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A Result for the ‘other’ variable of Ramanujan’s sum

In [1], Grytczuk shows that

;}2 | Ca(n)| = (k, m) 2 (K/tm) | 1)

where C,(n) is Ramanujan’s sum and w (n) is the number of distinct prime divisors
of n. In this note we derive an analogous result for the sum

> 1Ce@)] . @)

din

It is well-known (e.g. [3], p. 56) that C; (n) is multiplicative in the variable k for each
fixed n. That is, if (k,j)=1, then Ci(n)C;(n)=Cy;(n). Grytczuk uses this multi-
plicative property of Ramanujan’s sum to derive the identity (1). This is a standard
technique for proving such identities. Ramanujan’s sum is not multiplicative in its
other variable and thus the same technique cannot be applied directly to evaluating
the analogous sum (2). However, in [4] the following reciprocity law for
Ramanujan’s sum is proved. Let k be the core of k (the largest square-free divisor
_of k) and k* =k /k, then for all n and k,

#(ic) Cpo(nk*)= p ()
k n*

C,(kn*). (3)
It is also shown in [4] that
Cie(nk*)=k* Cr(n). @

These two results make the sum (2) tractable.
It is routine to prove the following Lemma.

Lemma 1. Let Fi(n)= 4, | Ca(k)|, then Fy (n) is multiplicative in the variable n for
each fixed k.

Lemma 2. Fix k. Then

Fem=1] @+ ]]la@-D+1],
Plin Pin
prk plk
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where p®| n denotes that p®|n but p°* Ly n. (This gives Grytczuk’s result if n is square-

free.)

Proof: Recall that

C,(k)=1{?

-1 if plk
—1 if pftk

[2]. By Lemma 1 we may assume that n=p® Then,

Fr(m)=3, 1C5(k)|

d|p°

=1Ci (k)| +alCpk)| .

So that

Fr(n)=

a+1 if plk
ap—D+1 if plk.

The result now follows.

Theorem 1

D C@| =

din

0 if k*fn

k* II @+1) JI [a@—D+1] if k*|n
Plin/k* p"u—k—;
prk plk

Proof: If k* fd then Cj(d)=0 [2], thus the sum is zero if k* f n. Additionally, we
may write (if k* | n)

d\n

> 1 Cr(@)] = Z,, | Cr (@k*)|

di—
k-l

=k* Z

d =
k*

(by 3)

Cy(k d*) l
& |

=k* Z;l |ICa()l,  (by4)

kl»
=k* J] @+1 [ [e(@—1D+1].
poin/ke Pl
plk

plk
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Aufgaben

Aufgabe 880. Durch je drei von n Punkten des Raumes (n> 3) denke man sich eine
Ebene gelegt. Man zeige, dass diese Ebenen den Raum in maximal

1
T5be (n°—9n8—48n" + 1098 n6— 6711 n+ 20079 n*— 29890 13+ 17712 n?

— 9361+ 1296)

Gebiete zerlegen. [Aufgabe 643, El. Math. 26, 46 (1971), beinhaltet das analoge

Problem fiir die Ebene.]
K. Wirth und A.S. Dreiding, Ziirich

Losung der Aufgabensteller:

Man denke sich die Lage der n Punkte so, dass die betrachteten Ebenen, ihre
, Schnittgeraden und Schnittpunkte in keiner vermeidbaren speziellen Weise in-
zidieren und keine Parallelititen auftreten. Unter dieser Voraussetzung, die wir bei
allen nachfolgenden kombinatorischen Uberlegungen stillschweigend verwenden,
wird der Raum in eine maximale Anzahl G von Gebieten zerlegt. Ist nun F die
Gesamtzahl der Flichen, K und E diejenige der Kanten bzw. Ecken, die diese
Gebiete beranden, so gilt:

G=F—K+E+1 (1)

Der Beweis dieser Formel erfolgt im wesentlichen durch vollstindige Induktion
nach der Gebietszahl G und stiitzt sich auf den Eulerschen Polyedersatz (die unbe-
schrinkten Gebiete ersetzte man durch geeignete konvexe Polyeder).

Zur Vorbereitung fithren wir Begriffe ein und nehmen einige Anzahlbestimmungen
vorweg, ehe wir F, K und E der Reihe nach. berechnen. Bezeichnet e die Anzahl der
betrachteten Ebenen und g diejenige der Verbindungsgeraden von je 2 der n
Punkte, so ist:

() 5=(3)



	A result for the 'other' variable of Ramanujan's sum

