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Uber eine die konvexen Kurven kennzeichnende
Minimaleigenschaft

1. Wir betrachten eine geschlossene Kurve mit einer Parametrisierung durch eine
komplexwertige Funktion f() auf dem Intervall [0,2 7] (es ist also f(0)=/(2r)),
von der wir zunéchst voraussetzen, dass sie eine stetige und nicht verschwindende
Ableitung besitzt. Zu ihr gehort eine Fourierreihe .~  c,e’"® mit den komplexen
Fourierkoeffizienten

er= 5= [ @)~ d. M
0

Es ist L= f 6" | " (0)|dé ihre Lange. Zwischen dem «ersten» Fourierkoeffizienten ¢,
und dieser Lange gilt die Ungleichung

27nlc| =L, )

wie man durch partielle Integration in (1) sofort feststellt:

T —iemiop 5yas
0

2nlcyl =

“toap |-

2n
= I/ ©)ds=L. 3)
0

Es stellt sich natiirlich die Frage, fir welche Kurven oder Funktionen f in (2)
Gleichheit besteht. Im vorliegenden Fall, wo f(J) eine iiberall stetige und nicht
verschwindende Ableitung besitzt, ist diese sofort zu beantworten. Denn diese
Gleichheit tritt dann und nur dann ein, wenn in (3) zwischen dem 3. und 4. Glied
Gleichheit besteht. Dafiir ist aber notwendig und hinreichend, dass —ie 0 f" ()
= |f" ()] ist, m.a.W., dass der Tangentenvektor " (é) in der Form

[ ©)=ie?- p ()
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geschrieben werden kann, wo p eine positive und 2 z-periodische Funktion ist.
Diese Bedingung driickt zweierlei aus:

1. Man erhilt im Kurvenpunkt f(6) die Tangentenrichtung t, indem man den
Vektor ¢/° um n/2 dreht: 1=§+n/2. Da diese mit wachsendem & zunimmt, muss
die Kurve konvex sein.

2. Bezeichnet s die Bogenldnge, so gilt ds/d6= lf"(0)| =p, d.h. p ist der Kriim-
mungsradius.

Die Gleichheit in (2) hat also eine zweifache Wirkung, ndmlich auf die Gestalt der
Kurve und den Kurvenparameter 6, der die Grosse von |c¢;| wesentlich beeinflusst.
Sie ist gleichzeitig notwendig und hinreichend.

Die Frage nach der Gleichheit in (2) kann leicht in ein Extremalproblem verwandelt
werden: Man betrachte die Klasse der Funktionen f aus Cj,, die fur |¢;| einen
bestimmten Wert liefern, z. B. den Wert 1, und suche darin jene Funktionen, welche
Kurven mit kleinster Lange parametrisieren. Diese Minimaleigenschaft charakteri-
siert die konvexen glatten Kurven (wobei die Normalenrichtung als Kurvenpara-
meter zu wihlen ist).

2. Die Frage, ob diese Minimaleigenschaft allen konvexen Kurven zukommt und
nur diesen, ist wohl nicht ganz trivial. Denn die oben an f gesetzten Regularitiits-
bedingungen schliessen das Auftreten von Ecken und Seiten aus, da bei Ecken die
Funktion und bei Seiten die Normalenrichtung auf einem Intervall konstant bleibt.
Betrachten wir als Beispiel etwa die Funktion f(d), die fir 0<d=n den Wert |
und fir 7<d=2n den Wert —i annimmt. Es ist 2n¢,=4. Hier besteht der
Graph von f aus 2 Punkten, aber es ist natiirlich, ihn durch Hinzufiigen der
Spriinge von f zu einer geschlossenen Kurve zu erginzen, die aus den Strecken von
—i nach i und von i nach —i besteht, also ein Schlitz ist, und die Linge 4 hat.
. So entsteht in (2) Gleichheit. Allgemeiner, sind z,,z,,...,z, die Ecken eines belie-
bigen konvexen Polygons, bezeichnet a; die Normalenrichtung (nach aussen!) der
Seite von z;_; nach z;(zg=z,), j=1,2,...,n, und ist f die Funktion, welche fiir
a;_1<d=a;den Wert z; annimmt, so ergibt sich analog

n
2ney= ), |zj—zj_4l.

j=1
Dies ist der Umfang L der konvexen Hiille von {z,,...,z,}, und in (2) entsteht wieder
Gleichheit.
Fiir die Herleitung von (2) war die partielle Integration in (3) wesentlich. Diese
Operation, wie sie in (3) ausgefithrt wird, ist nur fiir ein absolut stetiges f giiltig
und fihrt im vorangehenden Beispiel, wo f stiickweise konstant ist, offenbar zu
nichts. In (3) sollte eben die Ableitung f’ nicht im klassischen, sondern im
distributionellen Sinn genommen werden, welche unter anderem auch die Spriinge
von f mit beriicksichtigt. Dies ist jedoch in unserem Kontext dquivalent damit, dass
man in (3) das Integral im 3. Glied durch das Stieltjessche Integral

2z 1 .
| —e%df(5)
0 i
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ersetzt und dann durch partielle Integration zum Integral im 2. Glied gelangt, da
wir naturgemiss anzunehmen haben, dass die Kurve rektifizierbar oder die
Funktion f von beschrinkter Schwankung sei.

Es bezeichne also V,, die Klasse der komplexwertigen und 2 z-periodischen
Funktionen auf R, die lokal von beschrinkter Schwankung und wie folgt normiert
sind:

J(0)=0 und f(x)=f(x,):= imf(),  xeR.

Dann ist jede Unstetigkeitsstelle x von fe V,, eine Sprungstelle, d.h. es existieren
die Grenzwerte von links und von rechts und sind verschieden:

limf () =/ () 4/ (x4)=limf(),
yix yix

und es gibt hochstens abzidhlbar viele Sprungstellen, die aber auf R dicht sein
konnen. Die totale Variation von f im Intervall [0,x], x=0, ist eine wachsende
Funktion F(x) mit der Normierung

F(0)=0 und F(x)=F(x,), x=z=0. 4)

Es hat dann f auf [0,2 ] die totale Variation F(2xz) und auf [x,y], 0=x<y, die
totale Variation F(y)— F(x). Wie erwihnt, folgt durch partielle Integration

27

]

0

27'('('1]:

—ie 8 df(9) ' ézj'ndF(é)=F(2 7). )
0

Ist die Funktion f stetig, so ist ihr Graph eine geschlossene Kurve und F(2 ) ihre
Linge. Im allgemeinen, d.h. fir fe V,,, hat dieser Graph an den Sprungstellen
«Liicken». Werden diese nun ausgefiillt, d.h. die Punkte f(x_) und f(x.) durch
Strecken verbunden, so erhdlt man wiederum eine geschlossene Kurve, die aber
anders zu parametrisieren ist. Wir nennen sie den geschlossenen Graphen von f
und bezeichnen ihre Linge mit L. Es ist offenbar L= F(2 ), und es bleibt nach (5)
die Ungleichung (2) mit den gegebenen Prizisierungen auch in unserem all-
gemeinen Rahmen bestehen. Es ist nun unser Problem, jene fe V,, zu bestimmen,
fir die in (2) Gleichheit besteht. Da man f durch ¢“f ersetzen kann, ohne die
Gleichung 27 |c¢,| =L zu zerstdren, kann man sich auf den Fall beschrinken, wo
c1=0, also

2n 2n
g —ie”df (&)= [ |df(0)| =F(2n) 6)
0

ist. Funktionen aus V,,, die dieser Gleichung geniigen ( F(2r) ist hier einfach ein
Synonym fir [3*|df|), nennen wir kurz extremal. Wir werden nachfolgend eine
explizite Formel fiir diese extremalen Funktionen f geben und dann nach der
geometrischen Bedeutung dieser Formel fragen.
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3. Wir nehmen also an, dass f extremal und daher die Gleichung (6) erfiillt sei.
Wegen | [2*e~i*df| = F(2n)— F(a) und | [§e~*df| = F(a) folgt daraus

E-—ie"”‘df=F(a), ael0,2n] (7

und diese Bedingung ist notwendig und hinreichend.

Fiir ein stetig differenzierbares fist nun
a . a . a
f—ie ™df=[ —ie ™*f"(x)dx und F(a)= [ F’(x)dx,
0 0 0

und aus (7) folgt durch Ableiten nach a, dass f” (a)=ie’® F’ (a) und daher
a
fl@)=[ie*dF(x), O=a=2n, 8)
0

sein muss. Es ist nun leicht zu sehen, dass sich jedes extremale f so darstellen lisst,
wobei F(a) die totale Variation von f auf [0,a] ist. (Schreibt man df=ie'*|df| ohne
zu fragen, was die Zeichen df und |df| bedeuten, so scheint der Schluss von (7)
auf (8) sogar trivial zu sein.) Es gilt aber mehr: Fiir jede wachsende Funktion F,
die der Normierung (4) und der Periodizitiitsbedingung

F e-»dF)=0 ©)
0

geniigt, definiert (8) ein extremales f und ist F(a) die totale Variation von f auf
[0,a]. In der Tat, integriert man die linke Seite von (6) partiell, setzt (8) ein und
vertauscht die Reihenfolge der Integration, so erhédlt man (6). Es ist aber noch zu
verifizieren, dass F die totale Variation von f ist. Fiir ein beliebiges Teilintervall

"[8.87] von [0,2#] ist |f(B)—f(B)I §j§'dF und dieses, angewandt auf beliebige
Unterteilungen der Intervalle [0,a] und [a, 2 7], ergibt

f |dfl =F(a) und ﬂ df|sFQn)—F(a).
0 a

Daraus schliessen wir in Verbindung mit (6) wie zu Beginn dieser Nummer, dass (7)

gelten muss. Deshalb ist auch F(a)=[§|dfl und schliesslich F(a)=[3|df] fur
ael0,2r].

Firr jedes wachsende F, das der Normierung (4) geniigt, stellt somit (8) eine
Funktion dar, die wegen (9) zu V,, gehort, der Bedingung (6) geniigt und daher
extremal ist. Ob nun jede Extremale in V,, in dieser Weise dargestellt wird?
Nehmen wir an, es sei f extremal und es sei F die totale Variation von f. Dann gilt
(7). Die mit F durch (8) definierte Funktion bezeichnen wir mit f;. Nach dem
soeben Bewiesenen gilt dann

[~ e af,= F(x)
0 l
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und zusammen mit (7) folgt dann, dass ¢ =f—f; im ganzen Intervall [0,2 n] der
Gleichung
1 _, 1 _. x :
0= — e dp=—e g ()= | —e V9 ()dy
0

O ——

oder
x >
o (X)=[ie Vo (y)dy
0

geniigen muss. Daher ist ¢ stetig differenzierbar und ¢’=0, somit ¢ eine Konstante,
die wegen ¢ (0)=/(0)—f, (0)=0 verschwinden muss. Also ist f; mit f identisch und
daher jede Extremale durch die Formeli (8) darstellbar, und wir haben folgendes

Lemma. Die extremalen Funktionen in V,, sind genau jene, die durch die Formel (8)
dargestellt werden, wobei F eine beliebige wachsende Funktion ist, die der Periodizi-
tdatsbedingung (9) und der Normierungsbedingung (4) geniigt.

4. Welches ist nun die geometrische Bedeutung der Extremalbedingung (6)? Es sei

F gegeben und f durch (8) definiert. Fiir jedes a€[0,27] und a—n=d=a+n ist
dann

Re {e=' (f(6)—f(a)) | = Re {fief@—aw(y)}

R ey O

sin (y—a)dF (1) <0. (10)

Die Gleichung
Refe %z}=Rele %f(a)}

definiert eine Gerade mit der Normalenrichtung a, die durch den Punkt f(a) geht
und mit &, bezeichnet werden soll. (10) besagt, dass der Graph Iy von f ganz auf der
linken Seite dieser Geraden liegt; sie ist fiir I die Stiitzgerade mit der Normalen-
richtung a. Es geht durch jeden Punkt von /; mindestens eine Stiitzgerade, und
der Durchschnitt der Halbebenen {z:Re{e™'*(z—f(a))}=0} ist offenbar der
kleinste konvexe Bereich, der I enthilt. Er sei mit K bezeichnet. I} liegt auf dem
Rand von K, und der Durchschnitt von K mit einer Stiitzgeraden A, ist entweder
ein einziger Punkt oder eine Strecke. Letzteres tritt genau dann ein, wenn a fiir f
eine Unstetigkeitsstelle, also f(a _)#f(a ) ist. Indem man an diesen Unstetigkeits-
stellen die Punkte f(a_) und f(a ,) miteinander geradlinig verbindet, werden die
Liicken des Graphen 7 geschlossen, und es entsteht eine Kurve (mit anders zu
wihlender Parametrisierung), die wir den geschlossenen Graphen von f nennen und
mit f} bezeichnen wollen. f legt auf jeder Stiitzgeraden einen ganz bestimmten
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Punkt fest. Es ist jener Endpunkt einer moglichen Strecke K hA,, der bei kanoni-
schem Durchlaufen der Kurve I zuletzt angetroffen wird. Da /; der Rand von K
ist, wurde gezeigt, dass fiir jede Extremale f der geschlossene Graph I der Rand
eines kompakten konvexen Bereiches K ist. Offenbar ist seine Linge gegeben durch
die totale Variation von f in Intervall [0,2 7], und F(a) ist die Linge des Kurven-
bogens von f(0) bis f(a).

Es sei nun umgekehrt K ein kompakter konvexer Bereich. Seine Stiitzfunktion ist
definiert durch

h(a)=maxRef{e %z},
zeK

und die Stiitzgerade mit Normalenrichtung a ist gegeben durch die Gleichung
Rele 4z}=xcosa+ysina=h(a).

Fiir alle a hat 2 Rechts- und Linksableitungen A’ bzw. #’_, und es ist stets A, (a_)
=h"_(a)sh', (a)=h"_(a,) (vgl. [1]). Im folgenden bezeichnet A’ immer die Rechts-
ableitung. Wir definieren f(a) als den Schnittpunkt zweier infinitesimal benach-
barter Stiitzgeraden A, und A, , ., &> 0; also

h(a+e)—h . ~ie_
W (@)= lim 2 @F¢) (a)=Re{e"“f(a)lime 1}
e—0 € e—-»0 &

=Re{—ief(a)}

und schliesslich

fl@y=e(h(@)+ik’ @) . (11)

Es ldsst sich leicht zeigen, dass die Funktion

Fa)= [ h(x)dx+h (@)~ ©0) (12)
0

wachsend ist (vgl. [2]) und der Normierungsbedingung (4) geniigt. Dass sie auch die
Periodizititsbedingung (9) erfiillt, kann durch eine einfache Rechnung bestitigt
werden. Die in (11) definierte Funktion f ist also von beschriankter Variation und
erfullt auch alle anderen Bedingungen fiir die Zugehorigkeit zur Klasse V,,, ausser,
dass f(0)=0 sei. Durch Hinzufiigen einer Konstanten, was nur eine Translation
von K bedeutet, kann aber immer erreicht werden, dass f(0)=0 wird. Es bezeichne
f1 das so modifizierte f:f;=f— (h(0)+ih’(0)). Eine kleine Rechnung zeigt, dass sie
durch (8) reproduziert wird, wenn fiir F die Funktion (12) eingesetzt wird. Auf
Grund des Lemmas ist f; extremal und der zu f; gehorige geschlossene Graph bis
auf die oben vorgenommene Translation der Rand des gegebenen konvexen
Bereichs K. Damit ist der folgende Satz bewiesen:
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Satz. Ist die 2 n-periodische Funktion f lokal von beschrdnkter Schwankung und ist ihr
«erstery Fourierkoeffizient normiert, d. h.

1 2=
=5 [ f)e d5=1,
27
so ist die Ldnge ihres geschlossenen Graphen I (d.i. die totale Variation von f auf
[0.27]) dann und nur dann am kleinsten, wenn I eine geschlossene konvexe Kurve
und der Parameter § die Normalenrichtung ihrer Stiitzgeraden ist.

Albert Pfluger, Ziirich
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Packing of 180 equal circles on a sphere

The Dutch botanist Tammes raised the following problem: To determine the largest
angular diameter of n equal circles (spherical caps) which can be packed on the
surface of a sphere without overlapping; or what is the same, to arrange n points
on the unit sphere so as to maximize the minimum distance between any two of the
points. The Tammes problem has a vast literature which is surveyed, e.g., in Fejes
To6th’s book [4], and more recent results are incorporated in a review paper by
Melnyk, Knop and Smith [6] where the solutions and conjectured solutions of this
problem are summarized for n=2 to 60 and 80, 110, 119, 120, 122. Some of the
spherical circle-packings listed in [6] have been improved by Danzer [2] (n=17, 32)
and, more recently, by Tarnai and Géspar [10, 11] (n= 18, 27, 34, 35, 40, 80, 122);
and new packings for n= 54, 72, 132 have also been constructed [9].

Studying these packings we have found that among them, in general, those packings
have great density which have octahedral or icosahedral symmetry in rotation.
(The density of packing is defined as the ratio of the total area of the surface of the
spherical caps and the surface area of the sphere.) This fact has suggested us to
search for packings, for certain values of n, in octahedral or icosahedral arrangement
having no planes of symmetry. As a result of the research a packing of 180 equal
circles on a sphere has been constructed that we present in this note.

According to Coxeter’s paper [1], let us consider the regular tessellation of symbol
{3,5+}3, which consists of equilateral triangles, five or six at each vertex, some
slightly folded, such that they cover and fill the polyhedral surface of the regular
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