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Über eine die konvexen Kurven kennzeichnende
Minimaleigenschaft

1. Wir betrachten eine geschlossene Kurve mit einer Parametrisierung durch eine
komplexwertige Funktion/(d) auf dem Intervall [0,2 7i] (es ist also/(0)=/(2 7r)),
von der wir zunächst voraussetzen, dass sie eine stetige und nicht verschwindende
Ableitung besitzt. Zu ihr gehört eine Fourierreihe Y-oocne'nS m^ den komplexen
Fourierkoeffizienten

Cn=Y-2Sf(ö)e-'»*dö. (1)

Es ist L Jo7r \f(8)\d8 ihre Länge. Zwischen dem «ersten» Fourierkoeffizienten cx

und dieser Länge gilt die Ungleichung

2n\cx\=L, (2)

wie man durch partielle Integration in (1) sofort feststellt:

2n\cx\ )Kf(8)e-'öd8
o

f -ie~löf'(8)d8
o

^)K\f'(8)\d8 L. (3)
o

Es stellt sich natürlich die Frage, für welche Kurven oder Funktionen / in (2)
Gleichheit besteht. Im vorliegenden Fall, wo f(8) eine überall stetige und nicht
verschwindende Ableitung besitzt, ist diese sofort zu beantworten. Denn diese
Gleichheit tritt dann und nur dann ein, wenn in (3) zwischen dem 3. und 4. Glied
Gleichheit besteht. Dafür ist aber notwendig und hinreichend, dass —ie~löf'(8)

\f (8) I ist, m.a.W., dass der Tangentenvektor/' (8) in der Form

f(ö) ie>*'P(ö)
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geschrieben werden kann, wo p eine positive und 2 n-periodische Funktion ist.
Diese Bedingung drückt zweierlei aus:

1. Man erhält im Kurvenpunkt f(8) die Tangentenrichtung r, indem man den
Vektor etö um n/2 dreht: x 8 + n/2. Da diese mit wachsendem 8 zunimmt, muss
die Kurve konvex sein.

2. Bezeichnet s die Bogenlänge, so gilt ds/d8= \f'(8)\ =p, d.h. p ist der
Krümmungsradius.

Die Gleichheit in (2) hat also eine zweifache Wirkung, nämlich auf die Gestalt der
Kurve und den Kurvenparameter 8, der die Grösse von \cx\ wesentlich beeinflusst.
Sie ist gleichzeitig notwendig und hinreichend.
Die Frage nach der Gleichheit in (2) kann leicht in ein Extremalproblem verwandelt
werden: Man betrachte die Klasse der Funktionen/ aus C'2n, die für \cx\ einen
bestimmten Wert liefern, z.B. den Wert 1, und suche darin jene Funktionen, welche
Kurven mit kleinster Länge parametrisieren. Diese Minimaleigenschaft charakterisiert

die konvexen glatten Kurven (wobei die Normalenrichtung als Kurvenparameter

zu wählen ist).

2. Die Frage, ob diese Minimaleigenschaft allen konvexen Kurven zukommt und
nur diesen, ist wohl nicht ganz trivial. Denn die oben an / gesetzten Regularitäts-
bedingungen schhessen das Auftreten von Ecken und Seiten aus, da bei Ecken die
Funktion und bei Seiten die Normalenrichtung auf einem Intervall konstant bleibt.
Betrachten wir als Beispiel etwa die Funktion f(8), die für 0<8 n den Wert /
und für n<8^2n den Wert — / annimmt. Es ist 2ncx 4. Hier besteht der
Graph von / aus 2 Punkten, aber es ist natürlich, ihn durch Hinzufügen der
Sprünge von/zu einer geschlossenen Kurve zu ergänzen, die aus den Strecken von
— / nach / und von / nach — j besteht, also ein Schlitz ist, und die Länge 4 hat.
So entsteht in (2) Gleichheit. Allgemeiner, sind zx,z2,...,zn die Ecken eines beliebigen

konvexen Polygons, bezeichnet a} die Normalenrichtung (nach aussen!) der
Seite von Zj_x nach Zj(zQ zn), j= 1,2, ...,n, und ist / die Funktion, welche für
a7_ i < 8 _=_ üj den Wert z} annimmt, so ergibt sich analog

n

2ncx= Y \z~zj-\\ •

Dies ist der Umfang L der konvexen Hülle von {zx,...,zn}, und in (2) entsteht wieder
Gleichheit.
Für die Herleitung von (2) war die partielle Integration in (3) wesentlich. Diese
Operation, wie sie in (3) ausgeführt wird, ist nur für ein absolut stetiges / gültig
und führt im vorangehenden Beispiel, wo / stückweise konstant ist, offenbar zu
nichts. In (3) sollte eben die Ableitung /' nicht im klassischen, sondern im
distributioneilen Sinn genommen werden, welche unter anderem auch die Sprünge
von/mit berücksichtigt. Dies ist jedoch in unserem Kontext äquivalent damit, dass

man in (3) das Integral im 3. Glied durch das Stieltjessche Integral
2n 1

\-e-^df(8)
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ersetzt und dann durch partielle Integration zum Integral im 2 Glied gelangt, da

wir naturgemass anzunehmen haben, dass die Kurve rektifizierbar oder die
Funktion/von beschrankter Schwankung sei
Es bezeichne also V2n die Klasse der komplexwertigen und 2 7r-penodischen
Funktionen auf R, die lokal von beschrankter Schwankung und wie folgt normiert
smd

/(0) 0 und /(*)=/(*+) hm/O0, xeR
ylx

Dann ist jede Unstetigkeitsstelle x von/e V2n eine Sprungstelle, d h es existieren
die Grenzwerte von links und von rechts und smd verschieden

hmf(y)=f(x„)*f(x+) limf(y),
ylx yix

und es gibt höchstens abzahlbar viele Sprungstellen, die aber auf R dicht sein
können Die totale Variation von / im Intervall [0,x], x=0, ist eine wachsende
Funktion F(x) mit der Normierung

F(0) 0 und F(x) F(x+), x=0 (4)

Es hat dann /auf [0,2.r] die totale Variation F(2n) und auf [x,y], 0^x<y, die
totale Variation F(y)-F(x) Wie erwähnt, folgt durch partielle Integration

2n\cx\ f -ie-'sdf(ö)
0

^(dF(ö) F(2n)
0

(5)

Ist die Funktion /stetig, so ist ihr Graph eine geschlossene Kurve und F(2n) ihre
Lange Im allgemeinen, d h fur fe V2n, hat dieser Graph an den Sprungstellen
«Lucken» Werden diese nun ausgefüllt, d h die Punkte f(xJ) und/(x+) durch
Strecken verbunden, so erhalt man wiederum eine geschlossene Kurve, die aber
anders zu parametnsieren ist Wir nennen sie den geschlossenen Graphen von /
und bezeichnen ihre Lange mit L Es ist offenbar L F(2n), und es bleibt nach (5)
die Ungleichung (2) mit den gegebenen Prazisierungen auch in unserem
allgemeinen Rahmen bestehen Es ist nun unser Problem, jene/e V2n zu bestimmen,
fur die m (2) Gleichheit besteht Da man / durch e*af ersetzen kann, ohne die
Gleichung 2n\cx\=L zu zerstören, kann man sich auf den Fall beschranken, wo
ci___0, also

2{ -ie-lSdf(8)=2[\df(8)\=F(2n) (6)
o o

ist Funktionen aus V2n, die dieser Gleichung genügen (F(2n) ist hier einfach ein
Synonym für jo^l^l), nennen wir kurz extremal Wir werden nachfolgend eine
explizite Formel für diese extremalen Funktionen / geben und dann nach der
geometnschen Bedeutung dieser Formel fragen
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3. Wir nehmen also an, dass / extremal und daher die Gleichung (6) erfüllt sei.

Wegen \\2ne-lxdf\^F(2n)-F(a)und \\le~lxdf\ =F(a) folgt daraus

)-ie~lxdf=F(a), ae[0,2n] (1)
o

und diese Bedingung ist notwendig und hinreichend.
Für ein stetig differenzierbares/ist nun

-ie-lxdf=) -ie~lxf (x)dx und F(a)=)F'(x)dx,
0 0 0

und aus (7) folgt durch Ableiten nach a, dass/' (a)=iela F'(a) und daher

f(a)= ]ielxdF(x), 0^a 2n, (8)
o

sein muss. Es ist nun leicht zu sehen, dass sich jedes extremale /so darstellen lässt,
wobei F(a) die totale Variation von/auf [0,a] ist. (Schreibt man df=ielx\df\ ohne
zu fragen, was die Zeichen df und | dfl bedeuten, so scheint der Schluss von (7)
auf (8) sogar trivial zu sein.) Es gilt aber mehr: Für jede wachsende Funktion F,
die der Normierung (4) und der Periodizitätsbedingung

\e-%ydF(y) 0 (9)
o

genügt, definiert (8) ein extremales / und ist F(a) die totale Variation von/auf
[0,a]. In der Tat, integriert man die linke Seite von (6) partiell, setzt (8) ein und
vertauscht die Reihenfolge der Integration, so erhält man (6). Es ist aber noch zu
verifizieren, dass F die totale Variation von / ist. Für ein beliebiges Teilintervall

%[ß,ß'] von [0,2tt] ist \f(ß')-f(ß)\ ^\ßß'dF und dieses, angewandt auf beliebige
Unterteilungen der Intervalle [0,a] und [a,2 n], ergibt

]\df\=F(a) und (\df\^F(2n)-F(a).
0 a

Daraus schhessen wir in Verbindung mit (6) wie zu Beginn dieser Nummer, dass (7)

gelten muss. Deshalb ist auch _P(a)_sJg \df\ und schliesslich F(a) fö\df\ für
ae[0,2;r].
Für jedes wachsende JF, das der Normierung (4) genügt, stellt somit (8) eine
Funktion dar, die wegen (9) zu V2n gehört, der Bedingung (6) genügt und daher
extremal ist. Ob nun jede Extremale in V2n in dieser Weise dargestellt wird?
Nehmen wir an, es sei/extremal und es sei Fdie totale Variation von/ Dann gilt
(7). Die mit F durch (8) definierte Funktion bezeichnen wir mit /. Nach dem
soeben Bewiesenen gilt dann

]-e->ydfx~F{x)
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und zusammen mit (7) folgt dann, dass (p^f—fx im ganzen Intervall [0,2 7i] der
Gleichung

x 1 1 JC

0= | — e~iyd(p= — e~lx(p (x)- J -e'1^ (y)dy
o l * o

oder

(p(x)=)iel^x-y^(p(y)dy
o

genügen muss. Daher ist <p stetig differenzierbar und (p' 0, somit cp eine Konstante,
die wegen ^(0)=/(0)-/, (0)=0 verschwinden muss. Also ist/ mit/identisch und
daher jede Extremale durch die Formel (8) darstellbar, und wir haben folgendes

Lemma. Die extremalen Funktionen in V2n sind genau jene, die durch die Formel (8)
dargestellt werden, wobei F eine beliebige wachsende Funktion ist, die der Periodizi-
tdtsbedingung (9) und der Normierungsbedingung (4) genügt.

4. Welches ist nun die geometrische Bedeutung der Extremalbedingung (6)? Es sei

F gegeben und/durch (8) definiert. Für jedes ae[0,2n] und a-n 8 a + n ist
dann

Re{e-la(f(8)-f(a))\=Re^Je^-^dF(y)\

5

-]sin(y-a)dF(y)<L0. (10)
a

Die Gleichung

Re;^-/öz} Re[^-/a/(a)}

definiert eine Gerade mit der Normalenrichtung a, die durch den Punkt/(a) geht
und mit ha bezeichnet werden soll. (10) besagt, dass der Graph Ff von/ganz auf der
linken Seite dieser Geraden liegt; sie ist für Ff die Stützgerade mit der Normalenrichtung

a. Es geht durch jeden Punkt von Ff mindestens eine Stützgerade, und
der Durchschnitt der Halbebenen {z:Re{e~ia(z—f(a))\=:0\ ist offenbar der
kleinste konvexe Bereich, der 7^ enthält. Er sei mit K bezeichnet. /} liegt auf dem
Rand von K, und der Durchschnitt von K mit einer Stützgeraden ha ist entweder
ein einziger Punkt oder eine Strecke. Letzteres tritt genau dann ein, wenn a für f
eine Unstetigkeitsstelle, also/(a_)+/(a+) ist. Indem man an diesen Unstetigkeits-
stellen die Punkte/(a_) und/(a+) miteinander geradlinig verbindet, werden die
Lücken des Graphen Ff geschlossen, und es entsteht eine Kurve (mit anders zu
wählender Parametrisierung), die wir den geschlossenen Graphen von/nennen und
mit Ff bezeichnen wollen. / legt auf jeder Stützgeraden einen ganz bestimmten
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Punkt fest. Es ist jener Endpunkt einer möglichen Strecke Kn ha, der bei kanonischem

Durchlaufen der Kurve /} zuletzt angetroffen wird. Da Ff der Rand von K
ist, wurde gezeigt, dass für jede Extremale / der geschlossene Graph Ff der Rand
eines kompakten konvexen Bereiches K ist. Offenbar ist seine Länge gegeben durch
die totale Variation von/in Intervall [0,27r], und F(a) ist die Länge des Kurvenbogens

von/(0) bis/(a).
Es sei nun umgekehrt K ein kompakter konvexer Bereich. Seine Stützfunktion ist
definiert durch

h(a) maxRe\e-iaz],
zeK

und die Stützgerade mit Normalenrichtung a ist gegeben durch die Gleichung

Re \e~laz} xcosa +ysina h(a).

Für alle a hat h Rechts- und Linksableitungen h'+ bzw. /*'_, und es ist stets h\ (a _)
h'„(a)^h'+(a) hL(a+) (vgl. [1]). Im folgenden bezeichnet h' immer die

Rechtsableitung. Wir definieren f(a) als den Schnittpunkt zweier infinitesimal benachbarter

Stützgeraden ha und ha+£,e>0; also

h(a + e)-h(a) [ _ £?-"-llh(a + e)-h(a) n f
A'(a) lim — — =Re \e'laf(a )lim

£-?0 e J

Re{-ie->af(a)}

und schliesslich

f(a) e'*(h(a) + ih'(a)). (11)

Es lässt sich leicht zeigen, dass die Funktion

F(a)=]h(x)dx + h'(a)-h'(0) (12)
o

wachsend ist (vgl. ß]) und der Normierungsbedingung (4) genügt. Dass sie auch die
Periodizitätsbedingung (9) erfüllt, kann durch eine einfache Rechnung bestätigt
werden. Die in (11) definierte Funktion/ist also von beschränkter Variation und
erfüllt auch alle anderen Bedingungen für die Zugehörigkeit zur Klasse V2n, ausser,
dass/(0) 0 sei. Durch Hinzufügen einer Konstanten, was nur eine Translation
von K bedeutet, kann aber immer erreicht werden, dass/(0)=0 wird. Es bezeichne
fx das so modifizierte//^/— (h(0)+ih'(0)). Eine kleine Rechnung zeigt, dass sie
durch (8) reproduziert wird, wenn für F die Funktion (12) eingesetzt wird. Auf
Grund des Lemmas ist/ extremal und der zu/ gehörige geschlossene Graph bis
auf die oben vorgenommene Translation der Rand des gegebenen konvexen
Bereichs K. Damit ist der folgende Satz bewiesen:
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Satz. Ist die 2 n-penodische Funktionf lokal von beschrankter Schwankung und ist ihr
«erster» Fourierkoeffizient normiert, d h

cx=^-)nf(8)e-löd8=l,
2n 0

so ist die Lange ihres geschlossenen Graphen Ff (d i die totale Variation von f auf
[0,2 7r]) dann und nur dann am kleinsten, wenn Ff eine geschlossene konvexe Kurve
und der Parameter 8 die Normalenrichtung ihrer Stutzgeraden ist

Albert Pfluger, Zürich
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Packing of 180 equal circles on a sphere

The Dutch botanist Tammes raised the following problem To determine the largest
angular diameter of n equal circles (spherical caps) which can be packed on the
surface of a sphere without overlappmg, or what is the same, to arrange n points
on the unit sphere so as to maximize the minimum distance between any two of the
points The Tammes problem has a vast literature which is surveyed, e g, in Fejes
Töth's book [4], and more recent results are mcorporated in a review paper by
Melnyk, Knop and Smith [6] where the Solutions and conjectured Solutions of this
problem are summanzed for n 2 to 60 and 80, 110, 119, 120, 122 Some ofthe
spherical circle-packmgs hsted in [6] have been improved by Danzer [2] (n= 17, 32)
and, more recently, by Tarnai and Gäspär [10, 11] (n= 18, 27, 34, 35, 40, 80, 122),
and new packmgs for n 54, 72, 132 have also been constructed [9]
Studymg these packmgs we have found that among them, in general, those packings
have great density which have octahedral or lcosahedral symmetry in rotation
(The density of packing is defined as the ratio of the total area of the surface of the
spherical caps and the surface area of the sphere) This fact has suggested us to
search for packings, for certain values of n, in octahedral or lcosahedral arrangement
having no planes of symmetry As a result of the research a packing of 180 equal
circles on a sphere has been constructed that we present in this note
According to Coxeter's paper [1], let us consider the regulär tessellation of symbol
{3,5 + }32, which consists of equilateral triangles, five or six at each vertex, some
slightly folded, such that they cover and fill the polyhedral surface of the regulär
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