Aufgabensteller:
Man denke sich die Lage der « Punkte so, dass die betrachteten Ebenen, ihre
Schnittgeraden und Schnittpunkte in keiner vermeidbaren speziellen Weise
inzidieren und keine Parallelitäten auftreten. Unter dieser Voraussetzung, die wir bei
allen nachfolgenden kombinatorischen Überlegungen stillschweigend verwenden,
wird der Raum in eine maximale Anzahl G von Gebieten zerlegt. Ist nun F die
Gesamtzahl der Flächen, K und E diejenige der Kanten bzw. Ecken, die diese
Gebiete beranden, so gilt:

G=F-K+E+l (1)

Der Beweis dieser Formel erfolgt im wesentlichen durch vollständige Induktion
nach der Gebietszahl G und stützt sich auf den Eulerschen Polyedersatz (die
unbeschränkten Gebiete ersetzte man durch geeignete konvexe Polyeder).
Zur Vorbereitung führen wir Begriffe ein und nehmen einige Alizahlbestimmungen
vorweg, ehe wir F9 K und E der Reihe nach berechnen. Bezeichnet e die Anzahl der
betrachteten Ebenen und g diejenige der Verbindungsgeraden von je 2 der «
Punkte, so ist:
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